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Abstract: The Adaptive Boosting (AdaBoost) algorithm is a widely used ensemble learning framework,
and it can get good classification results on general datasets. However, it is challenging to apply the
AdaBoost algorithm directly to imbalanced data since it is designed mainly for processing misclassified
samples rather than samples of minority classes. To better process imbalanced data, this paper introduces
the indicator Area Under Curve (AUC) which can reflect the comprehensive performance of the model,
and proposes an improved AdaBoost algorithm based on AUC (AdaBoost-A) which improves the
error calculation performance of the AdaBoost algorithm by comprehensively considering the effects of
misclassification probability and AUC. To prevent redundant or useless weak classifiers the traditional
AdaBoost algorithm generated from consuming too much system resources, this paper proposes
an ensemble algorithm, PSOPD-AdaBoost-A, which can re-initialize parameters to avoid falling into
local optimum, and optimize the coefficients of AdaBoost weak classifiers. Experiment results show that
the proposed algorithm is effective for processing imbalanced data, especially the data with relatively
high imbalances.

Keywords: Adaptive Boosting; imbalanced data; Area Under Curve; Particle Swarm Optimization

1. Introduction

Since imbalanced data can be found in any area, effective classification of imbalanced data has
become critical for many applications. The classification results of imbalanced data generated by
existing classification algorithms are usually significantly affected by the majority class, resulting in
low accuracy in classification of the minority class. For example, the sensor network can accurately
achieve target recognition under the assumption of data distribution equilibrium. However, in practical
applications, the filed environment is complex and variable, and the difficulty of obtaining samples is
different, which results in imbalanced data. It is easy to ignore samples of minority class in this case,
resulting in incorrect classification. In the intrusion alarm application, misclassification of samples of
minority class means false alarm of system, which will cause very serious consequences.

Existing approaches processing imbalanced data can be generally divided into two categories [1,2].
The first category is based on resampling at the data level, which either (i) increases the number of
samples using upsampling by synthesizing new data or copying the original data, or (ii) reduces the
number of samples using subsampling by extracting a small amount of data. Although resampling
can improve the accuracy of minority class classification, there are some challenges. It is impossible to
properly interpret the synthetic new data generated by upsampling. In addition, important information
may be lost during the subsampling process. The second category is based on the ensemble and
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cost-sensitive approaches at the algorithm level [3,4], which increases the weights of the misclassified
samples, thus improving the classification performance. The ensemble approaches that currently
widely used are typically based on Boosting [5–8] or Bagging [9–11]. AdaBoost is a boosting algorithm
and is widely used to process imbalanced data. It uses a single-layer decision tree as a weak classifier.
In each training iteration, the weight of the misclassified samples generated by the previous iteration is
increased, and the weight of the correctly classified samples is reduced, improving the significance of
the misclassified samples in the next iteration. Although the AdaBoost algorithm can be directly used
to process imbalanced data, the algorithm focuses more on the misclassified samples than samples of
minority class. In addition, it may generate many redundant or useless weak classifiers, increasing the
processing overhead and causing performance reduction.

Many approaches have been proposed to improve the performance of AdaBoost. Li et al. [12] proposed
the BPSO-AdaBoost-KNN algorithm for multiclass imbalanced data classification, and this algorithm
improves the stability of AdaBoost by effectively extracting key features. Cao et al. [13] used the gradient
descent algorithm to optimize the new loss function based on the Boosting framework, and proposed the
AsB and AsBL algorithms, which further verified that this approach can generate cost-sensitive classifiers
with lower error cost. Yang et al. [14] used mathematical analysis and graphical methods to clarify the
working principle of multiclass AdaBoost, and proposed a novel approach for processing multiclass data.
This algorithm not only reduces the requirements of weak classifiers, but also ensures the effectiveness of the
classification. Li et al. [15] proposed the AdaBoost composite kernel extreme learning machine, by combining
the composite kernel method and the AdaBoost framework with the weighted ELM. The proposed algorithm
improves performance in hyperspectral image classification. Dou et al. [16] proposed an improved AdaBoost
algorithm that assigns a weight to each individual class and uses weight vectors to represent the recognition
power of the base classifiers. This algorithm significantly avoids overfitting and improves classification
accuracy. Xie et al. [17] proposed an ensemble evolve algorithm for imbalanced data classification by
introducing the genetic algorithm to the AdaBoost algorithm. Better classifiers are generated using gene
evolution and improved fitness functions, and imbalanced data classification is optimized during evolution.
Guo et al. [18] treated samples of majority class that exceeded the threshold during the iteration as noise,
and proposed four algorithms (i.e., A-AdaBoost, B-AdaBoost, C-AdaBoost and D-AdaBoost) based on
limiting threshold growth and modifying class labels. Results show that these algorithms can effectively
process imbalanced data.

