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Abstract: The Nyquist folding receiver (NYFR) can achieve a high-probability interception of an
ultra-wideband (UWB) signal with fewer devices, while the output of the NYFR is converted into
a hybrid modulated signal of the local oscillator (LO) and the received signal, which requires the
matching parameter estimation methods. The linear frequency modulation (LFM) signal is a typical
low probability of intercept (LPI) radar signal. In this paper, an estimation method of both the Nyquist
Zone (NZ) index and the chirp rate for the LFM signal intercepted by NYFR was proposed. First,
according to the time-frequency characteristics of the LFM signal, the accurate NZ and the rough
chirp rate was estimated based on least squares (LS) and random sample consensus (RANSAC). Then,
the information of the LO was removed from the hybrid modulated signal by the known NZ, and
the precise chirp rate was obtained by using the fractional Fourier transform (FrFT). Moreover, a fast
search method of FrFT optimal order was presented, which could obviously reduce the computational
complexity. The simulation demonstrated that the proposed method could precisely estimate the
parameters of the hybrid modulated output signal of the NYFR.

Keywords: Nyquist folding receiver (NYFR); linear frequency modulated (LFM) signals; parameter
estimation; random sample consensus (RANSAC); fractional Fourier transform (FrFT)

1. Introduction

Radar designers try their best to spread the energy of radar signals to multidimensional domains,
including time, frequency, and space, making radar signals have a low probability of intercept
(LPI) [1,2]. The reconnaissance receiver, which is designed for the LPI radar signals, should have
a broad instantaneous monitoring bandwidth to keep a high probability of interception in the
frequency domain and be able to process the LPI radar signals with complex signal forms. However,
direct Nyquist rate sampling of the instantaneous broadband radio frequency (RF) environment is
difficult because analog-to-digital converter (ADC) technology is restricted in digital bandwidth
(i.e., sample rate) [3] and analog bandwidth (i.e., the ability to directly digitize high RF bands)
[4]. Moreover, even though one could sample a broadband RF environment at the very accurate
Nyquist rate, one would still have the problem of processing and distributing the resulting volume
of data. Consequently, researchers have studied many other sampling methods or devices, such as
modified Gegenbauer system [5,6], Xampling [7], and analog-to-information converters (AIC) [8–10].
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As an efficient AIC architecture, the Nyquist folding receiver (NYFR) folds the broadband RF input
signal prior to digitization by a low-speed ADC. The folding is achieved by under-sampling the
RF signal with a sequence of short pulses that have a phase modulated sampling period. The RF
under-sampling frequency modulation induces a Nyquist zone (NZ) dependent modulation on the
received signals that allows separation and recovery of the signal information from a sparse broadband
RF environment. Compared with the Gegenbauer system [5,6] and many other compress sensing (CS)
based architectures [10,11] that require full signal reconstruction, the NYFR basically preserves the
signal structure, and the information reconstruction can be relatively simple with conventional signal
analysis methods [12].

The linear frequency modulation (LFM) signal is a typical LPI radar signal, and it has been
widely used in synthetic aperture radar (SAR). LFM signal has the advantages of good concealment,
wide bandwidth, low peak power, and strong anti-interference. Detection and parameter estimation
of the LFM signal has been a typical issue in the radar field [13]. In the literature, there are many
studies focused on the LFM signal intercepted by the conventional receiver, such as fractional Fourier
transform (FrFT) [14], Radon-ambiguity transform [15], and combined Wigner–Hough transform
[16,17]. Nevertheless, there are fewer methods on the NYFR, and most research on the NYFR is based
on CS methods [18–20]. Since the NYFR output contains the added local oscillator (LO) modulation,
its signal processing is more complex compared to conventional receivers.

