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Abstract: This paper considers bearings-only target tracking in clutters with uncertain clutter
probability. The traditional shifted Rayleigh filter (SRF), which assumes known clutter probability,
may have degraded performance in challenging scenarios. To improve the tracking performance,
a variational Bayesian-based adaptive shifted Rayleigh filter (VB-SRF) is proposed in this paper.
The target state and the clutter probability are jointly estimated to account for the uncertainty in
clutter probability. Performance of the proposed filter is evaluated by comparing with SRF and the
probability data association (PDA)-based filters in two scenarios. Simulation results show that the
proposed VB-SRF algorithm outperforms the traditional SRF and PDA-based filters especially in
complex adverse scenarios in terms of track continuity, track accuracy and robustness with a little
higher computation complexity.
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1. Introduction

Bearings-only target tracking is to estimate the current position and velocity of a target using only
the noise-corrupted bearing measurements from one or multiple observer platforms. It is an important
tracking problem that arises in both military and civilian applications, such as underwater sonar
tracking, bistatic radar, air traffic control and computer vision [1].

Because of the intrinsic nonlinearities in the measurement models, it is difficult to acquire
an optimal solution of this problem. Several suboptimal algorithms have been developed for
bearings-only tracking in the literature. The extended Kalman filter (EKF) [2] in the Cartesian coordinate
system is an early attempt. However, it is easy to diverge. To improve the stability of the EKF,
the bearings-only tracking problem was formulated in modified polar coordinates, resulting in the
modified polar coordinate EKF (MPEKF) [3]. However, it requires good initialization to guarantee
convergence. The well-known pseudo-linear estimator (PLE) [4] was also developed to solve the
bearings-only tracking problem. However, it gives a biased estimate at long ranges. In recent years,
some bias compensation techniques were developed to improve the performance of PLE [5–7].
In addition, more sophisticated nonlinear Kalman filtering algorithms, such as unscented Kalman
filter (UKF) [8,9], cubature Kalman filter (CKF) [1] and particle filter (PF) [10,11] were applied for
bearings-only target tracking. PF can provide good performance but at the price of heavy computation
load. Noteworthily, Clark et al. [12,13] proposed a novel shifted Rayleigh filter (SRF) for bearings-only
tracking, which is still based on the approximation of conditional expectations but with novel feature
which is performing a calculation to exploit the essential structure of the nonlinearities in a new way.
It is shown to exhibit similar performance to the PF in certain challenging scenarios with much lower
computational complexity [14].

However, these algorithms do not consider the impact of clutter which makes the bearings-only
tracking problem more intractable. Apparently, the classical treatment of clutter in target tracking
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problem can be extended to the bearings-only tracking problem. For example, Reference [15] integrated
the maximum entropy fuzzy probabilistic data association (MEFPDA) with the square-root cubature
Kalman filter (SCKF) to deal with the clutter in bearings-only tracking. Clark et al. also included the
effect of clutter measurements into the SRF algorithm in [12]. However, in the classical algorithms,
the clutter probability is usually assumed known and constant, which maybe time-varying or hard to
determine in advance especially in adverse scenarios. Use of incorrect value of the clutter probability
may lead to track accuracy degradation even track loss. A straight-forward idea is to account for the
unknown clutter probability in the process of estimation of the state. That is, we need to solve the
problem of bearings-only target tracking with uncertain parameter of clutter probability.

As we know, the Bayesian approach is the most general approach of solving the problem with
uncertain parameters. However, it is not trivial to get the analytical solution for most Bayesian
approaches due to complex nonlinear probability density function or high dimension of integration.
Recently, the variational Bayesian (VB)-based adaptive filters [16–18] have drawn extensive attention,
which utilize a new simpler, analytically tractable distribution to approximate the true posterior
distribution so that avoiding direct calculations of complex integrals. Its adaptive strategy has a
strong ability of tracking time-varying parameters. Therefore, we adopt the VB method to jointly
estimate the target state and the clutter probability within the framework of SRF in this paper for
bearings-only tracking in clutters. By establishing a conjugate exponential model for clutter probability
and data association indicator, the proposed filter is derived using the iterative filtering framework.
The tracking performance of the proposed VB-SRF is evaluated by comparing with SRF, PDA-SCKF [15]
and MEFPDA-SCKF [15] via two simulation examples. It shows that the proposed filter outperforms
the traditional SRF and two PDA-SCKF-based filters in complex mismatched scenarios in terms of
track continuity and track accuracy but at the cost of higher computation complexity.

The remainder of the paper is organized as follows. Section 2 gives the problem formulation.
In Section 3, the variational Bayesian filtering is described. Section 4 derives the VB-based adaptive
SRF. Section 5 provides simulation results and performance evaluation of the proposed approach,
followed by the conclusions in Section 6.