In this paper, we propose AdaBoost-A, an improved AdaBoost algorithm based on AUC.
The AdaBoost-A redefines the error calculation formula by introducing the AUC index into the error
calculation of the weak classifier. The AUC can evaluate the performance of a classifier, and reflect the
effects of imbalanced data on the classifier. As a result, the proposed AdaBoost algorithm can focus
more on samples of minority class. In addition, the AdaBoost-A algorithm generates a set of weak
classifiers to build a strong classifier, and the improved particle swarm optimization algorithm based
on population diversity is used to further optimize the weight of the classifiers, thus decreasing the
weight of redundant and useless classifiers and avoiding waste of system resources and time overhead.

The remainder of this paper is organized as follows. In Section 2, we introduce the basic principles
and implementation steps of AdaBoost and Particle Swarm Optimization (PSO) algorithms. In Section 3,
we illustrate the improved AdaBoost-A algorithm and ensemble algorithm PSOPD-AdaBoost-A. In Section 4,
the effectiveness of PSOPD-AdaBoost-A is proved by comparison experiments with traditional AdaBoost
algorithm and various improved algorithms. The conclusions are drawn in Section 5.

2. Background

2.1. Adaptive Boosting (AdaBoost)

AdaBoost (Adaptive Boosting) is an adaptive enhancement technique. It is a typical ensemble
algorithm which improves classification performance by combining multiple weak classifiers into
one strong classifier. In the beginning, all the samples are assigned the same weight. During the
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iteration, the weights of samples vary with the coefficients of weak classifiers, and the coefficients
of the classifiers are calculated by the error. As a result, the AdaBoost algorithm can increase the
weight of the misclassified samples and decrease the weight of the correctly classified samples. In the
next iteration, the classifier will focus the misclassified samples more. Finally, all the generated weak
classifiers are merged using linear combination to form a strong classifier. The steps of the AdaBoost
algorithm [19] are as follows:

Input:
Training data set T = {(x1, y1), (x2, y2), · · · , (xN , yN)}, where xi ∈ Rn, y ∈ Y = {−1,+1},

and a weak learning algorithm.
Output:
Final classifier G(x).

1. Initialize the weight distribution of the training samples following Equation (1).

D1 = (w11, · · · , w1i, · · · , w1N), w1i =
1
N

, i = 1, 2, · · · , N (1)

where N represents the number of samples.
2. For m = 1, 2, · · · , M, where M represents the number of weak classifiers.

a. Following Equation (2), get the weak classifier based on weight distribution Dm.

Gm(x) = {−1,+1} (2)

b. Calculate the classification error rate of Gm(x) on the training data set following Equation (3).

em = P(Gm(x) 6= yi) =
N

∑
i=1

wmi I(Gm(x) 6= yi) (3)

c. Calculate the coefficient of Gm(x) following Equation (4).

αm =
1
2

log
1− em

em
(4)

d. Update the weight distribution of the training samples following Equations (5)–(7).

Dm+1 = (wm+1,1, · · · , wm+1,i, · · · , wm+1,N) (5)

wm+1,i =
wmi
Zm

exp(−αmyiGm(xi)) (6)

where Zm is the normalization factor.