In Reference [21], a parameter estimation algorithm based on peak search in frequency spectrum
of the output signal is proposed. The parameter estimation accuracy is close to the maximum likelihood
when the signal-to-noise ratio (SNR) is above −3 dB. However, the algorithm is more applicable to
narrowband signals, and the performance will deteriorate along with the increase of signal bandwidth.
In Reference [22], a new synchronous Nyquist folding receiver (SNYFR) structure based on composite
sinusoidal frequency modulation (SFM) LO is proposed, and a parameter estimation algorithm based
on instantaneous autocorrelation is presented. Effective detection of multi-component LFM signals
and accurate parameters estimation are achieved when the SNR is larger than −8 dB. However, since
the instantaneous autocorrelation specifies the instantaneous autocorrelation interval, this method
is not suitable for short pulses which are less than a frequency modulation period of the LO. In
Reference [23], an autonomous information recovery algorithm for the NYFR to determine the correct
NZ of the intercepted signal is presented. A quadrature mirror filter bank (QMFB) is used to realize
wavelet decomposition, and the center layer is used for signal discrimination and the modulation slope
determination. By comparing the intercept modulation slope with the RF clock modulation slope, the
correct NZ can be determined. Specially for SNR > −7 dB and pulse width > 1500 ns, the correct NZ
can be determined with probability > 90%. However, when pulse width = 1000 ns, the probability of
correct NZ determination is only about 75%, even if SNR = 10 dB.

In this paper, a parameter estimation algorithm based on random sample consensus (RANSAC)
and FrFT is proposed for LFM signals intercepted by the NYFR. The paper is organized as follows:
The NYFR architecture and the LFM signal intercepted by the NYFR are investigated in Section 2.
The parameter estimation method for the NYFR is proposed in Section 3. The NZ estimation methods
based on least squares (LS) and RANSAC are described in Sections 3.1 and 3.2, respectively. The chirp
rate estimation method based on FrFT is introduced in Section 3.3. The fast search of FrFT optimal
order is presented in Section 3.4. The simulation results are given in Section 4. Section 5 summarizes
the contributions of our research.

2. LFM Signal Intercepted by NYFR

NYFR can achieve high-probability interception of a signal in the entire radar frequency band
with a single low-speed ADC, and broadband signal acquisition can be realized without frequency
sweeping in theory. Typical NYFR architecture is shown in Figure 1 [9]. Firstly, the input RF signal x(t)
is filtered by an ultra-wideband (UWB) preselection filter H(ω) to filter out the uninteresting signals.
Secondly, the filtered signal is mixed with a stream of time modulated short pulses p̃(t), which is
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controlled by zero-crossing rising (ZCR) voltage time tk of a RF sample clock sin(ωst + θ(t)). θ(t) is a
narrowband phase modulation signal. The RF sample rate is varied continuously between fs − ∆ f and
fs + ∆ f . Then, after the interpolation filter, θ(t) induces a corresponding modulation mθ(t) on signals
y(t) , where the modulation scale factor m is an integer that varies with the original NZ of x(t). For the
complex signal, the corresponding relationship between m (or NZ) and frequency is shown in Figure 2.
It can be seen that m is a frequency-dependent signature on each component of the original signal [9].
Thirdly, y(t) is sampled to get the discrete NYFR output y[n] by ADC with sampling rate equal to the
RF sample clock. Finally, y[n] is sent to digital signal processing (DSP) to get the parameters of x(t) by
corresponding information recovery methods.
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Figure 1. Nyquist folding receiver (NYFR) architecture.
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Figure 2. The relationship between m (or Nyquist Zone (NZ)) and frequency.

As can be seen from Figure 2, (− fs/2, fs/2) is the 0-th NZ, ( fs/2,3 fs/2) is the first NZ, (3 fs/2,5 fs/2)
is the second NZ, and so on. If the SFM is used as the LO modulation type, the short pulse sequences
p̃(t) can be given by [21]:

p̃(t) =
M−1

∑
m=0

exp
{

jm[2π fst + m f sin (2π fsint) + φLO]
}

, (1)

where m is the m-th NZ, M is the total NZs in monitoring, fs is the carrier frequency of LO,
m f sin (2π fsint) is the θ(t) in RF sample clock sin(ωst + θ(t)), m f is the modulation coefficient, fsin
is the modulation frequency of SFM signal, and φLO is the initial phase of LO. It can be seen from
Equation (1) that the instantaneous frequency of p̃(t) is a sequence of SFM signals located at the
center of their corresponding NZs. The value of NZ bandwidth is equal to fs when the input signal is
expressed in the form of complex number.

As shown in Figure 1, the UWB filter determines the monitoring bandwidth of the NYFR. For
simplicity, the output of the filter is denoted as xH(t). Then the output signal is mixed by the
non-uniform LO to realize the folding process and the non-uniform sampled signal can be expressed as:

xp(t) = xH(t) p̃(t), (2)

where xp(t) is the input of the interpolation filter. Next, we can obtain the analog signal y(t) in the
0-th NZ from the output of the interpolation filter F(ω), and its pass band is (− fs/2, fs/2). Finally,
the analog output of the NYFR y(t) is sampled through the ADC and the sampling rate satisfies the
Nyquist sampling theorem. The original information of x(t) can be recovered in terms of y[n] and the
NZ index.