2. The Shifted Rayleigh Filter Algorithm

2.1. The Bearing Model

Considering the shifted Rayleigh filter (SRF) for bearings-only tracking in R2, the state equation
and the measurement equation are described as [13]:

xk = Fk−1xk−1 + us
k−1 + vk−1 (1)

yk = Hkxk + um
k + wk

bk = Π(yk)
(2)

where, xk is the state vector which describes the position and velocity of the target; bk is the noisy
bearing measurement. Π denotes the projection of the plane onto the unit circle. That is taking
a 2-vector yk into its normalized form yk/||yk||. Then bk = (sinθk, cosθk)

T , where θk is the bearing
of the target position relative to the sensor platform. Fk−1 and Hk are the state transition matrix and
measurement matrix, respectively. us

k−1 and um
k are the inputs to the system to increase the versatility

of the model, for example, to reflect known perturbations to the dynamics and changes in sensor
location; vk−1 is the Gaussian process noise with zero mean and covariance Qv, and wk is the Gaussian
measurement noise with zero mean and covariance Qw and independent of vk.

The unusual point in the measurement model is that the noise wk is modelled as additive noise
present in an “augmented” measurement, yk, of the Cartesian coordinates of target relative to the
sensor platform, which is projected onto the plane to generate the actual bearing measurement bk. It is
different with the traditional “angle plus white noise” model, expressed as
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θk = arctan(d1/d2) + εk (3)

where, d1, d2 are the components of the displacement vector dk = Hkxk + um
k . εk is the sensor noise

with Gaussian distribution N (0, σ2) and independent of the displacement vector dk.
Actually, as explained in [13], the shifted Rayleigh bearing model (2) can be related with the

traditional model (3) by making a variant on the shifted Rayleigh noise model

y′k = dk + ||dk||e′
b′k = Π(y′k)

(4)

where, e′ is an N (0, σ2I2×2) distributed random variable. The only difference with model (2) is the
noise term wk used to construct the augmented measurement yk is replaced by ||dk||e′. ||dk||e′ differs
from wk, but has identical first and second moments, and is uncorrelated with dk.

The angular θ′k of the modified vector bearing b′k can be represented as

θ′k = arctan(d1/d2) + ε′k (5)

where ε′k is a zero mean random variable, restricted to [−π, π], independent of dk, with density ασ(·):

ασ(θ) =
e−1/2σ2

2π

(
1 +
√

2π
cosθ

σ
Fnormal

(
cosθ

σ

)
e1/2(cosθ/σ)2

)
(6)

where, Fnormal(·) is the cumulative distribution function of a standard N (0, 1) variable.
Note that θ′ given by (5), is very close to the bearing θ in the standard model (3). The only

difference is that the densities of the noise terms used in their construction are ασ(θ) and the normal
N (0, σ2) density, respectively. Reference [13] plots the two densities for σ2 ≤ 1. It shows the two
density functions are virtually indistinguishable.

Given the bearing model, the SRF is to calculate the estimates of the conditional mean and
covariance of the target state xk, given measurements up to time k, b1:k. That is,

x̂k|k = E[xk|b1:k], Pk|k = cov[xk|b1:k] (7)

The formulas for the SRF algorithm can be seen in [13].

2.2. The Treatment of Clutter

Accounting for the effects of clutter on the bearing measurements, we represent a cluttered bearing
measurement as

zk = (1− rk)θk + rkUk (8)

where Uk is the bearing measurement of the clutter, which is assumed to be an uniform random
variable on [−π, π]; θk is the bearing measurement of the actual target from the sensor, rk is defined as
data association indicator at time k.

rk =

{
1 if the measurement is from clutter
0 if the measurement is from target

(9)

The prior of rk is assumed independent of the previous data associations and can be described as

p(rk) =

{
ξ if rk = 1
1− ξ if rk = 0

(10)
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Then the likelihood of the measurement is

p(zk|xk, rk) =

{
1/2π i f rk = 1
f (θk|xk) i f rk = 0

(11)

It can be represented in two forms:

p(zk|xk, rk) =
1

2π
rk + f (θk|xk)(1− rk) (12)

= (
1

2π
)rk f (θk|xk)

1−rk (13)

Note that the two forms are used for different purpose in the later section. f (θk|xk) is the likelihood
of the target bearing measurement, whose expression is given in Appendix A.

Here, we need to explain the reason for using this representation (8) of the cluttered measurement.
The information carried in (8) is identical with the projection measurement zb

k = [sinzk, coszk].
So the mean and covariance of the target state xk conditioned on cluttered measurement zb

k, which are
the aims needs to be achieved in the SRF, are equivalent with these conditioned on zk. Furthermore,
this representation (8) is more convenient for calculation. Thus, zk instead of zb

k is adopted to represent
the clutter measurement.

Based on the cluttered measurement model, given clutter probability ξ, the state estimate and
covariance can be calculated as follows.

