
sensors

Article

Drone Detection and Pose Estimation Using
Relational Graph Networks

Ren Jin 1 , Jiaqi Jiang 2, Yuhua Qi 2, Defu Lin 1 and Tao Song 1,*
1 Beijing Key Laboratory of UAV Autonomous Control, Beijing Institute of Technology, Beijing 100081, China;

renjin@bit.edu.cn (R.J.); lindf@bit.edu.cn (D.L.)
2 Multi-UAV GNC Laboratory, School of Aerospace Engineering, Beijing Institute of Technology,

Beijing 100081, China; jiaqi_jiang@bit.edu.cn (J.J.); 3120140024@bit.edu.cn (Y.Q.)
* Correspondence: 10901034@bit.edu.cn

Received: 9 February 2019; Accepted: 22 March 2019; Published: 26 March 2019
����������
�������

Abstract: With the upsurge in use of Unmanned Aerial Vehicles (UAVs), drone detection and pose
estimation by using optical sensors becomes an important research subject in cooperative flight and
low-altitude security. The existing technology only obtains the position of the target UAV based
on object detection methods. To achieve better adaptability and enhanced cooperative performance,
the attitude information of the target drone becomes a key message to understand its state and
intention, e.g., the acceleration of quadrotors. At present, most of the object 6D pose estimation
algorithms depend on accurate pose annotation or a 3D target model, which costs a lot of human
resource and is difficult to apply to non-cooperative targets. To overcome these problems, a quadrotor
6D pose estimation algorithm was proposed in this paper. It was based on keypoints detection
(only need keypoints annotation), relational graph network and perspective-n-point (PnP) algorithm,
which achieves state-of-the-art performance both in simulation and real scenario. In addition,
the inference ability of our relational graph network to the keypoints of four motors was also evaluated.
The accuracy and speed were improved significantly compared with the state-of-the-art keypoints
detection algorithm.

Keywords: drone detection; pose estimation; acceleration estimation; relational graph

1. Introduction

Today, consumer class Unmanned Aerial Vehicles (UAVs) occupy the sky and many applications
have emerged [1,2]. Drone detection has become an important issue for low-altitude airspace safety,
regulation, and vision-based swarm [3]. Although communication-based models can cope with such
problems easily, not all UAVs are equipped with it. Therefore, the ability to use inexpensive optical
sensors, such as cameras, to regulate low-altitude airspace [4], avoid collisions [5,6], and search and
track target UAVs [7] is becoming increasingly important.

During the past few years, much research has been done on drone detection or small moving
object detection [4,5,8,9]. Dey et al. [8] used cascade method to detect aircraft within five miles from
220 degrees of view under Visual Flight Rules (VFR) of U.S. National Airspace (NAS), however, it is
mainly used for scenes above the horizon. Rozantsev et al. [5] combined appearance with motion cues,
which can detect UAVs and aircraft that occupy only a small part in the field of view, accompanied by
the ability to tackle complex backgrounds. Aker et al. [4] proposed a solution using an end-to-end drone
detection model based on Convolutional Neural Networks (CNNs). Yoshihashi et al. [9] proposed
a method that performed state-of-the-art detection and tracking of small moving objects. However,
these methods extract the appearance and motion features to detect the small flying drone with a
distance apart, which is mainly used for monitoring and avoidance. Meanwhile, in our case, we hoped

Sensors 2019, 19, 1479; doi:10.3390/s19061479 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-4432-3181
http://www.mdpi.com/1424-8220/19/6/1479?type=check_update&version=1
http://dx.doi.org/10.3390/s19061479
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 1479 2 of 20

to obtain the 6D pose of the drones and make full use of it to understand a UAV’s flight intention.
In this way, it could be tracked or efficiently evaded. Besides, pose estimation is also valuable for many
applications, such as cooperative control, target motion capture, and behavior analysis.

Most previous studies on target UAVs’ pose estimation algorithms are based on onboard artificial
markers. Hajri [10] put six red markers on the same plane of the UAV to estimate its pose. In the
experiment, they randomly generated six points on the same plane of simulation environment, and
then verified the accuracy of PnP algorithm. The method proposed by Xie et al. [11] required more
than three special markers to estimate the UAV’s pose, and these markers could be placed arbitrarily.
Fu et al. [12] proposed an off-board quadrotor pose estimation method. They installed four LEDs
on the quadrotor and used infrared cameras to estimate its pose. Su et al. [13] also used infrared
cameras to detect LEDs mounted on the quadrotor for pose estimation. All the above methods require
special identification on the drone. To the best of our knowledge, this is the first work on drone pose
estimation without any artificial markers.

At present, there are two main ways to estimate object pose from a single image. One solution is
using orientation learning to directly learn the object pose, while the other solution is first to detect
a sparse set of category-specific keypoints, and then use such points within a geometric reasoning
framework (e.g., PnP algorithm) to recover the object pose. Orientation learning from a single RGB
image is a difficult problem because the space of orientations is non-Euclidean [14]. In some traditional
studies, attitude estimation is achieved by matching local features from RGB images [14–18]. However,
these methods are not suitable for textureless objects. Recently, most studies use machine learning,
especially deep learning, to estimate the 6D pose of objects or a camera, like Reference [19–25].
Kehl et al. [19] proposed an extension of Single Shot MultiBox Detector (SSD) [26] that produces 2D
detections and infers proper 6D poses, where its input in training stage is the synthetic 3D model
information. Mahendran et al. [20] tried to directly regress full 3D object orientation by natural
non-linearity output layer and an appropriate geodesic loss, and they used fine labeled 3D object with
pose PASCAL3D+ [27]. Rad et al. [21] introduced the classifier before estimating the pose to identify
the attitude range at runtime. In the stage of pose estimation, the method from Crivellaro et al. [28]
was used. They also introduced a CAD model to produce 2D projection prior, to improve the accuracy
of control points. However, these methods all depend on CAD model or accurate 3D pose annotation,
and the information is difficult to obtain in practice for non-cooperative targets.

2D keypoints detection is a long-standing research problem in computer vision [29] and it is
traditionally used as an early stage in the object localization algorithm [30]. 2D human joint keypoints
detection from monocular RGB images is a successful early application of modern CNNs. Due to its
compelling utility for human computer interaction (HCI), motion capture, and security applications,
a large number of work has since developed in this human keypoints detection domain [31–37].
The definition of human keypoints is in the image coordinate system, but for quadrotors, the correct
order of four motors should be located. Our experiments indicated that directly using the 2D human
keypoints detection algorithm could not achieve better results, as shown in Section 3.3.

In the real world, a variety of data exhibit much richer relational graph structures than the
simple grid-like. For example, in the field of language, linguists use parsing trees to represent the
syntactic dependence between words, and information retrieval systems use knowledge graphs to
reflect entity relations. In the domain of vision, modeling the relations between pixels has also been
proven useful [38–41].