If the input x(t) is an LFM signal, it can be normalized and formulated in Equivalent Complex
Baseband (ECB) as:

x(t) = exp {j[2π( f0 + 0.5kt)t + Φ0]}+ υ(t), (3)
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where f0 is the starting frequency, k is the chirp rate, Φ0 is the initial phase, and υ(t) is the additive
white Gaussian noise (AWGN) distributed in the monitoring frequency band. After mixing with the
non-uniform LO, low-pass filtering, and sampling, the discrete expression of NYFR output [21] can be
given by:

y[n] = exp
{

j2π( f0 −m fs)n + jπkn2 + jφ0 − jmm f sin[2π fsinn]− jmφLO

}
+ ζ[n], (4)

where m is the NZ index indicating the original carrier frequency of the input signal, and
m = round( f0 + kt)/ fs, round is a function that rounds the element to the nearest integer, n is a
shorthand for nTs, and Ts is the sampling interval, Ts = 1/ fs. The ζ[n] is the noise modulated by
the non-uniform LO in terms of the original NZ and its power spectrum is folded into the ECB, i.e.,
(− fs/2, fs/2). Figure 3 illustrates an example output from a prototype NYFR for the case of an LFM
input at a starting frequency of 7.65 GHz. By using the short-time Fourier transform (STFT) to obtain
the time-frequency diagram, we can see that the time-frequency spectrogram of the NYFR output
was an LFM/SFM hybrid modulated signal. In this paper, the mainly concerned two parameters to
estimate were chirp rate (or bandwidth) and NZ. In order to facilitate the description of the principle,
we assumed that the received signal just contained a single LFM and the signal frequency was in a
single NZ.

NYFR Spectrogram
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Figure 3. Time–frequency diagram of a linear frequency modulation (LFM) signal intercepted by
NYFR.

3. Parameter Estimation of LFM Signal Intercepted by NYFR

The time–frequency ridges of a signal contain crucial information about the signal characteristics.
Indeed, they mark the regions of the time–frequency plane where the signal concentrates most of
its energy [24]. Therefore, an intuitive way to estimate the signal parameters on the time-frequency
plane is to extract the time-frequency ridges which indicate the instantaneous frequency change of
the signal. In general, each signal corresponds to a prominent ridge, which can be extracted by
searching the local extreme points of the instantaneous frequency and then curve fitting. However, the
traditional algorithm needs to calculate the entire time–frequency plane, which requires a large amount
of computations. In order to reduce the computation complexity and achieve the real-time processing,
a specific time slice can be selected to estimate the parameters. As can be seen from Figure 3, the local
extreme points can be acquired at the peaks and valleys where the instantaneous frequency change rate
is 0, the signal is closest to stability, and the signal bandwidth is the narrowest, but the spectrogram
amplitude is higher.
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Assuming that the phase of the SFM LO can be accurately synchronized to the back-end DSP, these
extreme points and corresponding instantaneous frequency values are used to construct “characteristic
points”. Figure 4 illustrates that the upper and lower bounds of LFM/SFM hybrid modulated signal
can be obtained by linear fitting in the time–frequency plane. The slope of the boundary is the
estimation of the chirp rate k, the longitudinal interval of the upper and lower bounds corresponds to
the frequency modulation bandwidth of SFM LO, which is related to the original signal NZ and can be
used for NZ estimation.

As shown in Figure 4, the white boxes and cyan circles represent the “characteristic points”,
while the white and cyan lines are the upper and lower bounds of the time–frequency spectrogram
for the LFM/SFM hybrid modulated signal. It should be noted that the time–frequency diagram of
the LFM/SFM hybrid modulated signal is not the clockwise nor counterclockwise rotation of the
time–frequency diagram of the SFM signal, but it is like stretching a rectangle into a parallelogram.
Therefore, the frequency modulation bandwidth of the SFM signal is the longitudinal interval of
upper and lower boundaries instead of the vertical interval of two lines, which is indicated by the
white longitudinal line and white arrow in Figure 4. Then, we can get the chirp rate and the starting
frequency of the original LFM signal according to the slopes and intercepts of the two lines. The
longitudinal interval between the two lines is the SFM modulation bandwidth.

