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Abstract: With the development of the laser scanning technique, it is easier to obtain 3D large-scale
scene rapidly. However, many scanned objects may suffer serious incompletion caused by the
scanning angles or occlusion, which has severely impacted their future usage for the 3D perception
and modeling, while traditional point cloud completion methods often fails to provide satisfactory
results due to the large missing parts. In this paper, by utilising 2D single-view images to infer
3D structures, we propose a data-driven Point Cloud Completion Network (PCCNet), which is an
image-guided deep-learning-based object completion framework. With the input of incomplete
point clouds and the corresponding scanned image, the network can acquire enough completion
rules through an encoder-decoder architecture. Based on an attention-based 2D-3D fusion module,
the network is able to integrate 2D and 3D features adaptively according to their information integrity.
We also propose a projection loss as an additional supervisor to have a consistent spatial distribution
from multi-view observations. To demonstrate the effectiveness, first, the proposed PCCNet is
compared to recent generative networks and has shown more powerful 3D reconstruction abilities.
Then, PCCNet is compared to a recent point cloud completion methods, which has demonstrate
that the proposed PCCNet is able to provide satisfied completion results for objects with large
missing parts.

Keywords: point cloud object completion; point cloud generation; 3D reconstruction; single image;
mobile laser scanning

1. Introduction

As one of the most important devices to obtain 3D point clouds, laser scanning technique
has developed rapidly. Scanned data have been widely used in various areas in recent decades,
such as in automatic driving [1], high precision maps [2], virtual reality (VR), augmented reality
(AR) [3,4], etc. However, limited by the scanning conditions, the scanned objects are often seriously
incomplete. Various factors may influence LiDAR point densities and spatial distributions, for example,
Balsa-Barreiro et al. [5,6] analyse variations in point density across different land covers with an
airborne oscillating mirror laser scanner. Figure 1 shows an example of a parking place (acquired
by the mobile scanning system RIEGL VMX-450), where most of the cars are incomplete due to the
occlusion. These is a common yet challenging problem in completion for the point cloud objects.

Previous completion methods usually focus on filling in small parts, where the basic structure is
relatively complete. A. Ley et al. [7] propose a simple convex optimization formulation that exploits
geometric constraint, which has been demonstrated in denoising point clouds and filling in small holes
on E-SAR data. Z. Cai et al. [8] come up with an occluded boundary detection method based on the
last-echo information, but is only fit for on small-footprint LIDAR point clouds [9]. For the airborne
laser scanning system, the data is affected by occlusion severely in trees. G. Zhou et al. [10,11] and
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J. Zhang et al. [12] use specified fusions between LiDAR and aerial imagery to extract buildings or
various applications to eliminate the influence of occlusion. H. Wang et al. [13] utilize Hough Forest
framework for object detection. In order to deal with the occlusion from adjacent objects, they propose
the distance weighted voting. Some methods detect symmetries and utilize the priori knowledge to fill
in missing parts [14,15], but these methods may fail when the data is not symmetrical. We have also
noticed that photogrammetry, in addition to allowing completing LiDAR point clouds, provides more
detailed information in some cases related to surface textures and colors [16,17].

Figure 1. The scanned point clouds of a parking place.

However, most of these methods are based on the designed feature descriptors or rules and they
are limited to the small-scale completion, while in practice, the objects often suffer serious incompletion,
which leads to largely failures for traditional methods, thus calling for the learning-based frameworks.
As far as we know, there is no one in remote sensing that has utilised the deep-learning-based method
to complete point cloud object.

The completion of large missing parts is essentially a generation problem, and some of the recent
generative methods have provided beneficial inspiration. ShapeNet [18], known as a large-scale CAD
dataset, has promoted the development of 3D generative methods, which can be divided roughly
into two sets of methods: voxel-based and point-cloud-based methods. J. Wu et al. [19] propose a 3D
Generative Adversarial Networks (3D-GANs) to predict voxelized 3D models, and have achieved
superior results compared to other unsupervised methods. H. Fan et al. [20] focus on generating point
clouds from a single image and come up with the point-cloud-generative network (PSGN). They use
Chamfer Distance (CD) to calculate the distance between the generated model and ground truth.
X. Yan et al. [21] utilize projection maps to obtain 3D spatial distribution. M. Tatarchenko et al. [22]
propose the octree generating network (OGN), which has achieved state-of-the-art results among the
voxel-based methods. An exception is the recent work of C.-H. Lin et al. [23]. The method produces
dense multi-view projected point clouds, rather than the spatial 3D models directly.