Based on the above observation, we proposed a novel relational graph networks to inference
quadrotor’s keypoints, which can improve the average precision by 9.7 percent compared with baseline
method in our Parrot quadrotor keypoints dataset. By taking the quadrotor as our main study object,
four motor axes were first detected as four keypoints. Its order was derived from relational neural
networks to reduce the dependence on CAD models. After resolving the direction of Z axis to increase
stability, the improved PnP algorithm was utilized to accurately estimate the 6D pose of quadrotor.
Compared with the methods mentioned above, our detection and keypoints estimation were trained

Sensors 2019, 19, 1479 3 of 20

by end to end, and only the keypoints annotation was required, which was easier to get. Besides, we
estimated the acceleration of the quadrotor using the solved 6D pose. Experiments showed that the
state tracking error could be greatly reduced.

The main contributions of this paper are: (1) We proposed a keypoints detection network with
relational graph, which could effectively improve the keypoints detection accuracy and speed of the
quadrotor. (2) Combined with keypoints detection results, the improved PnP algorithm and the filtering
algorithm, we demonstrated that the method could actually reduce the UAV’s state tracking error.

2. 6D Drone Pose Estimation

In order to estimate the 6D pose of the target quadrotor, we chose the way to locate the keypoints
of the four motors, as shown in Figure 1. This way could decrease the labeling effort to the maximum
extent and could use real images to reduce the cost of domain adaptation. Since the order of four motors
in the image needed to be determined according to the direction of the azimuth of the quadrotor and the
viewing angle (looking down or looking up) by the observation camera, we annotated eight keypoints
on the body of target quadrotor, named as motor 1, motor 2, motor 3, motor 4, nose, tail, body top, and
body bottom. The keypoints that do not appear in the image or are obscured would also be marked.

Figure 1. Parrot Bebop-2 quadrotor and the definition of its eight keypoints.

2.1. Relational Keypoints

During the learning phase, the eight keypoints were divided into two groups. The keypoints in
first group had obvious appearance characteristics, such as nose, tail, body top, and body bottom, which
are defined as anchor keypoints. The keypoints in the second group had a similar appearance and with
a logical distinction, like motor 1, motor 2, motor 3, and motor 4, which we titled relational keypoints.

Anchor Keypoints Predictor: Due to the fact that keypoints detection is based on the quadrotor
detection results, similar to Mask R-CNN [42], all of them can be carried out simultaneously by a two
stages detector. The first stage is a Region Proposal Network (RPN) [43], which is used for proposing
candidate object bounding boxes. In the second stage, the class, bounding box offset and keypoints
are predicted in parallel. Define R0 as the output of RoIAlign [42]. The anchor keypoints predictor is
defined as:

Al = ReLU(Al−1 ⊗W l
a + bl

a), (1)

where Al−1 and Al are the outputs of l − 1 and l layer, respectively, and A0 = R0 is the default input.
W l

a and bl
a are model parameters, and the bias at layer l, ⊗ represents convolution operation.

Sensors 2019, 19, 1479 4 of 20

Relational Keypoints Predictor: The relational keypoints predictor is divided into two parts.
The first part is a graph predictor, which is used to encode relevant information about anchor keypoints
and relational keypoints. Given the input RoI R0, set Al defined above as a key CNN, Ql as a query
CNN, which has similar structure and outputs with Al . We define the graph predictor at layer l as:

Gl
ij =

(ReLU(al>
i ql

j + bl
g))

2

∑i′ (ReLU(al>
i′

ql
j + bl

g))
2

, (2)

where al
i = W l

a Al and ql
i = W l

qQl . W l
a and W l

q are model parameters matrices at layer l, and bl
g is a

scalar bias parameter. This is similar to the non-local neural network [41] and the attention model [44],
however, the difference is we used anchor keypoints predictor as the input of attention. The ReLU
operation was used to enforce sparsity and the square operation to stabilize training. In addition, we
added stacked convolutional networks to allow the graph predictor to be aware of the local order of
the context and also to increase receptive field of the networks.

The second part of relational keypoints predictor is the feature predictor. Let the features F0 = R0

be an input layer. We first added the convolutional layer to extract features and increase receptive field.
The affinity matrix Gl was then combined with the current features to produce the next layer’s features:

Fl = ∑
j

Gl
j F

l−1
j + Fl−1. (3)

The feature at each position was calculated as the weighted sum of other features, where the
weights were determined by graph Gl , followed by residual connections.

Objective Function: We obtained the features AL and FL at the top layer of anchor keypoints
predictor and relational keypoints predictor, respectively. The objective of the anchor and relational
keypoints predictor are written as:

max ∑
i

∑
k

xiklogP(xik|AL) + max ∑
i

∑
k

xiklogP(xik|FL), (4)

where i represents the spatial index in the final layer AL/FL, and k denotes the class of anchor/relational
keypoints. The overall keypoints objective function is the sum of the above two functions.

2.2. Detection Framework

So far, there exist two kinds of CNN-based object detectors. One is the single-stage detector
mentioned in Reference [26,45–47], which has the advantage of a very fast speed and reasonably good
accuracy. The other is the two-stage detector described in Reference [42,43,48,49], where the first stage
(body) uses the region proposal network to generate many proposals, and the second stage (head) is to
recognize these proposals. The advantages of the two-stage detector are its precision and scalability.
It can add more than one head to accomplish many tasks at the same time, such as mask and keypoints
detection [42]. The disadvantage is that by using heavy head to get great accuracy, it cannot run at real
time, even on a desktop with a Titan GPU. Inspired by Li et al. [50] and He et al. [42], we designed a
light head two-stage detector that detects drone and its keypoints simultaneously. It could reach 71 fps
on our desktop computer. The complete detection framework is shown in Figure 2.

Body Network and Thin Features: We used the Xception-like network model as the base network
for feature extraction and ensuring real time computational speed. The network structure of the
Xception model is shown in Table 1. The large separable convolution layers [51] were added on conv5
of Xception. This not only could effectively compress features and improve network performance, but
also could get more powerful feature maps from a larger receptive field with large kernels [50]. In our
experiments, large separable convolution with kernel size = 15, Cmid = 64 and Cout = 128 was applied
on conv5 to obtain light head feature maps.

Sensors 2019, 19, 1479 5 of 20

Table 1. The detail architecture of Xception like backbone used in our detection and keypoints network.

Layer Output Size Kernel Size Scale Repeat Output Channels

Image 224×224

Conv1 112×112 3×3 2 1 24
Max Pool 56×56 3×3 2

Conv2 28×28 2 1 144
28×28 1 3 144

Conv3 14×14 2 1 288
14×14 1 7 288

Conv4 7×7 2 1 576
7×7 1 3 576

GAP 1×1 7×7 576

FC 1000

Head networks: For object classification and localization, we applied a single fully connected
layer with 512 channel; after that, two parallel fully connected layers were used to predict RoI
classification and regression. Four channels were deployed for each bounding box location because
the regression was shared between different classes. For keypoints detection, two sets of convolution
layers were followed by Region of Interest (RoIs), one for predicting anchor keypoints and the other
for predicting relational keypoints. The relational keypoints used the feature maps of anchor keypoints
as an input to establish the relevant model. In our experiments, RoIAlign was used to generate RoI
boxes, and pooler resolution was set to 14 to improve the localization accuracy of the keypoints. In a
minibatch, the fraction of foreground RoI was assigned to 0.25 and batch size was set to 512 in one
image. The specific description is in Section 3.1, and its network structure is shown in Figure 2.