Upper and Lower bounds of the signal
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Figure 4. The upper and lower bounds of LFM/sinusoidal frequency modulation (SFM) hybrid
modulated signal.

3.1. NZ Index Estimation Method Based on LS

The most commonly used classical method for linear fitting is LS. Its basic principle is as follows:
Assuming that the relationship between xi and yi is determined by the linear equation y = ax + b,
where (xi, yi) is the coordinates of arbitrary point of a data set, the intercept b and the slope a
are estimated parameters. Then, the overall deviation can be expressed by the sum of squared
deviations, i.e., ∑N

i=1 [yi − (axi + b)]2. For LS, the best estimation is determined by calculating the
partial derivatives of ∑N

i=1 [yi − (axi + b)]2 with respect to a and b and setting them to zeros:

∂

∂a

N

∑
i=1

[yi − (axi + b)]2 = −2
N

∑
i=1

(yi − âxi − b̂) = 0, (5)

∂

∂b

N

∑
i=1

[yi − (axi + b)]2 = −2
N

∑
i=1

(yi − âxi − b̂) = 0, (6)
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where â and b̂ are the estimated slope and intercept, respectively. Then the slope â can be calculated as:

â =
∑ x2

i ∑ yi −∑ xi ∑ xiyi

N ∑ x2
i − (∑ xi)2

. (7)

And the intercept b̂ can be written as:

b̂ =
N ∑ xiyi −∑ xi ∑ yi

N ∑ x2
i − (∑ xi)2

. (8)

The LS method is simple and a good parameter estimation can be obtained in most cases. However,
when the SNR is lower, the individual instantaneous frequency point extracted by the maximum value
in the time–frequency spectrum may deviate from the true position, and the fitting criterion of LS will
cause the obtained line to seriously deviate from the true frequency-modulated line, which is depicted
in Figure 5.

It can be seen that only one cyan point on the lower left of the time-frequency plane deviated from
the true position. However, the deviation of the fitted straight line is severe, making LS fail to achieve
a good estimation. Therefore, an iterative method based on RANSAC was proposed to improve the
linear fitting effect of time-frequency characteristic points under low SNR.

Figure 5. The obtained upper and lower bounds of LFM/SFM hybrid modulated signal by least
squares (LS) when signal-to-noise ratio (SNR) = −5 dB.

3.2. NZ Index Estimation Method Based on Random Sample Consensus (RANSAC)

A basic assumption of the RANSAC [25] algorithm is that the data is consisted of “inliers”,
i.e., data whose distribution can be explained by a set of fitting model parameters, though may be
subject to noise, and “outliers” that do not fit the model. The set of inliers obtained for the fitting
model is called consensus set. The idea of RANSAC is to estimate parameters of the fitting model
by randomly selecting a subset of the data set. All the other data are then tested against the fitted
model. The estimated model is reasonably good if a sufficient number of inliers have been found. The
RANSAC algorithm iteratively repeats the above steps until the obtained consensus set in a certain
iteration has enough inliers [26]. RANSAC works better than LS method because RANSAC only needs
to select a set of inliers to get a good model, instead of selecting all the data points. Nevertheless, the
LS can be used for line fitting after the inliers are selected.

RANSAC is accomplished with the following steps:
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(1) Select a subset of the data set randomly and ensure that the size of the random samples is
sufficient for determining the model parameters.

(2) Fit a model to the selected subset and then use the model to test all the other data points. If the
error of a certain point is within the pre-set threshold, it is judged as an inlier; otherwise, it is an
outlier. Only the model with the largest number of inliers is the best model.

(3) Repeat steps (1) and (2) for a prescribed number of iterations, the inliers corresponding to the
optimal model are used to estimate the model parameters.

As for the time-frequency boundary line fitting of LFM/SFM hybrid modulated signal in this
paper, since a straight line has been chosen as the fitting model, the fitting process of the upper
boundary is as follows:

(1) The model is a linear equation because the boundary of the LFM/SFM hybrid modulated
signal in the time–frequency plane is a line. Two sample points are randomly selected from the
time–frequency “characteristic points” of the upper boundary estimated above, and a line can be
determined by LS.

(2) Calculate the deviation of the remaining points from the line, i.e., the vertical distance to the line.
The inliers are approximately passed by the line, whereas the outliers are far away from the line.
Assuming the tolerance range is σ, find the inliers within the tolerance and count the number.