Zm =
N

∑
i=1

wmi exp(−αmyiGm(xi)) (7)

3. Build a linear combination of basic classifiers and get the final classifier G(x) following
Equations (8) and (9).

f(x) =
M

∑
m=1

αmGm(x) (8)

G(x) = sign(f(x)) = sign(
M

∑
m=1

αmGm(x)) (9)
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The advantages of the AdaBoost algorithm are summarized as follows. (1) The AdaBoost algorithm
can use various weak classifiers without filtering features. In addition, it delivers high execution efficiency,
and can avoid overfitting issues. (2) The AdaBoost algorithm trains the weak classifiers without knowing
the prior knowledge. The synthetic strong classifier can significantly improve the classification accuracy,
and it is suitable for classification of most types of data. (3) The training of rough weak classifiers is much
easier than training of the accurate strong classifiers. It trains multiple weak classifiers to form a strong
classifier with better classification performance.

2.2. PSO

PSO was proposed by James Kenney and Russ Eberhart in 1995 [20]. The algorithm is derived
from the study of predation behavior of birds, and it is a method based on iteration. Imagine a scene
where there is a piece of food in a certain area and a group of randomly distributed birds are searching
for the food. They obtain their distances from the food, but do not get the specific location of the food.
The best way to solve this problem is to change the flight path based on the current location of the bird
closest to the food and flight experience of each bird, to locate the food.

The PSO algorithm considers each solution as a bird, called a particle. Each particle has an adaptive
value that represents the current state of its own solution. In each iteration, each particle adjusts its
moving direction and velocity based on the global optimal solution and the optimal solution found by
the particle itself, and gradually approaches the optimal particle.

The basic principle of the standard particle swarm algorithm is as follows [21].
Suppose that there are m particles searching for the optimal solution in an N-dimensional target

space and randomly initialize the position and velocity of each particle following Equations (10)–(12).
Where the vector Ui represents the position of particle i, and the vector Vi represents the flight speed
of particle i.

Ui = (ui1, ui2, . . . , uiN) (10)

Vi = (vi1, vi2, . . . , viN) (11)

i = 1, 2, . . . , m (12)

As Equation (13) shows, the current best position Pi found by particle i is:

Pi = (pi1, pi2, . . . , piN) (13)

As Equation (14) shows, the current best location Pgbest found by all particles is:

Pgbest =
(

pg1, pg2, . . . , pgN
)

(14)

The position and velocity of particle i is then updated following Equations (15) and (16).

vk+1
in = ωvk

in + c1·rand()·
(

pin − uk
in

)
+ c2·rand()·

(
pgn − uk

in

)
(15)

uk+1
in = uk

in + vk+1
in (16)

where ω is the inertia weight, c1, c2, two positive constant, are the acceleration factors, vk+1
in represents

the nth-dimensional velocity component generated by the (k+1)th iteration of the ith particle, and uk+1
in

represents the nth-dimensional position component generated by the (k+1)th iteration of the ith particle.
The position and velocity update formula is divided into three parts. The first part is the inertia part,
which indicates the particle’s degree of trust in its own speed. The second part is the self-cognitive
part, which indicates the particle’s degree of trust in its own experience. The third part is the social
cognitive part, which indicates the degree of trust in the best adaptive particle [22].

Characteristics of PSO algorithm can be summarized as [23]:
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1. It is possible to quickly approximate the optimal solution and achieve effective optimization
of parameters.

2. It is suitable for searching within the scope of continuity and solving the maximum and minimum
problems of continuous functions.

3. It is easy to implement with low complexity and requires a small number of parameters.
4. It is easy to fall into local optimum.

3. The Proposed Approach

3.1. Area Under Curve (AUC)

Confusion matrix is the common method to reflect performance of classification model.
Taking a two-class model as an example, the confusion matrix of this model is calculated as shown
in Table 1.

Table 1. Confusion matrix.

Predicted Class

Positive Negative

Actual class
Positive TP FN

Negative FP TN

Based on the confusion matrix, the Accuracy, Precision, Recall and F1-Measure are defined
as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(17)

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

F1 =
2× Precision× Recall

Precision + Recall
=

2TP
2TP + FP + FN

(20)

where TP is the number of true positives, which represents cases that the positive class are correctly
classified. Where FN is the number of false negatives, which represents cases that the positive class
are classified as negative. Where TN is the number of true negatives, which represents cases that the
negative class are correctly classified. Where FP is the number of false positives, which represents
cases that negative class are classified as positive.