Figure 2. The quadrotor and its keypoints detection framework. We validate three kinds of keypoints
heads; see the text description for the details.

RPN: RPN is a class agnostic object detector; it pre-defines a set of anchors, which are controlled
by several specific scales and aspect ratios. The anchor will be set as a positive label if it has intersection
over union (IoU) over 0.7 with any ground-truth box. Anchors which have the highest IoU for
the ground-truth box will also be given a positive label. Meanwhile, if extra anchors have IoU
less than 0.3 with all ground-truth boxes, their labels will be assigned as negative [43]. In our
experiments, we built RPN on conv4 of the Xception backbone. Two aspect ratios {1:1, 2:1} and
five scales {322, 642, 1282, 2562, 5122} anchors were used to cover prior drone shape and possible

Sensors 2019, 19, 1479 6 of 20

different sizes. The anchor stride was set to 16 and the fraction of foreground (positive) examples in
each image batch was 0.5.

Training Loss: We used a multi-task loss function for each RoI during training time:

L(cdt, cgt, tc
dt, tgt, kc

dt, kgt) = Lcls(cdt, cgt)+

α[cgt ≥ 1]Lloc(tc
dt, tgt)+

β[cgt ≥ 1]Lkp(kc
dt, kgt),

(5)

where Lcls(cdt, cgt) = −logpc is the softmax loss for true class c. Lloc(tc
dt, tgt) = smoothL1(tc

dt − tgt)

is the smooth L1 loss proposed in Reference [48], where tgt is the true bounding-box regression
target. Lkp(kc

dt, kgt) is the pixel softmax loss function of each keypoint, which is divided into two parts
(the details are introduced in Section 2.1). [cgt ≥ 1] is an indicator function, andd the output value will
be set to 1 if cgt ≥ 1, otherwise 0. α and β are balance parameters, which we set to 1 in our experiments.

2.3. PnP Pose Estimation

Accurate pose estimation relies on keypoints, besides, an algorithm is needed to solve the attitude
from these keypoints. Furthermore, the estimated pose can be utilized to calculate the acceleration of
quadrotor. Since the labeling errors of the head, tail, top, and bottom are large, the order and position
of the four motors are relatively accurate. We only used these four points to solve the relative pose of
the target quadrotors. The real quadrotor attitude in the world frame could be decoupled according to
the pose of the camera.

Due to the influence of annotation errors and keypoints detection noise, the PnP algorithm was
unstable for plane solution. In the same experimental environment, the Z axis of the previous frame
was vertical upward, and the latter frame was downward, as shown in Figure 3a,b. And the Z axis
we defined is upward, so the decoupled attitude was totally wrong. Our improved PnP solved all
the possible R and t with current observations, and then used a test point to determine the correct
estimates of R and t. First, let us review the solution of all the possible R and t. The detailed algorithm
can be found in Reference [52].

Figure 3. Solve the problem of Z axis in PnP. In two adjacent frames, t and t + 1, under similar
circumstances, the Z axis of the frame t is vertical upward (a), and of the frame t + 1 is downward (b).
As the Z axis we defined is upward, our improved PnP algorithm can solve the problem by a test case
(c,d); see the text for details.

Sensors 2019, 19, 1479 7 of 20

Given the 3D position of the motor in drone body frame and the position of the keypoints in the
image, the solution of its relative attitude constitutes a perspective-n-point (PnP) problem. Consider
three reference points P1,P2 and P3, and three constraints by dividing them into 2-points are obtained:

x2
1 + x2

2 − 2x1x2 cos θ12 − d2
12 = 0

x2
1 + x2

3 − 2x1x3 cos θ13 − d2
13 = 0

x2
2 + x2

3 − 2x2x3 cos θ23 − d2
23 = 0,

(6)

where x1,x2, and x3 are unknown depths from the reference points to the camera center and d12,d13,
and d23 are the known distance between P1P2,P1P3, and P2P3, respectively. θ12,θ13, and θ23 are the
viewing angles from the camera center to P1P2,P1P3, and P2P3, respectively (see Figure 4). The equation
system can be converted into a fourth order polynomial equivalently with three unknown depth
variables x1,x2, and x3 [52,53]:

f (x) = ax4 + bx3 + cx2 + dx + e = 0. (7)

Figure 4. The projection of the reference points and three constraints of 2-points.

For four points, we can get four group of combinations of three points. In order to solve these
polynomials, a cost function is defined as F = ∑4

i=1 f 2
i (x). The minima of F can be determined by

finding the roots of its derivative F′ = ∑4
i=1 fi(x) f ′i (x) = 0. F has at most four minima, and the proof

can be found in Reference [52].
Since these four points are in the same plane, the direction of the Z axis in the body coordinate

system could not be well determined. Under the same experimental conditions, the direction of the
Z axis was ambiguous in the two frames (see Figure 3a,b).

For each minimum, the rotation matrix Ri and translation matrix ti from quadrotor body frame
to camera frame and their lossi could be solved by Reference [52]. Then, a test case is added to solve
the problem of ambiguity. Assume the Z axis of the aircraft system is perpendicular to the quadrotor
plane. The algorithm is as follows, Algorithm 1:

Sensors 2019, 19, 1479 8 of 20

Algorithm 1: Choosing the most suitable solution from possible solutions.
Input : Possible solutions: R1:n, t1:n, loss1:n
Output : R, t

1 min_loss = Inf
2 foreach Ri, ti, lossi ∈ [R1:n, t1:n, loss1:n] do
3 p1_camera = Ri · [0, 0, 1] + ti
4 p0_camera = Ri · [0, 0, 0] + ti
5 if p1_camera.y > p0_camera.y then
6 if lossi < min_loss then
7 R, t, min_loss = Ri, ti, lossi
8 end
9 end

10 end

Then we solved z-axis problem based on the quadrotor body system (the result is shown in
Figure 3c,d).

3. Experiments

In this part, we designed experiments to evaluate our algorithm. The experiments were divided
into three parts. In the first part, we used simulation data to evaluate the keypoints detection algorithm,
and mainly verified the performance of the relational graph keypoints head. In the second part,
the drone Parrot Bebop-2 [54] was used to produce two real datasets in an indoor and outdoor
environment, respectively, covering the situation of looking down and looking up, as well as different
perspectives. On these datasets, we validated the effectiveness of our keypoints detection algorithm
and the important role of the proposed relational graph networks. In the last part, the improved PnP
algorithm was used to solve the 6D pose information of quadrotor and its value was compared with
ground truth. From the 6D pose, the acceleration in drone body frame could be obtained, and we
compared the velocity tracking performance with and without acceleration information by using a
Kalman filter method.