(3) Select two points randomly again and repeat steps (1) and (2). If more than 60% “characteristic
points” are inliers or reaching the prescribed number of iterations, the iteration ends.

(4) Find out the iteration with the maximum number of inliers in the tolerance, and then fit all the
inliers again by LS to get the straight line as the final result.

The fitting process of the lower boundary is similar. Figure 6 shows the result of the RANSAC
algorithm applied on the signal in Figure 5. Clearly, the RANSAC algorithm successfully avoids
adapting to the outliers and only uses the inliers to estimate the model. In this way, it can avoid the
contamination of outliers caused by noise near Time = 0.1 µs simply and effectively. The obtained
linear boundary is very consistent with the real position.

Figure 6. The obtained upper and lower bounds of LFM/SFM hybrid modulated signal by random
sample consensus (RANSAC) when SNR = −5 dB.

To further improve the estimation accuracy, the center line of the upper and lower bounds is
obtained by removing the SFM signal. Then, only the time–frequency representation of the LFM signal
is preserved. The slope and intercept of the line are the chirp rate k and the starting frequency f0 of the
original LFM signal, respectively. The estimated time–frequency spectrogram is shown in Figure 7,
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where the red line is the time–frequency representation of the LFM signal obtained by the average of
the other two lines (the white and cyan lines).

Figure 7. The obtained LFM time–frequency representation through upper and lower bounds when
SNR = −5 dB.

The longitudinal distance ∆ f between the upper and lower bounds is the estimated bandwidth
2mm f fsin of the SFM signal. In order to reduce the influence of linear fitting error, the longitudinal
distance in the middle of the time–frequency plane can be used as ∆ f . Under the influence of noise
inside the plane, the estimated m̂ = ∆ f /(2m f fsin) is not an integer, but it is always smaller than the
real value m and greater than m− 1. So, we take the ceiling of m̂ as an estimation of m. The starting
frequency of the LFM signal is 7.65 GHz, which is in the 4-th NZ, and it is folded to −0.35 GHz after
NYFR and the chirp rate is 6× 1014 Hz/s. It can be seen from the figure that the intercept of the
red line is −0.35037 GHz, and the estimated chirp rate is 5.9897× 1014 Hz/s, which are both very
close to the true value. The measured ∆ f is 0.18845 GHz, m f = 2.5, fsin = 10 MHz, and the obtained
m̂ = ∆ f /(2m f msin) = 3.7691. The ceiling of m̂ is 4, representing the original signal in the 4-th NZ,
which is exactly the same as the actual situation.

3.3. Chirp Rate Estimation Method Based on FrFT

RANSAC can precisely estimate the NZ of the original signal, but the estimation accuracy of the
chirp rate is a little poor. Herein, an LFM signal was obtained by removing the NZ dependent SFM in
Equation (4) after correctly estimating the NZ index; then the chirp rate was estimated by the FrFT
method [14]. Assume that the phase of the SFM LO could be accurately synchronized to the back-end,
and then the LFM signal could be formulated as:

y[n] = exp
{

j2π( f0 −m fs)n + jπkn2 + jφ0

}
+ ζ[n]. (9)

FrFT is a kind of generalized Fourier transform, which can be interpreted as a counterclockwise
rotation of the signal at any angle around the origin in the time–frequency plane. It can also be
considered as the Fourier transform to the n-th power, where n can be a decimal. Thus, it can transform
a signal to any intermediate domain between time and frequency. The schematic of FrFT principle is
shown in Figure 8 [27].
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Figure 8. The schematic of the fractional Fourier transform (FrFT) principle.

As shown in Figure 8, for an LFM signal, if its chirp rate k satisfies k = − cot α, that is, when the
rotation angle matches the signal chirp rate, the projection of the signal time–frequency distribution on
the u axis will be a spike [28]. The simulation results in Figure 9 also illustrates this fact.
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Figure 9. FrFT output with different FrFT orders when SNR = −5 dB.

Recently, researchers have conducted extensive study on FrFT fast digital computation and
proposed many fast implementation algorithms. The most representative one is the decomposition
fast algorithm proposed in [29], where the definition of FrFT is rewritten as:

Xp(u) = Au

∫ ∞

−∞
[x(t) exp(jt2 cot(α/2))] exp(−jut csc α)dt, α 6= nπ, (10)

where p is the FrFT order, Au =
√

1−j cot α
2π exp(ju2 cot α/2) and α = pπ/2.