The TP, FP, TN, and FN measures can be collected to construct a plot, which is a Receiver Operating
Characteristic (ROC) curve, which the true positive rate (TPR) as the ordinate and the false positive
rate (FPR) as the abscissa. The calculation formula TPR and FPR are shown in Equation (21).

TPR =
TP

TP + FN
, FPR =

FP
TN + FP

(21)

The value of AUC is the area under the ROC curve. Suppose 1− s and r are the probabilities of FP
and TP, respectively. The AUC is estimated by Equation (22), where ∆(1− s) = (1− s)γ − (1− s)γ−1,
∆r = rγ − rγ−1 and γ is an index.

AUC = ∑
γ

{[rγ·∆(1− s)] +
1
2
[∆r·∆(1− s)]} (22)

AUC is a comprehensive evaluation of classification models, which can provide more useful
information than accuracy measurement.
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3.2. The AdaBoost-A Algorithm

Although the AdaBoost algorithm can be directly applied to imbalanced data, the ensemble
algorithm pays more attention to the misclassified samples, rather than samples of minority class.
According to the error calculation formula of the weak classifier of AdaBoost, the error is only related
to the weight and the number of misclassified samples. There is no additional processing for the
misclassified samples of minority class, so the AdaBoost ensemble algorithm is not well suited for
processing imbalanced data [24]. To solve this challenge, we propose an improved AdaBoost algorithm
(AdaBoost-A) that introduces the AUC [25] into the error function calculation. At the algorithm level,
the error rate metric cannot properly reflect the performance of the classifier. For example, there are
90 samples in class A and 10 samples in class B. If classifier divides all test samples into class A, the error
rate of classifier is 10%. However, it is clear that this classifier makes no sense. As the area under the
ROC curve, AUC can effectively reflect the comprehensive performance of the classifier. If the classifier
is biased towards majority class classification, the AUC of the classifier will be very small, and 1-AUC
will be very large. The error is determined by combining the product of classification error rate and
1-AUC, which can effectively improve the classification accuracy of AdaBoost. The improved error
calculation is shown in Equation (23).

em = 2(1−AUC)·P(Gm(x) 6= yi) = 2(1−AUC)·
N

∑
i=1

wmi I(Gm(x) 6= yi) (23)

where em represents error rate of the mth weak classifer, Gm(x) is the mth weak classifer, yi represents
the actual label of the ith sample, wmi represents the weight corresponding to the ith sample in the
mth iteration.

3.3. The PSOPD-AdaBoost-A Ensemble Algorithm

Although the AdaBoost algorithm can combine multiple weak classifiers into one strong classifier,
the coefficients of the weak classifiers are determined in the iteration process. These coefficients cannot
be changed later, so it is inevitable to generate redundant or useless weak classifiers that have large
weights. This can significantly affect the readability of the classifiers and increase system overhead.
To overcome these shortcomings, our approach uses the PSO algorithm to optimize the weights of
the weak classifiers of AdaBoost-A. This algorithm assigns large weights to the weak classifiers with
high accuracy, and small weights to the redundant or useless weak classifiers, further improving the
accuracy and readability of AdaBoost classifier.

PSO is an optimization algorithm with a small number of parameters and fast convergence,
but it is easy to fall into local optimum [26]. Therefore, this paper proposes an ensemble algorithm
by improved PSO based on population diversity optimizing AdaBoost-A (PSOPD-AdaBoost-A).
It can further optimize the coefficient weights of the weak classifiers of AdaBoost-A by performing
re-initialization when it falls into in local optimum. The proposed improvements focus on using the
error function of AdaBoost-A as the fitness function, and adopting the standard PSO algorithm to
optimize the weights of the weak classifiers of AdaBoost-A. If the optimal particle does not change
for ten consecutive iterations, the optimal particle is retained, and the position and velocity of other
particles are reinitialized. The iteration is continued until the configured number of iterations is
reached. The optimal particle does not change in multiple iterations, and it is likely to fall into local
optimum. By re-initialization, the search range of the particle is enlarged, and the population diversity
is enhanced. At the same time, the optimal particle is retained during re-initialization to avoid loss of
the optimal solution of the population.