3.1. Implementation Details

The Xception-like model was used as our backbone network (its details are shown in Table 1).
The output channels of conv4 and conv5 were 576 and 1152, respectively. Large separable convolution
with kernel size = 15, Cmid = 64 and Cout = 128 was applied on conv5 to obtain light head
feature maps. In the implementation of RPN, we used two aspect ratios {1:1, 2:1} and five scales
{322, 642, 1282, 2562, 5122} anchors to cover prior drone shapes and possible different sizes. A stack
of eight convolutional layers was used for predicting the anchor keypoints as one-hot masks.
For relational keypoints detection, we inserted relational graph layers into the relational keypoints
head after every two convolutional layers and anchor keypoints features of corresponding layer were
used as its input.

The whole detector was end-to-end trained based on four Nvidia Tesla V100 GPUs using
synchronized Stochastic Gradient Descent (SGD) with a momentum of 0.9 and a weight decay of 1e-4.
Each mini-batch had two images per GPU, and each image had 200/100 RoIs for training/testing.
For the simulation dataset, the learning rate was set to 0.01 for first 200 K iterations (passing one image
would be regarded as one iteration) and 0.001 for later 65K iterations. For the real dataset, the number
of iterations was 400K and 130K for the 0.01 and 0.001 learning rate, respectively. The backbone network
was initialized based on the pre-trained ImageNet [55] base model, and we fixed batch normalization
for faster training. Online hard example mining [56] was also used in our experiments.

Sensors 2019, 19, 1479 9 of 20

In the following section, we will introduce three parts of experiments in detail: the keypoints
detection on quadrotor simulation dataset, the keypoints detection on real dataset of Parrot Bebop-2,
and the comparative experiment of 6D pose analysis.

3.2. Keypoints Detection on Simulation Dataset

The simulation data had more consistent image characteristics, which were exactly the same
for the four motors. The quadrotor’s nose and tail were represented by special shapes. Using such
simulation dataset could clearly evaluate the reasoning ability of the network for the four motors of
the quadrotor. Some examples are shown in Figure 5.

Figure 5. Some examples of quadrotor simulation data. It can be seen that the order of the motor shaft
must be deduced from the nose and tail.

An X-type quadrotor model was built on the same plane. We used a circle to represent one motor
axis, and four motor axes were expressed in the same way. The triangle represented the nose, and
the horizontal line represented the tail. After that, a simulated pinhole camera model was set up to
observe the quadrotor.

Let the simulation quadrotor’s yaw rotate in the range of ± 180 degrees, roll in the range of
±45 degrees, and pitch in the range of 0 to 45 degrees. In this way, the 6D pose could be observed
within the normal working range. We generated 6804 simulation images of different pose; only
5 percent (340) of these were randomly selected as the training dataset and the rest (6464) as the testing
dataset. It was shown that the training data did not cover all possible poses, and we wanted the
network to learn to reason from a small amount of data and get the relationship between the keypoints
of four motors, nose, and tail.

Only four keypoints of the rotors were evaluated, which contributed to the final quadrotor’s pose
estimation. The other keypoints which depend on the specific quadrotors without containing enough
common feauters could be used to help locate the keypoints of the motors. In order to evaluate the
performance of keypoints detection, we used an evaluation method similar to COCO dataset [57].
The object keypoint similarity (OKS) was defined as:

OKS =
∑i exp(−d2

i /2s2k2
i)δ(vi > 0)

∑i δ(vi > 0)
, (8)

where di is Euclidean distance between each detected keypoint and its corresponding ground truth
values. vi is the visibility flag of the ground truth, and the prediction vi of the detector is not used.
s is the object scale. We adjusted the ki to make the OKS a perceptive and easy to interpret similarity
measure. The redundant annotations of the real dataset were used to calculate the standard deviation
of the keypoints, σ2

i = E(d2
i /s2), ki = 2σi and σi is the variance of manual annotation for keypoint i.

We set ki = 0.15 according to redundant manual annotation of the real data.
Next, true positive (TP) is expressed as the number of OKS larger than the threshold, false

positive (FP) is the sum of keypoints number that OKS smaller than the threshold and the ground
truth keypoints number of all missing objects, false negative (FN) is the number of all false keypoints

Sensors 2019, 19, 1479 10 of 20

detections (including the keypoints of false object detections). The main evaluation criteria average
precision (AP) and average recall (AR) are as follows:

Precision = TP/(TP + FN), Recall = TP/(TP + FP). (9)

We set the threshold as 0.5, 0.75, and 0.5:0.05:0.95 (take the average of these 10) to define APOKS=0.5,
APOKS=0.75, and APOKS=0.5:0.05:0.95, respectively. Similarly, three average recall criteria were defined
as AROKS=0.5, AROKS=0.75, and AROKS=0.5:0.05:0.95. The evaluation results of the simulation quadrotor
dataset are shown in Table 2, where Lh-rcnn-k4 indicates that only four keypoints (motor 1, motor 2,
motor 3, and motor 4) were used and keypoints head I was applied. Lh-rcnn-k8 means eight keypoints
(nose, tail, body top, and body bottom are added) and also head I are used. Lh-rcnn-k4-4 represents
eight keypoints were split into two groups (motor 1, motor 2, motor 3, and motor 4 are called
relational keypoints; nose, tail, top and bottom are called anchor keypoints) and head II was deployed.
Lh-rcnn-k8-NL used one group eight keypoints with non-local head I, and Lh-rcnn-k4-4-RG used two
group keypoints and head III, and the suffix NL and RG denote the non-local block and relational
graph block described above, respectively.

From the experimental results, it could be seen that the keypoints detection performance was
significantly improved by dividing the keypoints into anchor and relational. And after adding head III
with the relational graph, the state of the art result was obtained (see Table 2).

Table 2. Comparison of different keypoints head on simulation quadrotor dataset. (AP and AR
represent the average accuracy and average recall, respectively. OKS indicates object keypoint similarity.
For the explanations of each model, please refer to the text.)

Model APOKS=0.5:0.95 APOKS=0.5 APOKS=0.75

Lh-rcnn-k4 0.8176 0.8412 0.8001
Lh-rcnn-k8 0.8123 0.8397 0.7985

Lh-rcnn-k8-NL 0.8189 0.8476 0.8091
Lh-rcnn-k4-4 0.9083 0.9346 0.9055

Lh-rcnn-k4-4-RG (ours) 0.9366 0.9437 0.9212

Model APOKS=0.5:0.95 APOKS=0.5 APOKS=0.75

Lh-rcnn-k4 0.8345 0.8551 0.8152
Lh-rcnn-k8 0.8252 0.8435 0.8124

Lh-rcnn-k8-NL 0.8358 0.8576 0.8173
Lh-rcnn-k4-4 0.9107 0.9407 0.9060

Lh-rcnn-k4-4-RG (ours) 0.9326 0.9523 0.9188

3.3. Keypoints Detection on Parrot Dataset

We collected and annotated the keypoints of real data to evaluate the algorithm. Parrot Bebop-2 is
a kind of consumer-grade quadrotor, and its four motors have similar characteristics. The sequence
needs to be inferred according to the nose, tail, and perspective, as shown in Figure 1.