Considering the irregular and unordered distribution of the point cloud, it is difficult to process
such data under the deep-learning frameworks. To address this problem, C. R. Qi et al. [24] propose
PointNet, which is a basic work for point clouds classification and segmentation. Then, the network is
further improved by their following work [25], PointNet++, which learns local features with increasing
contextual scales through a proposed hierarchical architecture.

In order to reconstruct the object with large missing parts, inspired by the above point cloud
generative networks, we propose the Point Cloud Completion Network (PCCNet), which is the first
image-guided deep-learning-based scanning object completion framework by utilising 2D single-view
images to generate complete point cloud models. To jointly consider the 2d and 3d information,
an attention-based module is designed to fuse the 2d and 3d features adaptively, then the decoder
learns to construct the whole model. Furthermore, to obtain consistent spatial distribution from
multi-view observations, a projection supervision scheme is offered to provide consistent multi-view
reconstruction results. Figure 2 is an overview of our method: (a) and (b) are the input of PCCNet,
and (c) is the output of PCCNet (intermediate result) and (d) is the final result after aligned by the
Iterative Closest Point (ICP) [26] with the scanned point clouds.
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(a) (b)

(d)(c)

Figure 2. The sample images of reconstruction and completion on Mobile Laser Scanning (MLS) point
clouds. (a) The real street images. (b) The scanned point clouds. (c) The generated point clouds
(rendered). (d) The merged point clouds.

2. Network Architecture

In this section, we introduce the network framework, which completes 3D object models based
on a real image. Our algorithm involves three steps: (1) We obtain the training and testing data (see in
the supplementary material). (2) Then, taking the image and point clouds pairs as input, the network
is trained to generate corresponding point clouds. (3) Finally, the generated point clouds are aligned
with the initial point clouds to obtain complete 3D models.

2.1. Problem Statement

Our goal is to generate complete 3D point clouds through an original image. Using a large number
of unordered points to compose an object, designated as P = {(xi , yi , zi)}N

i=1, where N is the number of
points. Here, to achieve a balance between a good presentation of 3D models and calculation burden,
N is set as 1024. Points are sampled on the surface from CAD models in ShapeNet.

The network actually learns a mapping scheme from a 2D image and the incomplete model to its
corresponding model, denoted as:

Pg = G{(I, T;Φ)}. (1)

where Φ denotes the network parameters; T denotes the incomplete model; and I denotes the 2D
image. For evaluation, a given incomplete model is connected with the image to form input pairs.

Then, the merging phase is to combine the aligned generative point clouds and initial point clouds:

P = P′g + PI . (2)

where P′g and PI denote the aligned generated point clouds and initial point clouds respectively.

2.2. PCCNet Architecture

To complete shapes with large holes, we propose a novel network to generate point clouds,
as shown in Figure 3. Unlike conventional networks for reconstruction, our network uses two inputs:
the incomplete 3D shape and its corresponding image. In the training phase, the process contains two
stages to obtain the point clouds.

First, in the encoding phase, we use a 2D encoder to extract the image feature and a 3D encoder
to obtain the features from incomplete shapes. Then, we design an attention-based module to fuse
the 2D and 3D features, which can learn to adjust weights of the two parts adaptively. So after fusing
the two features, we have an insight of the whole object, not only from the 2D form, but also from
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spatial and geometric information. Next, we use a decoder comprised of several convolutional and
deconvolutional layers, learning to map the fused features to complete point clouds. The output is the
generated point clouds as a 1024× 3 matrix.
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Figure 3. The framework of PCCNet.