As can be seen in Figure 9, the abscissa of the peak is 1.1856, that was, p = 1.1856. According to
k = − cot α and α = pπ/2, k = 0.3001 could be obtained. Because of scale transformation, inverse
scaling is required to calculate the correct results after FrFT. In the simulation, fs = 2 GHz, T = 1 µs,
so the estimated k = 0.3001 fs/T = 6.002 × 1014 Hz/s. The estimated chirp rate by RANSAC is
5.9897× 1014 Hz/s and the true value is 6× 1014 Hz/s, so we could conclude that FrFT worked better
than RANSAC in estimating chirp rate.
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The parameter estimation method based on RANSAC and FrFT was also proven to be suitable
for the NYFR with a periodic LFM LO. The intercepted LFM signal can be processed similar to the
above processing, and Figure 10 illustrates the time–frequency curve of an LFM signal intercepted by
the NYFR with a periodic LFM LO and the fitting effect based on RANSAC when SNR = −5 dB. The
rough chirp rate and starting frequency can be seen from the red line. And the more precise chirp rate
is estimated by FrFT after the NZ is estimated. And the FrFT output is shown in Figure 11. The chirp
rate corresponding to the peak can be calculated following by above processing.

Figure 10. Fitting effect of random sample consensus (RANSAC) when the local oscillator (LO) is
LFM.
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Figure 11. FrFT output with different FrFT orders when the LO is LFM.

3.4. Fast Search Method of FrFT Optimal Order

The premise to accurately estimate the chirp rate of LFM signal is to obtain the optimal
transformation order p. The basic idea of conventional FrFT-based LFM signal parameter estimation
is to scan the rotation angle α with equal interval. Then the FrFT of the signal is calculated with
different rotation angles to form a two-dimension distribution of the signal energy on the parameter
plane. In the plane, the two-dimension search of peak points is carried out according to the threshold
to estimate the LFM parameters. This method requires a lot of calculations, but the accuracy of the
parameter estimation is not so good.
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In order to balance the estimation accuracy and computational complexity, a fast search method
based on RANSAC and stepwise refinement was proposed, which did not need planar search,
considerably reducing the computation cost at the same precision.

The specified steps are as follows:

(1) Set i = 0, which is the approximation order and set the offset ∆p0, then get the rough chirp rate
through RANSAC and calculate the corresponding FrFT order p which is denoted as p0.

(2) i = i + 1 and ∆pi = ∆pi−1/10i, search the peak between (pi−1 − ∆pi−1) and (pi−1 + ∆pi−1) with
the step ∆pi and denote the p of the peak as pi.

(3) Define the precision of pi : D = |pi − pi−1|. If D ≤ e, e is the predefined threshold, pi is the
optimal FrFT order; otherwise, go back to step (2) and continue.

For a more intuitive understanding of the computational efficiency of the fast search algorithm, we
estimated the optimal order of FrFT following the above steps using a computer with an i7 Dual-Core
CPU of 3.3 GHz. The approximation order i, estimation accuracy, and processing time are shown in
Table 1.

Table 1. The approximation order, estimation accuracy, and time cost.

Approximation Order Estimated Chirp Rate Estimation Error Processed Time

First order 5.98987× 1014 Hz/s 1.013× 1012 Hz/s 0.4216 s
Second order 6.002× 1014 Hz/s 2× 1011 Hz/s 4.068 s

In the above process of chirp rate estimation, the estimated chirp rate based on RANSAC
was 5.9897× 1014 Hz/s, and then the corresponding p0 = 1.1852. It should be noted that the 0-th
approximation order, i.e., the rough chirp rate was estimated by the RANSAC algorithm. Moreover, it
can be seen from the table that the accuracy of parameter estimation was exponential growth with the
increase of approximation orders, whereas the processing time was only linear growth. Generally, the
required accuracy could be obtained at the 2nd or 3rd order.

Since the algorithm is based on peak search, the parameter estimation was not sensitive to
noise when the SNR is higher. However, when the SNR was less than a certain value, the peak was
submerged in the noise and the method failed. According to the simulation results, the minimum SNR
applicable to this method was about −9 dB.