The PSOPD-AdaBoost-A ensemble algorithm is described as follows:
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1. Use the AdaBoost-A algorithm to generate several (M) weak classifiers, and the coefficients of
the weak classifiers are expressed following Equation (24).

A = (a1, a2, . . . , aM)k = 1, 2, . . . , M (24)

where ak represents the weight coefficient of the kth weak classifier.
2. Set the population size to m and randomly initialize the position and velocity of each particle

following Equations (25)–(27).
Ui = (ui1, ui2, . . . , uiM) (25)

Vi = (vi1, vi2, . . . , viM) (26)

i = 1, 2, . . . , m (27)

3. Use the position component of each particle as the weight coefficient of the weak classifier of
AdaBoost-A. As Equation (28) shows, the error rate ei of AdaBoost-A is calculated as the fitness
value of each particle.

ei = 2(1−AUC) ∗
Q

∑
s=1

I(sign(
M

∑
k=1

uikGk(x)) 6= ys) (28)

where Q represents the number of samples, ei represents the error rate of the ith particle, and ys

represents the true class label of the sth sample.
4. For each particle, the fitness value generated by each iteration is compared with the fitness value

of the optimal position passed by the particle. If the fitness value is greater than the fitness value
of the optimal position, the current position is taken as the optimal location passed by the particle,
recorded as Pi.

5. For each particle, the fitness value generated by each iteration is compared with the fitness value
of the optimal position passed by all particles. If the fitness value is greater than the fitness value
of the optimal position of all particles, the current position is taken as the global optimal location,
recorded as Pgbest.

6. Update the position and velocity of the particle in the following iteration based on the Equations
(15) and (16).

7. When the maximum number of iterations is reached or the error is small enough, the iteration
stops. Otherwise, check the number of consecutive times that the optimal particle remains
unchanged. If it reaches the threshold (10 is used in our configuration), the optimal particle is
retained, and the position and velocity of other particles are reinitialized. If it is less the threshold,
no action is performed. Then continue to execute steps 4–6.

4. Evaluation

4.1. Test Data

We evaluate the proposed algorithm using the Vehicle, Horse Colic, Ionosphere and Statlog
imbalanced datasets from UCI repository and KC1, JM1, PC3, PC5, CM1 imbalanced datasets from
NASA. In addition, the weak classifiers are generated by Decision-Stump. Table 2 lists the details of
the nine imbalanced datasets used in the evaluation. The label bad in Ionosphere is considered to be
a minority class, and the label good in Ionosphere is considered to be a majority class. The label 1 in
Statlog is considered to be a minority class, and other labels in Statlog are considered as a majority
class. The label van in Vehicle is considered to be a minority class, and labels saab, bus, and opel in
Vehicle are considered as a majority class.
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Table 2. Details of the Five Imbalanced Datasets.

Dataset The Number
of Samples Majority Class Minority Class Imbalance Ratio

(IR)