Specifically, we give a detailed illustration about the architecture. For the input, a 128× 128 image
and an incomplete shape with 1024 points make up the input pair, which is fed into the 2D-3D encoder.
The 2D encoder contains five convolutional and ReLU layers. Then, a 2048-dimensional feature map
of the image is produced. As for the 3D encoder, we adopt the basic structure of PointNet++. Three set
abstraction levels, including the sampling, grouping and PointNet layers, are utilised to extract the
3D information. Thus, we obtain a 1024-dimensional feature of the 3D part. To jointly consider the
2d and 3d information, an attention-based fusion module is designed to fuse the 2d and 3d features.
First, the concatenated features of the two encoders are fed into a fully connected layer and a sigmoid
layer to form two weights between 0 and 1, which represent the relative significance of the two features.
Then, two fully connected layers learn to further integrate them and reshape to 16× 16 with 8 channels
to fit for the decoder.

Inspired by the single-view generative networks, the decoder contains four convolutional layers,
one deconvolutional layer and two fully connected layers, which can recover the 3D distribution
from the feature space. To keep more fine-grained structures from the initial 3D models, a skipped
connection from the third set abstraction level is added, such as the structure of U-Net [27]. After the
last fully connected layer, the map is reshaped to a 1024× 3 matrix.

2.3. Loss Function

Inspired by the single-view generative networks, we use the Chamfer Distance (CD) as the
criterion measuring the distance between two models S1, S2 ⊆ R3:

dCD = ∑
p∈S1

min
q∈S2
‖ p− q ‖2

2 + ∑
p∈S2

min
q∈S1
‖ p− q ‖2

2. (3)

where S1 and S2 denote the generated model and ground truth; p and q denote points in these two
models. CD can be conducted efficiently, and the overall distance is the mean of all points in the two
shapes. Both PSGN and our experiments confirm that CD provides a good measurement of spatial
distance. Additionally, we add a projection loss to train the network. At each iteration, the generated
point clouds and ground truth are rotated according to the same random transformation. Then, they
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are projected on a 128× 128 image. For every pixel, the projection pixel and its three neighbor pixels
are labeled as foreground with white.

To ensure the multi-view observation consistence while capturing fine-grained parts, we adopt
the the projection as an additional supervisor. Notice that there is a recent work [23] that generates
multi-view projection directly and is designed for dense point cloud generation. On the contrary,
PCCNet targets at real images and measure the discrepancy of projections. The projection loss is the
per-pixel discrepancy between the two projected images of the generated model and ground truth:

Lp = ∑
i
‖ pi − qi ‖2

2. (4)

where pi and qi denote the pixels with the location i in the two projected images.
Experiments are carried out to compare the function of projection loss, which demonstrate the

promotion in training speed and accuracy (Section 3.2). The total objective function is:

Ltotal = dCD + Lp. (5)

3. Experiment

In this section, we provide some implementation details about the proposed PCCNet along with
the employed datasets. To evaluate the capability of 3D reconstruction, first, PCCNet is compared
to two single-view reconstruction methods. Then, PCCNet is compared with a state-of-the-art MLS
completion approach.

3.1. Dataset and Implementation Details

Dataset. Our network is trained on ShapeNetCore55, which covers 55 common object categories
with approximately 51,300 unique 3D models. To construct the image and point clouds pairs for
training, we use CAD models with complex backgrounds from one fixed viewpoint (looking down
at 20 degrees) to mimic the real images. Simultaneously, we sample the CAD surface to obtain point
clouds. All of the sampled point clouds are normalized into a 1 m cube and centered at the origin.
We split the dataset into training and testing sets in the ratio of 4:1.

In the testing phase, point clouds are generated from real street photos, together with scanning
point clouds acquired by a RIEGL VMX-450 MLS system. However, at the same time it suffers from
incompetent scanning especially at the back. First, we will have a brief introduction of the MLS system.
Then, to have a clear view of our method, the making procedure of the training data is introduced.

MLS system. There are mainly five parts, as shown in Figure 4, which are mobile laser scanning
system, optical camera system, global positioning system, inertial navigation system and Distance
Measurement Indicator (DMI). The core device is the mobile laser scanning system, i.e., a RIEGL
VMX-450 MLS system, which can provide low-noise and gapless 360◦ lines at a measurement rate
of 550,000 pts/s and a scan rate of up to 200 lines/s. Meanwhile, to form the training data of
picture-point-cloud pairs, the optical camera system, containing four optical digital camera to capture
the surrounding environment, is taking photos at the same time. The other three systems provide
assistant effects for the scanning procedure.