The first dataset was collected in an indoor environment. In this way, a motion capture system
(OptiTrack [58]) could be used to compare the results of 6D pose tracking. The dataset contains the
perspective of looking down and looking up at the quadrotor Parrot. Then we captured images from
multiple azimuth observation perspectives, some of which were used as training sets (3957 images),
and others were used as evaluation sets (1670 images). In addition, to verify the adaptability of
the algorithm in the more complex scenario, we captured 3189 images in three outdoor scenes, and
split them into two parts randomly: one part for training (2232 images) and the other for testing
(957 images). These images are artificially labeled with the eight keypoints described above. Some
examples of annotations are shown in Figure 6. These two datasets are named Parrot indoor dataset
and Parrot outdoor dataset, respectively.

Sensors 2019, 19, 1479 11 of 20

Figure 6. Some keypoints annotation examples of our Parrot dataset.

Similar to the evaluation method used in simulation data, we only evaluated four motors’
keypoints, which were used to calculate 6D pose of the quadrotor in the next step. APOKS=0.5,
APOKS=0.75, APOKS=0.5:0.05:0.95 AROKS=0.5, AROKS=0.75, and AROKS=0.5:0.05:0.95 were also used as the
keypoints evaluation criteria. The evaluation results on the Parrot indoor dataset are shown in Table 3.

Table 3. Comparison of different keypoints head on Parrot indoor dataset. (AP and AR represent the
average accuracy and average recall, respectively. OKS indicates object keypoint similarity. For the
explanations of each model, please refer to the text.)

Model APOKS=0.5:0.95 APOKS=0.5 APOKS=0.75

Lh-rcnn-k4 0.6453 0.8897 0.6811
Lh-rcnn-k8 0.6411 0.8804 0.6791

Lh-rcnn-k8-NL 0.6481 0.8759 0.6940
Lh-rcnn-k4-4 0.6891 0.9111 0.7446

Lh-rcnn-k4-4-RG (ours) 0.7415 0.9446 0.7908

Model AROKS=0.5:0.95 AROKS=0.5 AROKS=0.75

Lh-rcnn-k4 0.7523 0.9297 0.7985
Lh-rcnn-k8 0.7473 0.9154 0.7896

Lh-rcnn-k8-NL 0.7591 0.9213 0.8090
Lh-rcnn-k4-4 0.7764 0.9346 0.8275

Lh-rcnn-k4-4-RG (ours) 0.8054 0.9473 0.8479

From the above comparison experiments, we could see that the relational graph network still
effectively improved the detection accuracy of keypoints in the real dataset. Lh-rcnn-k4-4-RG indicated
that eight keypoints were split into two groups; motor 1–4 as group 1 (motor 1, motor 2, motor 3,
and motor 4, called relational keypoints) and the other four keypoints as group 2 (nose, tail, body
top, and body bottom, called anchor keypoints). RG means the relational group networks were used
in the detection framework, as shown in Figure 2 III. However, the overall accuracy of keypoints
detection in real data was lower than the experimental results of simulation data. This was because the
precision of manual annotation brought more noise to the dataset, and the real data had the influence
of motion blurring and complex background. Our experiments on the more complex outdoor dataset
also confirmed this observation. The evaluation results on Parrot outdoor dataset are shown in Table 4.

Then we compared the running speed of these models on a desktop computer with intel i7 6700K
CPU and Nvidia Titan X GPU (the results are shown in Table 5), and we could see that Lh-rcnn-k4-4-RG
had advantages in both accuracy and speed.

After getting the keypoints of the quadrotor, we needed to evaluate the results of the 6D pose
estimation. For this purpose, a one-minute test set was captured; meanwhile, the real-time 6D pose of
the camera and the target quadrotor were recorded by the motion capture system as our ground-truth.
Lh-rcnn-k4-4-RG keypoints detection framework and improved PnP algorithm were used to generate
the 6D pose of the quadrotor. The comparison results of its position and attitude are shown in Figures 7
and 8, respectively.

Sensors 2019, 19, 1479 12 of 20

Table 4. Comparison of different keypoints head on Parrot outdoor dataset. For the explanations of
each model, please refer to the text.

Model APOKS=0.5:0.95 APOKS=0.5 APOKS=0.75

Lh-rcnn-k4 0.6124 0.8448 0.6571
Lh-rcnn-k8 0.6118 0.8492 0.6505

Lh-rcnn-k8-NL 0.6251 0.8509 0.6692
Lh-rcnn-k4-4 0.6743 0.8987 0.7205

Lh-rcnn-k4-4-RG (ours) 0.7298 0.9176 0.7754

Model AROKS=0.5:0.95 AROKS=0.5 AROKS=0.75

Lh-rcnn-k4 0.7084 0.8965 0.7631
Lh-rcnn-k8 0.7023 0.9005 0.7592

Lh-rcnn-k8-NL 0.7119 0.9056 0.7687
Lh-rcnn-k4-4 0.7686 0.9189 0.8049

Lh-rcnn-k4-4-RG (ours) 0.7869 0.9234 0.8195

Table 5. Comparisons of detection speed and accuracy on Parrot indoor dataset. Xception* is a small
xception like the backbone shown in Table 1. CMU -Pose [59], G-RMI [35] and Mask-RCNN [42] are
human keypoints detection algorithms; we used it by modifying the human keypoints to quadrotor
keypoints.

Method Backbone Input Size Speed (fps) AP [0.5:0.95]

CMU-Pose [59] VGG-19 654 × 368 20 0.5815
G-RMI [35] Resnet50 1200 × 800 18 0.6446

Mask-RCNN [42] Resnet50-FPN 1200 × 800 10 0.6672
Lh-rcnn-k4 xception* 1200 × 800 90 0.6453
Lh-rcnn-k8 xception* 1200 × 800 89 0.6411

Lh-rcnn-k8-NL [41] xception* 1200 × 800 75 0.6481
Lh-rcnn-k4-4 xception* 1200 × 800 85 0.6891

Lh-rcnn-k4-4-RG (ours) xception* 1200 × 800 71 0.7415

Figure 7. The position estimation in the camera frame, compared with OptiTrack (as Ground-Truth).

Sensors 2019, 19, 1479 13 of 20

Figure 8. The attitude estimation in the camera frame, compared with OptiTrack (as Ground-Truth).