Vehicle 846 647 199 3.25:1
KC1 1497 1183 314 3.76:1

Horse Colic 368 227 141 1.61:1
Ionosphere 351 225 126 1.79:1

JM1 10,878 8776 2102 4.17:1
Statlog 2310 1980 330 6:1

PC3 1077 943 134 7.04:1
PC5 1711 1240 471 2.63:1
CM1 505 457 45 10.2:1

4.2. Analysis of the AdaBoost-A Algorithm

The Vehicle dataset is split into training and test sets at a ratio of 7:3. The standard AdaBoost
algorithm is used to classify the samples in the training set. As the number of weak classifiers increases,
the growth trend of AUC is shown in Figure 1. When the number of weak classifiers reaches 10,
the increase of the evaluation index AUC significantly slows down, indicating that increasing the
number of weak classifiers hardly improves the AUC. Therefore, the number of weak classifiers in the
experiments is set to 10. Figure 2 shows the comparison of accuracy, precision, recall, and F1 value
of the standard AdaBoost algorithm and the AdaBoost-A algorithm on the Vehicle test set. Results
show that the AdaBoost-A algorithm achieves 92.9% accuracy, 84.8% precision, 83% recall, and 83.8%
F1 value, and the standard AdaBoost algorithm achieves 91.0% accuracy, 83.4% precision, 79.5% recall,
and 81.4% F1 value. The proposed algorithm not only improves the overall accuracy, but also reduces
the error of minority class classification.
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To eliminate the impact of data division and guarantee valid results, the 10-fold CV is employed to
evaluate the classification performance. The detailed comparison results for the AdaBoost-A algorithm
and the AdaBoost algorithm on Vehicle dataset in terms of the error and AUC are showed through box
plots in Figures 3 and 4, respectively. Figure 3 shows that the maximum, minimum, and average of
AdaBoost-A algorithm is lower than the AdaBoost algorithm in terms of error. Figure 4 shows that the
maximum, minimum, and average of AdaBoost-A algorithm is higher than the AdaBoost algorithm in
terms of AUC.
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The KC1 dataset is split into training and test sets at a ratio of 7:3. The standard AdaBoost
algorithm is used to classify the samples in the training set. As the number of weak classifiers increases,
the growth trend of AUC is shown in Figure 5. When the number of weak classifiers reaches 10,
the increase of the evaluation index AUC significantly slows down. Therefore, the number of weak
classifiers in this experiment is set to 10. Figure 6 shows the comparison of accuracy, precision, recall,
and F1 value of the standard AdaBoost algorithm and the AdaBoost-A algorithm on the KC1 test set.
Results show that the AdaBoost-A algorithm achieves 76.2% accuracy, 45.8% precision, 30.2% recall,
and 35.3% F1 value, and the standard AdaBoost algorithm achieves 74.9% accuracy, 58.2%precision,
17.2% recall, and 26% F1 value.
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The detailed comparison results of the 10-fold CV for the AdaBoost-A algorithm and the AdaBoost
algorithm on KC1 dataset in terms of the error and AUC are showed through box plots in Figures 7 and 8,
respectively. Figure 7 shows that the maximum, minimum, and average of AdaBoost-A algorithm is lower
than the AdaBoost algorithm in terms of error. Figure 8 shows that the maximum, minimum, and average
of AdaBoost-A algorithm is higher than the AdaBoost algorithm in terms of AUC.Sensors 2019, 19, x FOR PEER REVIEW 11 of 19 
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Through the above experiments, it is proved that the proposed AdaBoost-A algorithm is more
effective than AdaBoost algorithm.

4.3. Analysis of the PSOPD-AdaBoost-A Ensemble Algorithm

The coefficients of AdaBoost-A weak classifiers are optimized by the improved PSO based on
population diversity and the standard PSO on the five imbalanced datasets, respectively. We compare
classification performance of them by performing 5-fold CV. The detailed classification results of the
AdaBoost, PSO-AdaBoost-A, and PSOPD-AdaBoost-A algorithms based on the average of 100 runs
are showed in Figures 9–13.Sensors 2019, 19, x FOR PEER REVIEW 12 of 19 
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Statlog Dataset.

As shown in Figures 9–13, the classification performance of the PSO-AdaBoost-A and PSOPD-
AdaBoost-A ensemble algorithms is much higher than the AdaBoost algorithm. It illustrates
that optimizing the weight coefficients of AdaBoost weak classifiers can significantly improve
the performance of the classifiers. The PSOPD-AdaBoost-A algorithm achieves 80.4% accuracy,
63.2% precision, 84.1% recall, and 72.1% F1 value on the Horse Colic dataset, which is higher than
that of the PSO-AdaBoost-A classifier. The PSOPD-AdaBoost-A algorithm achieves 92.0% accuracy,
80.2% precision, 65.8% recall, and 72.2% F1 value on the Ionosphere dataset, which is higher than
that of the PSO-AdaBoost-A classifier. The PSOPD-AdaBoost-A algorithm achieves 82.3% accuracy,
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84.2% precision, 99.0% recall, and 91.0% F1 value on the JM1 dataset, which is higher than that
of the PSO-AdaBoost-A classifier. The PSOPD-AdaBoost-A algorithm achieves 77.5% accuracy,
50.6% precision, 35.3% recall, and 41.6% F1 value on the KC1 dataset, which is higher than that
of the PSO-AdaBoost-A classifier in terms of accuracy, recall, and F1 value. The PSOPD-AdaBoost-A
algorithm achieves 98.9% accuracy, 99.5% precision, 99.7% recall, and 99.3% F1 value on the Statlog
dataset, which is higher than that of the PSO-AdaBoost-A classifier in terms of precision, recall,
and F1 value. The experimental results presented above show that the improved PSO algorithm
based on population diversity can effectively avoid falling into local optimum and achieve higher
classification accuracy, and prove that the PSOPD-AdaBoost-A algorithm is effective in processing
imbalanced data.