Suppose the density of xk−1 given measurements up to k− 1, pk−1|k−1(xk−1), is normal with mean
x̄k−1|k−1 and covariance P̄k−1|k−1. The posterior density of state xk conditioned on cluttered bearing
measurements z1:k is given as

p(xk|z1:k) = p(xk|zk, xk−1 ∼ pk−1|k−1(xk−1))

= qk(0)pk|k(xk) + qk(1)pk|k−1(xk) (14)

where qk(i) = p(rk = i|zk, z1:k−1), pk|k(xk) is the non-normal density of xk conditioned on rk = 0 and
zk, or, equivalently, on θk, and pk|k−1(xk) is the density of xk when there is no target measurement at
time k. It is normal with mean x̂k|k−1 and covariance Pk|k−1. Thus, the state estimate and covariance at
time k can be obtained as

x̄k|k = E[xk|zk, xk−1 ∼ pk−1|k−1(xk−1)]

= qk(0)x̂k|k + qk(1)x̂k|k−1 (15)

P̄k|k = cov[xk|zk, xk−1 ∼ pk−1|k−1(xk−1)]

= qk(0)(Pk|k + (x̂k|k − x̄k|k)(x̂k|k − x̄k|k)
T)

+ qk(1)(Pk|k−1 + (x̂k|k−1 − x̄k|k)(x̂k|k−1 − x̄k|k)
T) (16)

where x̂k|k and Pk|k are the state estimate and its covariance based on the actual target measurement.
x̂k|k−1 and Pk|k−1 are the predicted target state estimate and covariance. All of these can be obtained
using the basic formulas of SRF.

The conditional densities qk(0) and qk(1) are given by the equations

qk(0) = ck(1− ξ) fk(θk|z1:k−1) (17)

qk(1) =
ckξ

2π
(18)

where ck is the normalizing constant and fk(θk|z1:k−1) is the density of the actual target bearing θk
conditioned on measurements z1:k−1. The expression is given in Appendix B.
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However, in a complex environment, the probability of clutter is time-varying or hard to determine
in advance. In this case, the probability ξ is unknown, so the above formulas are not applicable. In this
paper, we resort the VB method to find the joint posterior density of xk and ξ so as to account for the
uncertainty in clutter probability.

3. Variational Bayesian Filtering

In this section, we first review the conjugate exponential (CE) model, and then gives the variational
Bayesian solution of the CE model.

3.1. Conjugate Exponential Model

Given measurements z1:k−1, the posterior of the system state p(xk−1|z1:k−1) and the posterior of
the parameter p(rk−1|z1:k−1), we assume the complete-data likelihood in the exponential family:

p(xk, zk|rk, z1:k−1) = g(rk) f (xk, zk)eφ(rk)
Tu(xk ,zk) (19)

where, φ(rk) is the vector of natural parameters rk, u and f are known functions, and g is a
normalization constant:

g(rk)
−1 =

∫
f (xk, zk)eφ(rk)

Tu(xk ,zk)dxkdzk

The parameter prior is conjugate to the complete-data likelihood:

p(rk|α−k , β−k ) = h(α−k , β−k )g(rk)
β−k eφ(rk)

Tα−k (20)

where α−k and β−k are hyperparameters of the prior, and h is a normalization constant. Note the prior
p(rk|α−k , β−k ) is said to be conjugate to the likelihood p(xk, zk|rk) if and only if the posterior

p(rk|αk, βk) ∝ p(rk|α−k , β−k )p(xk, zk|rk)

is of the same parametric form as the prior. Then we call models that satisfy Equations (19) and (20)
conjugate-exponential.

3.2. VB Approximation Method

Applying Bayes’ rule, we have the joint posterior of xk and rk as

p(xk, rk|z1:k) ∝ p(xk, zk|rk, z1:k)p(rk|α−k , β−k ) (21)

The analytic solution to (21) would be difficult to calculate. Here, we use the VB method to
approximate the true posterior distribution with a product of tractable marginal posteriors [17].

p(xk, rk|z1:k) ≈ Q(xk, rk) = Qx(xk)Qr(rk) (22)

where Qx(xk) and Qr(rk) are unknown approximating marginal densities of xk and rk.
The basic idea of VB approximation is to minimize the Kullback- Leibler (KL) divergence between

the approximating posterior and the true posterior:

KL [Qx(xk)Qr(rk)||p(xk, rk|z1:k)] =
∫

Qx(xk)Qr(rk)× log
(

Qx(xk)Qr(rk)

p(xk, rk|z1:k)

)
dxkdrk (23)

Given the measurements z1:k, we can minimize the KL divergence with respect to the probability
densities Qx(xk) and Qr(rk) in turn, while keeping the other fixed. Then, the following equations can
be given as:

Qx(xk) ∝ exp(〈lnp(xk, rk, zk|z1:k−1)〉rk ) (24)
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Qr(rk) ∝ exp(〈lnp(xk, rk, zk|z1:k−1)〉xk ) (25)

where 〈·〉xk and 〈·〉rk denote the expectations with respect to Qx(xk) and Qr(rk), respectively. Obviously,
it is not an explicit solution since the distribution of each parameter is dependent on the other and
neither distributions is known. The mechanism of VB method is to firstly give the initial values of
the parameters and then use expectation-maximum (EM) algorithm to iteratively calculate Qx(xk)

and Qr(rk) until convergence. For the above CE models, Qx(xk) and Qr(rk) can be obtained from the
following procedure [19]:

(1) The VB expectation step yields:

Qx(xk) ∝ f (xk, zk)e
〈φ(rk)〉Trk

u(xk ,zk) = p(xk|zk, 〈φ(rk)〉rk ) (26)

(2) The VB maximization step yields that Qr(rk) is conjugate and of the form

Qr(rk) = h(αk, β−k g(rk)
βk eφ(rk)

Tαk (27)

where, αk and βk are the hyper-parameters, and

αk = α−k + 〈u(xk, zk)〉xk (28)

βk = β−k + n (29)

where n is the dimension of the measurement.

4. VB Based Adaptive Shifted Rayleigh Filter with Unknown Clutter Probability

Considering the system model (1) and the measurement model (8) described in Section 2, we adopt
the VB method within the SRF framework to get the joint estimation of the target state and the
clutter probability.

The core is to determine the posterior approximation Q(xk, rk, ξ). Assume factorization
Q(xk, rk, ξ) ≈ Qx(xk)Q(rk, ξ), we can obtain Qx(xk), Qr(rk) and Qξ(ξk) at each time k through the
following procedure.

(1) Optimization of Qx(xk) for fixed Q(rk, ξ).

First, by using the first form of the measurement likelihood (12), the complete-data likelihood is
presented as

p(xk, zk|rk, z1:k−1) = p(zk|xk, rk)p(xk|rk, z1:k−1)

= [
1

2π
rk + f (θk|xk)(1− rk)]N (xk; x̂k|k−1, Pk|k−1) (30)

Then according to (24), we can get

Qx(xk) ∝ exp{〈lnp(zk, xk|rk, z1:k−1)〉rk ,ξ}

= [
1

2π
〈rk〉rk + f (θk|xk)(1− 〈rk〉rk )]N (xk; x̂k|k−1, Pk|k−1)

=
1

2π
N (xk; x̂k|k−1, Pk|k−1)〈rk〉rk + f (θk|xk)N (xk; x̂k|k−1, Pk|k−1)(1− 〈rk〉rk ) (31)

≈ 1
2π
N (xk; x̂k|k−1, Pk|k−1)〈rk〉rk +N (xk; x̂k|k, Pk|k) f (θk|z1:k−1)(1− 〈rk〉rk ) (32)

The approximation sign in (32) is because the following:

f (θk|xk)N (xk; x̂k|k−1, Pk|k−1) = p(θk|xk, z1:k−1)p(xk|z1:k−1)

= p(xk|θk, z1:k−1)p(θk|z1:k−1)

≈ N (xk; x̂k|k, Pk|k) f (θk|z1:k−1) (33)
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where f (θk|z1:k−1) is derived in Appendix B.
Comparing (32) with the posterior density (14) of SRF, the difference lies in the weights. Except

for a normalization constant, the clutter probability ξ used before in (14) has been replaced by 〈rk〉rk

in (32), which is updated online.

(2) Optimization of Q(rk, ξ) for fixed Qx(xk).

We use the VB method again by factorizing Q(rk, ξ) ≈ Qr(rk)Qξ(ξ). Assume the conjugate prior
of rk is binomial distributed with parameter ξ. That is,

p(rk|ξ) = ξrk (1− ξ)1−rk (34)

and p(ξ) follows beta distribution with parameters α1 and α2.

p(ξ; α1, α2) =
1

B(α1, α2)
ξα1−1(1− ξ)α2−1 (35)

where B(α1, α2) = Γ(α1)Γ(α2)/Γ(α1 + α2).
To have the form of (19), the complete-data likelihood p(xk, zk|rk, z1:k−1) is re-derived using the

second form (13) of p(zk|xk, rk) as

p(xk, zk|rk, z1:k−1) = (1/2π)rk [ f (θk|xk)]
1−rkN (xk; x̂k|k−1, Pk|k−1)

= f (θk|xk)N (xk; x̂k|k−1, Pk|k−1)exp{rk[ln(1/2π)− ln[ f (θk|xk)]} (36)

Rewriting the conjugate prior of rk in the form of (20), we can get

p(rk|ξ) = ξrk (1− ξ)1−rk

= (1− ξ)exp[rkln(
ξ

1− ξ
)] (37)