It could be seen that besides the noise caused by the keypoints detection error, the 6D pose
tracking results were accurate. These noises could be smoothed by Kalman filter in the subsequent
processing. In the following part, we used the 6D pose of the quadrotor to estimate its acceleration and
combined the Kalman filter with acceleration estimation to get more accurate target velocity estimation.

3.4. Experiments on State Estimation

In order to describe the motion of the quadrotor, the Parrot Bebop-2 in Figure 1 is represented by
a rigid body of mass m. Meanwhile, a world inertial frame ∑w and a body-fixed frame ∑b attached to
the quadrotor at the mass center are introduced as a two reference frame. The position, linear velocity,
and attitude (roll/pitch/yaw angles) of the quadrotor are represented as p = [x, y, z]>, v = [ẋ, ẏ, ż]>

and φ = [ϕ, θ, ψ]>, respectively. The translation model of the quadrotor is as follows:

ẍ =
F
m
(sin θ cos ψ + sin ϕ cos θ sin ψ), (10)

ÿ =
F
m
(sin θ sin ψ− sin ϕ cos θ cos ψ), (11)

z̈ =
F
m
(cos ϕ cos θ − g), (12)

where g is the gravity constant, and F = F1 + F2 + F3 + F4 represents the total thrust of four motors. The
target quadrotor is assumed to be in a horizontal stable flight state, i.e., az = 0. With Equations (10)–(12),
we can calculate the acceleration a = [ax, ay, az]> = [ẍ, ÿ, z̈]> by quadrotor’s attitude:

ax =
g

cos ϕ cos θ
(sin θ cos ψ + sin ϕ cos θ sin ψ) (13)

ay =
g

cos ϕ cos θ
(sin θ sin ψ− sin ϕ cos θ cos ψ). (14)

Sensors 2019, 19, 1479 14 of 20

In the previous section, the position and attitude of the quadrotor were calculated in the camera
frame. Here, we need to get the position and attitude of the quadrotor in the world frame, according to
the camera attitude obtained by OptiTrack. In the real scene, the camera’s attitude could be achieved
by its own inertial measurement unit (IMU).

Next, a formulation of the Kalman filter is presented to estimate the position and velocity of the
quadrotor as follows:

Xk = AXk−1 + wk, (15)

Zk = HXk + vk, (16)

where wk and vk indicate the system and measurement noises, respectively. Since the position and
acceleration of the quadrotor are included in the system measurement Z, we used the near-constant
acceleration (NCA) as our model. The state vector, measurement vector, state matrix, and measurement
matrix are given as follows:

X :=

p
v
a

 , Z :=

[
p
a

]
, (17)

A =

I3 hI3
1
2 h2I3

0 I3 hI3

0 0 I3

 , H =

[
I3 0 0
0 0 I3

]
, (18)

where h denotes the sampling period, and In indicates dimension identity matrix of n-dimension.
The covariance matrix of vk is then defined as:

Q = E[vkv′k] =

 1
20 h5 I3

1
8 h4 I3

1
6 h3 I3

1
8 h4 I3

1
3 h3 I3

1
2 h2 I3

1
6 h3 I3

1
2 h2 I3 hI3

 q, (19)

where q is the power spectral density of the process noise in this model. The detailed explanation of
coefficients and a guideline for the choice of q can be found in Reference [60]. The state prediction and
the measurement update are given by:

X̂k|k−1 = AX̂k−1|k−1 + wk−1, (20)

X̂k|k = X̂k|k−1 + γkKk(Zk − HX̂k|k−1), (21)

where Kk represents the observer gain. Due to the dynamic change of illumination conditions, imaging
noise, and motion blur, the detection of the target might occasionally be lost. γk is a binary stochastic
variable to model the intermittent measurements [61]. If the target is detected and a measurement
arrives after the k th step, γk = 1, and if no measurement appears after the k th step, then γk = 0.

To verify the effectiveness of the estimation system, we contrast our estimation results with
ground truth measured by OptiTrack system in Figures 9 and 10. Another estimation result based
on near-constant velocity (NCV) model is also given for comparison. The mean error and standard
deviation of the estimation error are shown in Table 6.

Table 6. The comparison of position and velocity tracking errors by Kalman filter with (NCA) or
without (NCV) acceleration information.

Position Tracking (m) Velocity Tracking (m/s)

Mean Error Standard Deviation Mean Error Standard Deviation

NCA 0.0757 0.1130 0.1228 0.2182
NCV 0.0934 0.1384 0.2034 0.3221

Sensors 2019, 19, 1479 15 of 20

Figure 9. The position estimation in the world frame, compared with OptiTrack.

Figure 10. The velocity estimation in the world frame, compared with OptiTrack.

From Figures 9 and 10 and Table 6, it can be seen that the NCA model could track the position and
velocity faster than the NCV model. It is workable to calculate the acceleration of the leader quadrotor
using the vision-measured attitude, which can improve the estimation result.

Some representative examples in the evaluation dataset and the test dataset are shown in
Figure 11. It can be seen that the detection algorithm could accurately locate the keypoints from
various perspectives and give the correct attitude calculation.

Sensors 2019, 19, 1479 16 of 20

Figure 11. Representative results of quadrotor pose estimation by our relational graph keypoints
detection model and PnP algorithm. It can be seen that the quadrotor pose can be estimated from a
variety of observation angles.

4. Conclusions

In this paper, we proposed a vision-based quadrotor pose and acceleration estimation method.
Our method included two parts: one is a novel relational graph network to improve the keypoints
detection performance, and the other is an improved PnP algorithm to acquire 6D quadrotor’s pose.
These two algorithms were further integrated to estimate the acceleration and accurate velocity of
the target. Experiments and ablation studies (shown in Table 3) indicated that our relational graph
network enhanced 9.7% average precision compared to the baseline network in the same configuration.
Besides, position and velocity errors (shown in Table 6) could be reduced by 19% and 40%, respectively,
with the integration of acceleration estimation.

The compatibility and performance of the algorithm was significantly adequate. It could achieve
71 fps on a desktop computer with an Nvidia Titan X GPU. Moreover, the algorithm was independent
of the 3D model or accurate pose annotation for 6D pose estimation, meanwhile, it only required
the keypoints annotation of the target using captured images and was especially suitable for a
non-cooperative target.

The downside of this algorithm was the accuracy of 6D pose decreased with the shrink of object
size for small targets in the image. Therefore, in the future, we will improve the results on small target
by employing adversarial training methods.

Sensors 2019, 19, 1479 17 of 20

Author Contributions: Conceptualization, R.J.; Data curation, J.J.; Funding acquisition, D.L.; Investigation, R.J.;
Methodology, R.J.; Software, Y.Q.; Supervision, D.L. and T.S.; Validation, T.S.

Funding: This work was supported by the National Natural Science Foundation of China under Grant
U1613225w.