4. Simulations and Discussion

To evaluate the performance of parameter estimation based on RANSAC and FrFT, we conducted
Monte Carlo simulations 200 times with each SNR and calculated the probability of correct
determination (PCD) for NZ and the normalized root mean square error (NRMSE) of chirp rate.
The simulation parameters are listed in Table 2. We compared the proposed method with the spectrum
peak search method [21], the autocorrelation method [22] and the QMFB method [23] described in
Section 1. The probability of a correct NZ determination is shown in Figure 12, and the NRMSE of the
chirp rate is illustrated in Figure 13.
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Table 2. The simulation settings.

Name Variable Value

Monitoring frequency band f 1–21 GHz
Amount of NZ M 10

Average sampling rate fs 2 GHz
LO modulation coefficient m f 2.5

Sinusoidal modulation frequency fsin 10 MHz
Signal length T 1 µs

Simulation points N 2000 points
Signal amplitude A 1

Chirp rate m 600 MHz/µs
Start frequency f0 7.65 GHz

Initial phase of LO φLOS 0
Initial phase of LFM φ0 0

NZ index m 4
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Figure 12. Probabilities of correct NZ determination obtained by considered methods with different
SNRs.
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Figure 13. Normalized root mean square error (NRMSE) of chirp rate estimation.

Note that in Figure 12, the curve of RANSAC and FrFT is just contributed by RANSAC, i.e.,
FrFT was only used to estimate the chirp rate after the NZ was correctly estimated. The two curves
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(RANSAC, RANSAC and FrFT) represent two methods of chirp rate estimation in Figure 13. The
difference is that the chirp rate was completely obtained by line fitting through RANSAC in the former,
whereas the NZ was estimated by RANSAC first in the latter, followed by the obtainment of chirp rate
using FrFT.

It is clear from the figures that the method based on RANSAC and FrFT outperformed the other
methods, and the estimation performance of the chirp rate was outstanding and stable when SNR
≥ −8 dB. The correct ratio of NZ index estimation was greater than 90% when SNR ≥ −9 dB and
reached 100% when SNR ≥ −7 dB. This resulted from the fact that the method took full advantages of
RANSAC and FrFT, i.e., RANSAC could accurately determine the NZ where the signal was located,
and FrFT could precisely estimate the chirp rate of the signal.

In contrast, we can see that RANSAC method alone and instantaneous autocorrelation method
have a similar performance in NZ determination, whereas the performance of instantaneous
autocorrelation is slightly better than that of RANSAC in NRMSE of chirp rate. The main reason is
that the RANSAC method fails to use the information of all sampling points. Moreover, the frequency
resolution of RANSAC is limited by the length of the STFT window, which affects the accuracy of
the instantaneous frequency of the signal. However, the autocorrelation method requires specific
autocorrelation interval, which is not applicable to the signal less than an LO frequency modulation
period. That is, the autocorrelation is interval-dependent, but the method of RANSAC is not.

The spectrum peak search method has a requirement for high SNR, and NZ can be correctly
estimated only when SNR > 1 dB. The reason is that the spectral peak search method is applicable
to narrowband signals, such as a single carrier signal intercepted by NYFR. Since the frequency
aggregation of wideband modulated signals is not as good as the single carrier frequency signal,
the spectrum peak may not be the highest after the SFM is completely removed from the hybrid
modulated signal. This implies that the spectrum peak search method is not very suitable for analysis
of a broadband signal intercepted by NYFR. It should be noted that the estimation of k can achieve
higher accuracy when SNR ≥ 1 dB, and this is because FrFT is used to estimate the chirp rate after
correct estimation of NZ.

In the QMFB method, only the center layer is used for signal discrimination and the chirp rate
determination. Since it does not make full use of all the sampling data, its performance is as expected.
It can be seen from Figure 12, for pulse width 1000 ns, the PCD is only about 75%, even if SNR reaches
10 dB.

5. Conclusions

The NYFR is an undersampling receiver that can intercept signals in the entire frequency band
with a single ADC and without frequency sweeping in theory. In this paper, an intuitive and simple
parameter estimation method based on RANSAC and FrFT for NYFR was proposed. First, we used
STFT to obtain the time–frequency spectrogram of the SFM/LFM hybrid modulated signal. Then we
had to get the NZ where the signal was located with LS and RANSAC. Finally, the chirp rate of LFM
signal was obtained through FrFT. The simulation results showed the validity and reliability of the
proposed method. For ease of deduction, we assumed that the received signal just contained a single
LFM signal, and the frequency range of the LFM signal did not cross the NZ junctions. Therefore, the
processing of multiple signals in NYFR should be studied further.
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