Then applying (27), Qr(rk) can be obtained as

Qr(rk) = (1− ηk)exp[rkln(
ηk

1− ηk
)] (38)

where, ηk is the hyper-parameter and updated as

ln(
ηk

1− ηk
) = 〈ln( ξ

1− ξ
)〉ξ + 〈[ln(1/2π)− ln[ f (θk|xk)]〉xk (39)

Likewise, rewriting the conjugate prior of ξ in the form of (20), we can get

p(ξ) =
1

B(α1, α2)
ξα1−1(1− ξ)α2−1

=
1

B(α1, α2)
(1− ξ)α1+α2−2(1− ξ)−(α1−1)ξα1−1

=
1

B(α1, α2)
(1− ξ)α1+α2−2exp[(α1 − 1)ln(

ξ

1− ξ
)] (40)

Then applying (27), Qξ(ξ) can be obtained as

Qξ(ξ) =
1

B(α′1, α′2)
(1− ξ)α′1+α′2−2exp[(α′1 − 1)ln(

ξ

1− ξ
)] (41)
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with hyper-parameters

α′1 = α1 + 〈rk〉rk (42)

α′2 = α2 + n− 〈rk〉rk (43)

where n is the dimension of the measurement.
According to the approximated posteriors of Qr(rk) and Qξ(ξ), 〈rk〉rk and 〈ln( ξ

1−ξ )〉ξ can be
obtained as:

〈rk〉rk = ηk (44)

〈ln( ξ

1− ξ
)〉ξ = ψ(α′1)− ψ(α′2) (45)

where ψ(·) is the digamma function.
Taking expectation and covariance on the posterior Qx(xk), the conditional mean and covariance

of the target state can then be obtained. We summarize the entire filtering procedure of the VB-based
SRF (VB-SRF) in Algorithm 1.

Algorithm 1 : VB-SRF.
(1) Initialization: x̄0|0, P̄0|0, Qv, Qw, η0, α1,0, α2,0
(2) Prediction:

x̂k|k−1 = Fk−1x̄k−1|k−1 + us
k−1

Pk|k−1 = Fk−1P̄k−1|k−1FT
k−1 + Qv

Sk = HkPk|k−1HT
k + Qm

k
ηk|k−1 = ρηk−1, α1,k|k−1 = ρα1,k−1, α2,k|k−1 = ρα2,k−1

where ρ is the scale factor and 0 < ρ ≤ 1.
(3) Update: the update of VB-SRF utilizes iterate filtering framework.

(3.a) First set: x̄(0)k|k = x̂k|k−1, P̄(0)
k|k = Pk|k−1, η

(0)
k = ηk|k−1, α

(0)
1,k = α1,k|k−1, α

(0)
2,k = α2,k|k−1

(3.b) Calculate state estimation and its covariance using SRF when the measurement is from the target:
Kk = Pk|k−1HT

k S−1
k

εk = (bT
k S−1

k bk)
−1/2bT

k S−1
k (HkX̂k|k−1 + um

k )

γk = (bT
k S−1

k bk)
−1/2ρn(εk)

δk = (bT
k S−1

k bk)
−1/2[2 + εkρ2(εk)− ρ2

2εk]

ρ2(εk) =
εke−ε2

k /2+
√

2π(ε2
k+1)Fnormal(εk)

e−ε2
k /2+

√
2π(εk)Fnormal(εk)

x̂k|k = (I−KkHk)x̂k|k−1 −Kkum
k + γkKkbk

Pk|k = (I−KkHk)Pk|k−1 + δkKkbkbT
k KT

k
(3.c) For j = 1 : N, iterate the following N (N denotes iterated times) steps:
• Calculate the fused state estimation and its covariance:

x̄(j)
k|k = 1

2πc η
(j−1)
k x̂k|k−1 +

1
c (1− η

(j−1)
k ) f (θk|z1:k−1)x̂k|k

P̄(j)
k|k = 1

2πc η
(j−1)
k (Pk|k + (x̂k|k − x̄k|k)(x̂k|k − x̄k|k)

T)

+ 1
c (1− η

(j−1)
k ) f (θk|z1:k−1)(Pk|k−1 + (x̂k|k−1 − x̄(j)

k|k)(x̂k|k−1 − x̄(j)
k|k)

T)

where c = 1
2π η

(j−1)
k + f (θk)(1− η

(j−1)
k ) is a normalization term, and f (θk|z1:k−1) can be obtained using (A6).