The making procedure of training and testing data. The whole data contains two parts, which are
ShapeNet data for training and MLS data for testing. There are a large amount of mesh models in
ShapeNet, first, we sample points on the surfaces of these meshes as the complete models. To form
incomplete models, we select random planes through the center of models and cut a half. The pairing
images are rendered with random selected background images. The procedure of making ShapeNet
training data is shown in Figure 5a. For the MLS data, as shown in Figure 6, the first step is to remove
the ground and get individual MLS objects. Then, based on the recorded parameters of each images
and 3D-2D projection relationships, we are able to get accurate image and point clouds pairs. Due to
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the one-to-many mapping between 3D models and 2D images, with careful selection, we obtain MLS
pairs for testing.

Implementation details. The network is programmed in the TensorFlow framework, the training
optimizer uses Adam [28]. We run the code on a server with two Titan X GPUs. The network is trained
from scratch with a batch size of 50 and 300 epochs in total. The learning rate automatically decays
according to the setting of PointNet++. The size of the input pictures is 128× 128, and the number of
generated point clouds is 1024. For the 2D encoder, the kernel size of the convolutional layers is 3× 3
with no padding. The parameters of the 3D encoder are derived from PointNet++: the numbers of
sampled points are 512 and 128, and each local group has 64 points with the ball radius of 0.35 and
0.45. As for the decoder, the kernel size of the deconvolutional layer is 5× 5. Besides, we set ReLU as
the activation function.

Figure 4. The component of our MLS system.

(a)

(b)

Figure 5. The procedure of making MLS pairs.



Sensors 2019, 19, 1514 7 of 13

Figure 6. The procedure of obtaining individual MLS objects.

3.2. Evaluation of the Proposed PCCNet

Reconstruction performance of PCCNet. To have an intuitive understanding of PCCNet, based
on ShapeNetCore55, we select five categories for training and testing data. To simulate the real
environment, the CAD dataset is synthesized with several real scenes. Shown in Figure 7 are four
selected cars, it can be seen that the generated point clouds by PCCNet are sharing similar distribution
with the ground truth.

(a) (b) (c)

Figure 7. Results on rendered images. (a) Rendered images. (b) Ground truth. (c) Generated point
clouds by PCCNet.
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In order to measure the attention-based fusion module, we take away the weighted branch (a fully
connected layer and a sigmoid layer) and keep the two fully connected layers. The results are shown
in column PCCNet_WF in Tables 1 and 2. It can be seen that compared with the complete structure
PCCNet_P, PCCNet_WF has lower accuracy.

Table 1. CD scores of PSGN and PCCNet.

Category PSGN (CD) PCCNet_WP PCCNet_W F PCCNet_P

Sofa 0.00220 0.00201 0.00195 0.00161
Airplane 0.00100 0.00084 0.00092 0.00071

Bench 0.00251 0.00233 0.00231 0.00195
Car 0.00128 0.00136 0.00127 0.00123

Chair 0.00238 0.00210 0.00191 0.00181

Table 2. IoU scores of OGN and PCCNet.

Category OGN (IoU) PCCNet_WP PCCNet_W F PCCNet_P

Sofa 0.11204 0.19014 0.19310 0.21018
Airplane 0.14727 0.34216 0.28621 0.43376

Bench 0.04608 0.25839 0.26517 0.27712
Car 0.44141 0.31326 0.31591 0.33721

Chair 0.13935 0.20318 0.24133 0.25320

The function of projection is to delineate the outline of an object. Compared with volumetric
methods [29] that cannot delineate some fine-grained parts, our method can exhibit more detailed
parts, thus accelerating and promoting training quality. Figure 8 shows two samples of the projection
results with some fine-grained parts. The training comparison is shown in Figure 9. After adding
projection loss, the CD loss decreased faster, and achieved higher accuracy.