4.4. Comparison the PSOPD-AdaBoost-A and Other Improved Algorithms

To solve the imbalance problem, researchers have proposed many approaches to improve the
ensemble algorithms, but most of the improved methods are still sensitive to the relatively high
imbalance rate. Next, we compare classification performance of our PSOPD-AdaBoost-A approach and
boosting algorithms including G-AdaBoost based on genetic algorithm [17], B-AdaBoost based on label
modification and D-AdaBoost based on weight limitation [18], bagging algorithms including Random
Forest and Extra Trees, sampling method including Smote-based AdaBoost by performing 5-fold CV
on the Vehicle, PC3, PC5, and CM1 datasets. For a fair comparison, the number of weak classifiers
of algorithms for experiment mentioned above is set to 10, and the weak classifier is generated by
Decision-Stump. Results show that the PSOPD-AdaBoost-A ensemble algorithm is effective on datasets
with relatively high imbalance rates.

The mean of Accuracy, Precision, Recall, F1, AUC, and Error of the four datasets are summarized
in Tables 3–6, respectively. The largest values are highlighted in bold for each performance measure in
each table. To further verify the effectiveness of PSOPD-AdaBoost-A ensemble algorithm for processing
imbalanced data, the AUC values of each run are showed through box plots in Figures 14–17.

Table 3 shows that the PSOPD-AdaBoost-A method achieves the highest performance of the
seven comparison algorithms in terms of accuracy, F1 value, and AUC classifying the Vehicle dataset,
its precision is slightly lower than the G-AdaBoost algorithm, and its recall is slightly lower than the
Smote method. Figure 14 shows that the maximum, minimum, and average of PSOPD-AdaBoost-A
algorithm is the highest among seven algorithms in terms of AUC, demonstrating the effectiveness of
the PSOPD-AdaBoost-A algorithm in classifying the Vehicle dataset.

Table 3. Comparison of Classification Results on the Vehicle Dataset.

Algorithm Accuracy Precision Recall F1 AUC Error

PSOPD-AdaBoost-A 0.925000 0.809345 0.902400 0.851406 0.917187 0.074999
G-AdaBoost 0.923584 0.861940 0.811999 0.833173 0.885012 0.076415
D-AdaBoost 0.924529 0.857178 0.824000 0.836553 0.889777 0.075471
B-AdaBoost 0.914150 0.781936 0.892000 0.831131 0.906493 0.085849

Random Forest 0.911886 0.841605 0.806001 0.823128 0.872567 0.088114
Extra Trees 0.920377 0.831528 0.84800 0.838903 0.896098 0.079633

Smote 0.897169 0.708473 0.960000 0.814594 0.898271 0.102831
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Table 4. Comparison of Classification Results on the PC3 Dataset.

Algorithm Accuracy Precision Recall F1 AUC Error

PSOPD-AdaBoost-A 0.859704 0.414426 0.248235 0.310944 0.593736 0.140296
G-AdaBoost 0.856293 0.142857 0.047058 0.091314 0.509970 0.143707
D-AdaBoost 0.859293 0.357936 0.111764 0.165239 0.539780 0.140707
B-AdaBoost 0.854075 0.267125 0.094115 0.135947 0.528838 0.145925

Random Forest 0.854074 0.207045 0.113529 0.136262 0.524223 0.145936
Extra Trees 0.854322 0.242409 0.125294 0.164234 0.532223 0.145677

Smote 0.737777 0.208130 0.506405 0.294673 0.572923 0.262223

Table 5. Comparison of Classification Results on the PC5 Dataset.