• Update parameters:

ln( η
(j)
k

1−η
(j)
k

) = ψ(α
(j−1)
1,k )− ψ(α

(j−1)
2,k ) + ln(1/2π)− ln f (θk|x̄

(j)
k|k)

α
(j)
1,k = α

(j−1)
1,k + η

(j)
k

α
(j)
2,k = α

(j−1)
2,k − η

(j)
k + 1

• End for and set x̄k|k = x̄(N)
k|k , P̄k|k = P̄(N)

k|k , ηk = η
(N)
k , α1,k = α

(N)
1,k , α2,k = α

(N)
2,k .
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5. Simulation Results

To evaluate the performance of the VB-SRF algorithm, two scenarios which are almost the same
with these in [12,13] are utilized. The differences lie in the clutter probability in scenario 1 and the
sensor tracks in scenario 2 which were not detailed in [12]. The two scenarios are very representative.
In scenario 1, a maneuvering sensor is used in order to satisfy the condition of observability in
bearings-only tracking. In scenario 2, multiple distributed sensors with large noise variance are utilized,
which make the problem more challenging. The tracking performance of the VB-SRF algorithm was
compared with the SRF algorithm, the MEFPDA-SCKF algorithm and PDA-SCKF algorithm in terms
of track loss, track accuracy and computation complexity. The track loss is declared when the track
error is large enough that making the filter diverge. Root mean square (RMS) error is used to show the
track accuracy. In addition, the computation complexity is reflected by the computation time of each
filter. The simulation codes can be downloaded through Github [20].

5.1. Scenario 1

In scenario 1, a target moves along a horizontal track, with zero vertical displacement, according
to a white noise acceleration model. The state of the target is represented as xk = [x1,k, ẋ1,k], where x1,k
and ẋ1,k are the horizontal distance and velocity at time k, respectively. The observer platform follows
an approximately parallel track at a constant average speed. The horizontal and vertical displacements
of the platform xp

k = [xp
1,k, xp

2,k]
T are governed by the equations:

xp
1,k = 4k + x̃p

1,k (46)

xp
2,k = 20 + x̃p

2,k (47)

in which x̃p
1,k and x̃p

2,k are zero mean Gaussian white noise processes, both with variance q = 1.
The measurement is the angle (in radians) of the line-of-sight of this target from the platform.

The sensor noise is Gaussian white noise with variance σ2 = (0.05)2rad2 = 2.862deg2. The true clutter
probability is 0.8. Other parameters are detailed in [13]. The configuration of the observer platform
and target is illustrated in Figure 1. The bearing measurement of the target is presented in Figure 2.
It can be seen that there is no abrupt change.
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Figure 1. Target-observer geometry in Scenario 1.

The clutter probability used in SRF is set as pc = 0.8, which is the same with the true clutter
probability. The initial values of VB-SRF parameters are η0 = 0.8, α1,0 = 2, α2,0 = 10. The clutter
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density λ is calculated using −kln(1− pc)/2π in MEFPDA-SCKF and PDA-SCKF. Figure 3 presents
the RMS target position errors of the four filters using 1000 Monte Carlo runs. It can be seen that SRF
and VB-SRF have comparable performance under the correct clutter probability. MEFPDA-SCKF and
PDA-SCKF have a little better tracking accuracy than SRF and VB-SRF.
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Figure 2. The measurement of the target in Scenario 1.
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Figure 3. RMS target position errors with correct clutter probability in Scenario 1.

In challenging scenarios, the clutter probability maybe unknown or time varying. The pre-set
parameters are probably inaccurate. So here we set mistuned clutter probabilities for the four filters:
(1) pc = η0 = 0.7; (2) pc = η0 = 0.5; (3) pc = η0 = 0.3. The percentages of track losses in 1000 Monte
Carlo runs are given in Table 1. Clearly, the VB-SRF algorithm outperforms the SRF algorithm due
to fewer track losses. Moreover the proportion of track losses increases as the mistuning aggravates.
Especially, there are 2.9% tracks are lost for SRF while only 0.1% tracks are lost for VB-SRF in the worst
case. In addition, we can see that MEFPDA-SCKF and PDA-SCKF have no track loss in all the three
mistuned cases.

The RMS position errors of the four filters with different mistuned clutter probabilities are shown
in Figure 4. We only consider the runs without track loss. From the figure, we can see that the tracking
accuracy of VB-SRF is slightly better than SRF when η0 ≥ 0.5. However, the performance difference
is not obvious. When pc = η0 = 0.3, VB-SRF exhibits distinct superiority over SRF. It implies that
VB-SRF is more robust than SRF. Meanwhile, MEFPDA-SCKF and PDA-SCKF show better tracking
accuracy than SRF and VB-SRF under all the three mistuned cases. They are almost not affected by
the mistuning. It shows MEFPDA-SCKF and PDA-SCKF are more accurate and robust than SRF and
VB-SRF under this simple scenario.
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Table 2 shows the computation time of the four filters with 100 Monte Carlo runs. It is clear that
VB-SRF has the maximum time of computation, which is about 2 times of that of SRF. The computation
time of MEFPDA-SCKF and PDA-SCKF are comparable and both smaller than SRF and VB-SRF.

On the whole, the VB-SRF algorithm outperforms the SRF in terms of track continuity, track
accuracy and robustness especially in severely mismatched scenarios but with higher computation
complexity. MEFPDA-SCKF and PDA-SCKF perform better than SRF and VB-SRF in all aspects.
It illustrates that the PDA-SCKF-based strategy has superiority over the SRF-based strategy in handing
the clutters in simple scenarios.