Acknowledgments: The authors would like to express their sincere appreciation to the editor for his/her careful
work in improving the presentation and quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sun, J.; Li, B.; Jiang, Y.; Wen, C. A Camera-Based Target Detection and Positioning UAV System for Search
and Rescue (SAR) Purposes. Sensors 2016, 16, 1778. [CrossRef] [PubMed]

2. Rivas, A.; Chamoso, P.; Gonzálezbriones, A.; Corchado, J.M. Detection of Cattle Using Drones and
Convolutional Neural Networks. Sensors 2018, 18, 2048. [CrossRef] [PubMed]

3. Pestana, J.; Sanchez-Lopez, J.L.; Puente, P.D.L.; Carrio, A.; Campoy, P. A Vision-based Quadrotor Swarm for
the participation in the 2013 International Micro Air Vehicle Competition. In Proceedings of the International
Conference on Unmanned Aircraft Systems, Orlando, FL, USA, 27–30 May 2014.

4. Aker, C.; Kalkan, S. Using deep networks for drone detection. In Proceedings of the 14th IEEE International
Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce, Italy, 29 August–1 September
2017; pp. 1–6.

5. Rozantsev, A.; Lepetit, V.; Fua, P. Detecting Flying Objects Using a Single Moving Camera. IEEE Trans.
Pattern Anal. Mach. Intell. 2017, 39, 879–892. [CrossRef] [PubMed]

6. Lee, T.J.; Yi, D.H.; Cho, D.I.D. A Monocular Vision Sensor-Based Obstacle Detection Algorithm for
Autonomous Robots. Sensors 2016, 16, 311. [CrossRef] [PubMed]

7. Mohamed Bin Zayed International Robotic Chanllenge, Chanllenge 1, Track a UAV. Available online:
http://www.mbzirc.com/ (accessed on 4 January 2019).

8. Dey, D.; Geyer, C.; Singh, S.; Digioia, M. A cascaded method to detect aircraft in video imagery. Int. J.
Robot. Res. 2011, 30, 1527–1540. [CrossRef]

9. Yoshihashi, R.; Trinh, T.T.; Kawakami, R.; You, S.; Iida, M.; Naemura, T. Learning Multi-frame Visual
Representation for Joint Detection and Tracking of Small Objects. arXiv 2017, arXiv:1709.04666v2.

10. Hajri, R. UAV to UAV Target Detection and Pose Estimation. Ph.D. Thesis, Naval Postgraduate School,
Monterey, CA, USA, 2012.

11. Xie, Y.; Pan, F.; Xing, B.; Gao, Q.; Feng, X.; Li, W. A New On-Board UAV Pose Estimation System Based
on Monocular Camera. In Proceedings of the 8th International Conference on Intelligent Human-Machine
Systems and Cybernetics (IHMSC), Hangzhou, China, 27–28 August 2016; pp. 504–508.

12. Fu, Q.; Quan, Q.; Cai, K.Y. Robust Pose Estimation for Multirotor UAVs Using Off-Board Monocular Vision.
IEEE Trans. Ind. Electron. 2017, 64, 7942–7951. [CrossRef]

13. Su, W.; Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. UAV pose estimation using IR and RGB
cameras. In Proceedings of the IEEE/SICE International Symposium on System Integration (SII), Taipei,
Taiwan, 11–14 December 2017; pp. 151–156.

14. Saxena, A.; Driemeyer, J.; Ng, A.Y. Learning 3-D object orientation from images. In Proceedings of the IEEE
International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009.

15. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; pp. 1150–1157.

16. Rothganger, F.; Lazebnik, S.; Schmid, C.; Ponce, J. 3D Object Modeling and Recognition Using Local
Affine-Invariant Image Descriptors and Multi-View Spatial Constraints. Int. J. Comput. Vis. 2006, 66, 231–259.
[CrossRef]

17. Collet, A.; Martinez, M.; Srinivasa, S.S. The MOPED framework: Object recognition and pose estimation for
manipulation. Int. J. Robot. Res. 2011, 30, 1284–1306. [CrossRef]

18. Liu, T.; Guo, Y.; Yang, S.; Yin, S.; Zhu, J. Monocular-Based 6-Degree of Freedom Pose Estimation Technology
for Robotic Intelligent Grasping Systems. Sensors 2017, 17, 334. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/s16111778
http://www.ncbi.nlm.nih.gov/pubmed/27792156
http://dx.doi.org/10.3390/s18072048
http://www.ncbi.nlm.nih.gov/pubmed/29954080
http://dx.doi.org/10.1109/TPAMI.2016.2564408
http://www.ncbi.nlm.nih.gov/pubmed/28113698
http://dx.doi.org/10.3390/s16030311
http://www.ncbi.nlm.nih.gov/pubmed/26938540
http://www.mbzirc.com/
http://dx.doi.org/10.1177/0278364911412807
http://dx.doi.org/10.1109/TIE.2017.2696482
http://dx.doi.org/10.1007/s11263-005-3674-1
http://dx.doi.org/10.1177/0278364911401765
http://dx.doi.org/10.3390/s17020334
http://www.ncbi.nlm.nih.gov/pubmed/28216555

Sensors 2019, 19, 1479 18 of 20

19. Kehl, W.; Manhardt, F.; Tombari, F.; Ilic, S.; Navab, N. SSD-6D: Making RGB-Based 3D Detection and 6D
Pose Estimation Great Again. In Proceedings of the International Conference on Computer Vision, Venice,
Italy, 22–29 October 2017; pp. 1530–1538.

20. Mahendran, S.; Ali, H.; Vidal, R. 3D Pose Regression Using Convolutional Neural Networks. In Proceedings
of the International Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26
July 2017; pp. 494–495.

21. Rad, M.; Lepetit, V. BB8: A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting the 3D
Poses of Challenging Objects without Using Depth. In Proceedings of the International Conference on
Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3848–3856.

22. Kendall, A.; Grimes, M.; Cipolla, R. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera
Relocalization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago,
Chile, 7–13 December 2015; pp. 2938–2946.

23. Kendall, A.; Cipolla, R. Modelling uncertainty in deep learning for camera relocalization. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May
2016; pp. 4762–4769.

24. Brachmann, E.; Krull, A.; Nowozin, S.; Shotton, J.; Michel, F.; Gumhold, S.; Rother, C. DSAC—Differentiable
RANSAC for Camera Localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2492–2500.

25. Brachmann, E.; Rother, C. Learning Less is More—6D Camera Localization via 3D Surface Regression.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, 18–22 June 2018; pp. 4654–4662.

26. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.E.; Fu, C.; Berg, A.C. SSD: Single Shot MultiBox
Detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
11–14 October 2016; pp. 21–37.

27. Xiang, Y.; Mottaghi, R.; Savarese, S. Beyond PASCAL: A benchmark for 3D object detection in the wild.
In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs, CO,
USA, 24–26 March 2014; pp. 75–82.

28. Crivellaro, A.; Rad, M.; Verdie, Y.; Yi, K.M.; Fua, P.; Lepetit, V. A Novel Representation of Parts for Accurate
3D Object Detection and Tracking in Monocular Images. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 4391–4399.