Comparisons with state-of-the-art generative networks. To evaluate the reconstruction capability,
PCCNet is compared with OGN and PSGN, reported as state-of-the-art 3D object generation networks.
The measurement between PCCNet and OGN is Intersection over Union (IoU), which is widely
adopted by voxel-based methods. Meanwhile, the measurement between PCCNet and PSGN is CD,
which is widely used by point-cloud-based methods. Comparisons with OGN and PSGN are shown in
Figures 10 and 11, following their original settings and displays, which demonstrate that our generated
3D models are more similar and integrated.

(a) (b) (c)

Figure 8. Two samples of projection from the same viewpoint. (a) Rendered input images. (b) Projection
of the ground truth. (c) Projection of the generated shapes.
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Figure 9. Comparison on training loss curve. The red line displays the training process without
projection loss, and the blue line is with projection loss.

Figure 10. Car images from ObjectNet3D [30]. The orders from left to right: original images, the results
of PCCNet and OGN.

Statistics of the reconstruction accuracy on five categories are shown in Tables 1 and 2.
In the two tables, PCCNet_P and PCCNet_WP denote PCCNet with and without projection loss,
and PCCNet_WF is without the weighted fusion module. From the results, we can see that PCCNet,
PCCNet_WP and PCCNet_WF achieve the higher accuracy compared with state-of-the-art generative
methods on images with complex backgrounds. Besides, PCCNet_P performs better than PCCNet_WP
since the multi-view consistency is considered.
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Figure 11. Car images from Internet. The orders from left to right: original images, the results of
PCCNet and PSGN.

3.3. Comparison with Traditional Point Completion Works

Due to the scanning conditions, objects in scanned point clouds are often faced with severe
incompletion. Because traditional point completion methods require roughly complete models, they
may fail in those cases where large structures are missing. On the contrary, our proposed data-driven
completion framework provides a benefited solution for object completion in such extreme cases.

Specifically, using the pre-trained network on ShapeNet, real street images and incomplete object
models are fed into the network to generate a complete model. Then, utilised Iterative Closest Point
(ICP) registration method [26] provided in Point Cloud Library (PCL), the generated point clouds are
aligned with the initial point clouds, followed by merging and normalizing to form complete models.

The experiment results are shown in Figures 12 and 13. Three different kinds of cars have different
qualities in MLS point clouds. Among them, the white Porsche has relatively dense and intact scanning
structures in the front, but it lacks 3D structures at the back. The Toyota in the middle row is the most
incomplete, missing more than three quarters of the entire model. Figure 12a,b are the original street
images and incomplete scanning models, forming the input pairs. Figure 12c displays the results of
PCCNet, and it can be seen that no matter how large the missing parts are, our method can produce the
entire models, which are almost identical to the actual 3D structures. As for the traditional completion
methods [8], which represents state-of-the-art MLS completion standard. As shown in Figure 12d,
under the same conditions, the method [8] fails to complete the large holes or fill in wrong places.

Limited by the categories of ShapeNet models, in this paper, we only train and test on the cars,
as shown in Figure 13. It can be seen that our method, along the data-driven way, can produce complete
models for the largely incomplete shapes, where previous feature-based methods may probably fail.
As for other categories, we have confidence that our method is also suitable for them.
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(a) (b) (c) (d)

Figure 12. Results of the MLS objects completion. (a) Street images. (b) Original MLS point clouds
(Missing more than a half). (c) The completion results of PCCNet. (d) The completion results of [8].

(a) (b) (c)

Figure 13. More results of MLS data. (a) Street images. (b) Original MLS point clouds. (c) The
completion results of PCCNet.
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4. Conclusions

We designed a novel generative network that is more suitable for point cloud objects completion.
Instructed by 2D street images, our method can infer the 3D missing structures based on 2D information.
Additionally, by adding the projection loss of the generated point clouds, the network achieves higher
accuracy. Our network is the first image-guided deep-learning-based method for the point cloud
objects completion task. Experiments show that our method performs well for 3D reconstruction and
3D objects completion under the real environment set. However, limited by the categories of ShapeNet,
we only train and test on cars, but our method is also suitable for other categories, such as traffic lights,
bus station, buildings, etc. The unified deep-learning architecture of combining 2D and 3D feature is a
worth and promising issue in 3D modeling and processing, the proposed network has provided an
efficient way to integrate 2D and 3D information to guide the point cloud completion.
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