Table 1. The percentages of track losses of four filters in two scenarios.

Scenario 1 Scenario 2

pc = 0.7 pc = 0.5 pc = 0.3 pc = 0.667 pc = 0.5 pc = 0.3

VB-SRF 0 0 0.1% 0 0 0
SRF 0.9% 1.6% 2.9% 0 0 2.7%

MEFPDA-SCKF 0 0 0 13.5% 13.3% 14.2%
PDA-SCKF 0 0 0 20.1% 20.8% 22.4%

0 5 10 15 20 25
0

5

10

15

20

25

Time (s)

R
M

S
 p

os
iti

on
 e

rr
or

s 
(m

)

 

 

VB−SRF
SRF
PDA−SRCKF
MEFPDA−SRCKF

(a) pc = η0 = 0.7
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(b) pc = η0 = 0.5

Figure 4. Cont.
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(c) pc = η0 = 0.3

Figure 4. RMS target position errors with different mistuned clutter probabilities in Scenario 1.

Table 2. Computation time of the four filters with 100 Monte Carlo runs for two scenarios.

Scenario 1 Scenario 2

VB-SRF 0.7406 s 1.0236 s
SRF 0.3690 s 0.5779 s

MEFPDA-SCKF 0.2066 s 0.3314 s
MEFPDA-SCKF 0.2092 s 0.3128 s

5.2. Scenario 2

For scenario 2, the aim is to track a single target from several drifting sonobuoys. A monitoring
aircraft estimates the positions of the drifting sonobuoys by observing the direction of arrival of sensor
transmissions. The sonobuoys track the position of the target by means of noisy bearings measurements.

The state is 12-dimensional:

xk = [x0,k, ẋ0,k, y0,k, ẏ0,k, x1,k, y1,k, x2,k, y2,k, x3,k, y3,k, u1,k, u1,k]
T (48)

the first four components represent the (x, y) coordinates of the position and velocity of the target,
the next six, the coordinates of the positions of the three sonobuoys, and the last two, those of the drift
current effecting all three sonobuoys.

Six simultaneous measurements are made at each time step. Three of these are measurements of
the bearing angles of the sonobuoys from the monitoring platform and they are uncluttered. Three are
the bearing angles of the target from the sonobuoys, which are subject to clutter. The standard
deviation of monitoring sensor bearing noise and sonobuoy sensor bearing noise are 0.8◦ and 16◦,
respectively. The true probability of clutter is set as 0.667. In addition, the bearing of the clutter is
uniformly distributed over [−π, π]. Other simulation parameters can be referred to [12]. 200 Monte
Carlo runs are performed to evaluate the performance of the proposed filter. Figure 5 shows the
behaviour of the estimates of target and sonobuoy positions provided by both the SRF and VB-SRF,
for a typical simulation.
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Figure 5. Typical tracks of target, drifting sonobuoy sensors, together with the estimated tracks.

The RMS target position errors of the four filters with correct clutter probability assumption are
given in Figure 6. Compared with scenario 1, the differences between the four filters are more dramatic
in scenario 2. This is probably because scenario 2 is more complex in which multiple sensors are used
to observe the target and give abruptly changing and severely noise-corrupted bearing measurements
of the target, shown in Figure 7. Thus, even a minor change in filtering strategy could result in large
variations in performance. Meanwhile, seen from Figure 7, an abrupt change (almost from +180◦ to
−180◦) occurs in the target bearing measurement from sonobuoy sensor 3 at k = 62 s, which leads
to several track losses shown in Table 1 and much larger position errors of MEFPDA-SCKF and
PDA-SCKF. Whereas, SRF and VB-SRF are less affected by the abrupt bearing variation since the value
of the projected measurement bk = (sinθk, cosθk)

T is invariant when there is a 360◦ change in bearing
θk. They have comparable tracking accuracy. It is hard to decide which one is better.
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Figure 6. RMS target position errors with correct clutter probability in Scenario 2.
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Figure 7. The target measurements from three sonobuoy sensors in Scenario 2.

To compare the performance under adverse scenarios, we set mistuned clutter probabilities as:
(1) pc = η0 = 0.5; (2) pc = η0 = 0.3. In case (1), there is no track loss in SRF and VB-SRF and the RMS
position errors of the two filters are shown in Figure 8a. We can see that the RMS position errors of
SRF are slightly increased compared with the case with no mistuning, while the RMS position errors
of VB-SRF remain almost unchanged. In case (2), as shown in Table 1, 2.7% tracks are lost for SRF
while no track is lost for VB-SRF. Meanwhile, as can be seen in Figure 8b, VB-SRF has much smaller
RMS errors than the SRF. For MEFPDA-SCKF and PDA-SCKF, unlike with scenario 1, they have higher
percentage of track losses and larger RMS position errors than VB-SRF in both mistuned cases. It shows
that VB-SRF is superior to PDA-SCKF-based algorithms in more challenging scenarios. In addition,
from Table 2, we can see that the computation time of VB-SRF is twice of the SRF and three times of
MEFPDA-SCKF and PDA-SCKF. Overall, all these reveal that the proposed VB-SRF algorithm has
significant performance superiority in severely mismatched and complex cases at the cost of a little
higher computation complexity.
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Figure 8. RMS target position errors with mistuned clutter probability in Scenario 2.