29. Gong, W.; Zhang, X.; Gonzàlez, J.; Sobral, A.; Bouwmans, T.; Tu, C.; Zahzah, E. Human Pose Estimation
from Monocular Images: A Comprehensive Survey. Sensors 2016, 16, 1966. [CrossRef] [PubMed]

30. Lepetit, V.; Fua, P. Keypoint recognition using randomized trees. IEEE Trans. Pattern Anal. Mach. Intell. 2006,
28, 1465–1479. [CrossRef] [PubMed]

31. Toshev, A.; Szegedy, C. DeepPose: Human Pose Estimation via Deep Neural Networks. In Proceedings of
the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June
2014; pp. 1653–1660.

32. Tompson, J.J.; Jain, A.; LeCun, Y.; Bregler, C. Joint Training of a Convolutional Network and a Graphical
Model for Human Pose Estimation. In Proceedings of the Advances in Neural Information Processing
Systems 27 (NIPS 2014), Montreal, QC, Canada, 8–13 December 2014; pp. 1799–1807.

33. Newell, A.; Yang, K.; Deng, J. Stacked Hourglass Networks for Human Pose Estimation. In Proceedings of the
European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 483–499.

34. Pishchulin, L.; Insafutdinov, E.; Tang, S.; Andres, B.; Andriluka, M.; Gehler, P.V.; Schiele, B. DeepCut: Joint
Subset Partition and Labeling for Multi Person Pose Estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 4929–4937.

35. Papandreou, G.; Zhu, T.; Kanazawa, N.; Toshev, A.; Tompson, J.; Bregler, C.; Murphy, K. Towards accurate
multi-person pose estimation in the wild. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; Volume 3, p. 6.

36. Yang, W.; Li, S.; Ouyang, W.; Li, H.; Wang, X. Learning Feature Pyramids for Human Pose Estimation.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October
2017; pp. 1290–1299.

37. Huang, S.; Gong, M.; Tao, D. A Coarse-Fine Network for Keypoint Localization. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 3047–3056.

http://dx.doi.org/10.3390/s16121966
http://www.ncbi.nlm.nih.gov/pubmed/27898003
http://dx.doi.org/10.1109/TPAMI.2006.188
http://www.ncbi.nlm.nih.gov/pubmed/16929732

Sensors 2019, 19, 1479 19 of 20

38. Zhang, H.; Goodfellow, I.J.; Metaxas, D.N.; Odena, A. Self-Attention Generative Adversarial Networks.
arXiv 2018, arXiv:1805.08318.

39. Yang, Z.; Zhao, J.J.; Dhingra, B.; He, K.; Cohen, W.W.; Salakhutdinov, R.; LeCun, Y. GLoMo: Unsupervisedly
Learned Relational Graphs as Transferable Representations. arXiv 2018, arXiv:1806.05662.

40. Vaswani, A.; Parmar, N.; Uszkoreit, J.; Shazeer, N.; Kaiser, L. Image Transformer. In Proceedings of the
International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018.

41. Wang, X.; Girshick, R.B.; Gupta, A.; He, K. Non-Local Neural Networks. In Proceedings of the Computer
Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7794–7803.

42. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R.B. Mask R-CNN. In Proceedings of the International Conference
on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

43. Ren, S.; He, K.; Girshick, R.B.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

44. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate.
In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9
May 2015.

45. Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object
Detection. In Proceedings of the Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June –1
July 2016; pp. 779–788.

46. Fu, C.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. DSSD: Deconvolutional Single Shot Detector. arXiv 2017,
arXiv:1701.06659.

47. Lin, T.; Goyal, P.; Girshick, R.B.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of
the International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2999–3007.

48. Girshick, R.B. Fast R-CNN. In Proceedings of the International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015; pp. 1440–1448.

49. Lin, T.; Dollar, P.; Girshick, R.B.; He, K.; Hariharan, B.; Belongie, S.J. Feature Pyramid Networks for Object
Detection. In Proceedings of the Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July
2017; pp. 936–944.

50. Li, Z.; Peng, C.; Yu, G.; Zhang, X.; Deng, Y.; Sun, J. Light-Head R-CNN: In Defense of Two-Stage Object
Detector. arXiv 2017, arXiv:1711.07264.

51. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer
Vision. In Proceedings of the Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July
2016; pp. 2818–2826.

52. Li, S.; Xu, C.; Xie, M. A Robust O(n) Solution to the Perspective-n-Point Problem. IEEE Trans. Pattern Anal.
Mach. Intell. 2012, 34, 1444–1450. [CrossRef] [PubMed]

53. Quan, L.; Lan, Z. Linear N-point camera pose determination. IEEE Trans. Pattern Anal. Mach. Intell. 1999,
21, 774–780. [CrossRef]

54. Bebop 2, Parrot Drones. Available online: http://www.parrot.com/product/parrot-bebop-2/ (accessed on
4 January 2019).

55. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;
Bernstein, M.S.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115,
211–252. [CrossRef]

56. Shrivastava, A.; Gupta, A.; Girshick, R.B. Training Region-Based Object Detectors with Online Hard Example
Mining. In Proceedings of the Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June –1
July 2016; pp. 761–769.

57. Lin, T.; Maire, M.; Belongie, S.J.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P.; Zitnick, C.L. Microsoft COCO:
Common Objects in Context. In Proceedings of the European Conference on Computer Vision, Zurich,
Switzerland, 6–12 September 2014; pp. 740–755.

58. OptiTrack, NaturalPoint, Inc. Available online: https://www.optitrack.com/ (accessed on 4 January 2019).
59. Cao, Z.; Simon, T.; Wei, S.; Sheikh, Y. Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields.

In Proceedings of the Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 1302–1310.

http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1109/TPAMI.2012.41
http://www.ncbi.nlm.nih.gov/pubmed/22331854
http://dx.doi.org/10.1109/34.784291
http://www.parrot.com/product/parrot-bebop-2/
http://dx.doi.org/10.1007/s11263-015-0816-y
https://www.optitrack.com/

Sensors 2019, 19, 1479 20 of 20

60. Bar-Shalom, Y.; Kirubarajan, T.; Li, X.R. Estimation with Applications to Tracking and Navigation: Theory,
Algorithms, and Software; John Wiley & Sons: Hoboken, NJ, USA, 2001.

61. Kluge, S.; Reif, K.; Brokate, M. Stochastic Stability of the Extended Kalman Filter With Intermittent
Observations. IEEE Trans. Autom. Control 2010, 55, 514–518. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TAC.2009.2037467
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	6D Drone Pose Estimation
	Relational Keypoints
	Detection Framework
	PnP Pose Estimation

	Experiments
	Implementation Details
	Keypoints Detection on Simulation Dataset
	Keypoints Detection on Parrot Dataset
	Experiments on State Estimation

	Conclusions
	References