6. Conclusions

Bearings-only target tracking in the presence of clutter is a difficult problem because of the
nonlinearity of the measurement model, the measurement origin uncertainty and the observability of
the target. The Shifted Rayleigh filter (SRF) is shown to exhibit good performance for bearings-only
target tracking in certain challenging scenarios through exploiting the essential structure of the
nonlinearities in a new way. However, the clutter probability is assumed known and constant in
SRF, which may not match with the truth especially in adverse scenarios. Therefore, to handle the
bearings-only target tracking in clutters with uncertain clutter probability, a variational Bayesian-based
adaptive shifted Rayleigh filter (VB-SRF) is proposed in this paper. By establishing a conjugate
exponential model of the clutter probability and the data association indicator, the approximated
posterior probability densities of the target state and the clutter parameters are iteratively calculated
using the VB expectation and maximization steps. Finally, joint estimation of the target state and the
clutter probability are achieved in the framework of SRF. The tracking performance of the proposed
filter is compared with SRF, PDA-SCKF and MEFPDA-SCKF via two simulation examples. It shows
that the proposed filter outperforms the other three filters in terms of track continuity and track
accuracy with a little higher computation complexity in complex adverse scenarios. In addition, it also
reveals that the proposed VB-SRF exhibits better robustness than the traditional SRF.
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MPEKF Polar Coordinate EKF
PLE Pseudo-Linear Estimator
UKF Unscented Kalman Filter
CKF Cubature Kalman Filter
PF Particle Filter
MEFPDA Maximum Entropy Fuzzy Probabilistic Data Association
SCKF Square-root Cubature Kalman Filter
CE Conjugate Exponential
KL Kullback- Leibler
EM Expectation-Maximum
RMS Root Mean Square

Appendix A. Derivation of f (θk|xk)

Given the true state xk, the “augmented” measurement yk is assumed to be N (mk, Qw) variable,
where mk = Hkxk + um

k . θk is the bearing of yk.
Let y′k = Q−1/2

w yk, then y′k ∼ N (Q−1/2
w mk, I). Its bearing has a density about its mean of the form

ασ(θ). More precisely, let

gk(θ) = [(sinθ, cosθ)Q−1
w (sinθ, cosθ)T ]−1/2 (A1)

and define

hk(θ) = arctan
(

a11sinθ + a12cosθ

a21sinθ + a22cosθ

)
(A2)

where [aij] = Q−1/2
w .

Actually, gk(θ) and hk(θ) are the reciprocal length and bearing of the transformed unit vector
Q−1/2

w yk
||yk ||

. The bearing hk(θk) then has αgk(θ
m
k )(hk(θk)− hk(θ

m
k )) as its density, where θm

k is the bearing of
mk. Inserting a Jacobian term, we can obtain the likelihood of measurement θk:

f (θk|xk) =
g2

k(θk)

(detQw)1/2 αgk(θ
m
k )(hk(θk)− hk(θ

m
k )) (A3)

Appendix B. Derivation of f (θk|z1:k−1)

Given the previous measurements y1:k−1, the “augmented” measurement yk is assumed to be
N (ŷk, Sk) variable, where ŷk = Hk x̂k|k−1 + um

k , Sk = HkPk|k−1HT
k + Qw.

Let y′k = S−1/2
k yk, then y′k ∼ N (S−1/2

k ŷk, I). The bearing of y′k has a density about its mean of the
form ασ(θ).

Let

g′k(θ) = [(sinθ, cosθ)S−1
k (sinθ, cosθ)T ]−1/2 (A4)

h′k(θ) = arctan
(

s11sinθ + s12cosθ

s21sinθ + s22cosθ

)
(A5)

where [sij] = S−1/2
k .

g′k(θ) and h′k(θ) are the reciprocal length and bearing of the transformed unit vector S−1/2
k yk
||yk ||

.

The bearing h′k(θk) then has αg′k(θ̂k)
(h′k(θk)− h′k(θ̂k)) as its density, where θ̂k is the bearing of ŷk. Inserting

a Jacobian term, we can obtain the probability density function of measurement θk given previous
measurements z1:k−1:

f (θk|z1:k−1) =
g′2k (θk)

(detSk)1/2 αg′k(θ̂k)
(h′k(θk)− hk(θ̂k)) (A6)
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