Algorithm Accuracy Precision Recall F1 AUC Error

PSOPD-AdaBoost-A 0.737662 0.581946 0.455764 0.511665 0.647268 0.262336
G-AdaBoost 0.744060 0.575478 0.238983 0.339432 0.591601 0.255940
D-AdaBoost 0.744392 0.577383 0.249152 0.3460050 0.591027 0.255607
B-AdaBoost 0.739719 0.560215 0.257627 0.3486072 0.590426 0.260280

Random Forest 0.747196 0.545823 0.403875 0.463364 0.612219 0.252904
Extra Trees 0.749532 0.552212 0.403389 0.466045 0.613078 0.250468

Smote 0.650000 0.414715 0.624235 0.498326 0.631312 0.350000

Table 6. Comparison of Classification Results on the CM1 Dataset.

Algorithm Accuracy Precision Recall F1 AUC Error

PSOPD-AdaBoost-A 0.896553 0.344151 0.355000 0.349376 0.634760 0.103464
G-AdaBoost 0.865620 0.281204 0.204555 0.236418 0.526376 0.138880
D-AdaBoost 0.867637 0.340035 0.10666 0.161439 0.525507 0.123463
B-AdaBoost 0.850210 0.250256 0.126086 0.167212 0.526376 0.140788

Random Forest 0.894060 0.262445 0.190000 0.220776 0.517173 0.103938
Extra Trees 0.885784 0.343360 0.173333 0.229055 0.506231 0.110236

Smote 0.752755 0.226427 0.666666 0.335852 0.614239 0.247245
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seven comparison algorithms in terms of accuracy, precision, F1 value and AUC classifying the CM1 
dataset, and its recall is lower than the Smote method. Figure 17 shows that the maximum, minimum, 
and average of PSOPD-AdaBoost-A algorithm is the highest among seven algorithms in terms of 
AUC, demonstrating the effectiveness of PSOPD-AdaBoost-A in classifying the CM1 dataset. 

Table 6. Comparison of Classification Results on the CM1 Dataset. 

Algorithm Accuracy Precision Recall F1 AUC Error 
PSOPD-AdaBoost-A 0.896553 0.344151 0.355000 0.349376 0.634760 0.103464 

G-AdaBoost 0.865620 0.281204 0.204555 0.236418 0.526376 0.138880 
D-AdaBoost 0.867637 0.340035 0.10666 0.161439 0.525507 0.123463 
B-AdaBoost 0.850210 0.250256 0.126086 0.167212 0.526376 0.140788 

Random Forest 0.894060 0.262445 0.190000 0.220776 0.517173 0.103938 
Extra Trees 0.885784 0.343360 0.173333 0.229055 0.506231 0.110236 

Smote 0.752755 0.226427 0.666666 0.335852 0.614239 0.247245 
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Table 4 shows that the PSOPD-AdaBoost-A method achieves the highest performance of the
seven comparison algorithms in terms of accuracy, precision, F1 value and AUC classifying the PC3
dataset, and its recall is lower than the Smote method. Figure 15 shows that the maximum, minimum,
and average of PSOPD-AdaBoost-A algorithm is the highest among seven algorithms in terms of AUC,
demonstrating the effectiveness of PSOPD-AdaBoost-A in classifying the PC3 dataset.

Table 5 shows that the PSOPD-AdaBoost-A method achieves the highest performance of the
seven comparison algorithms in terms of precision, F1 value, and AUC classifying the PC5 dataset,
its accuracy is slightly lower than the Extra Trees algorithm, and its recall is slightly lower than the
Smote method. Figure 16 shows that the maximum, minimum, and average of PSOPD-AdaBoost-A
algorithm is the highest among seven algorithms in terms of AUC, demonstrating the effectiveness of
PSOPD-AdaBoost-A in classifying the PC5 dataset.

Table 6 shows that the PSOPD-AdaBoost-A method achieves the highest performance of the
seven comparison algorithms in terms of accuracy, precision, F1 value and AUC classifying the CM1
dataset, and its recall is lower than the Smote method. Figure 17 shows that the maximum, minimum,
and average of PSOPD-AdaBoost-A algorithm is the highest among seven algorithms in terms of AUC,
demonstrating the effectiveness of PSOPD-AdaBoost-A in classifying the CM1 dataset.

Through the above comparative experiments, it is proved that the PSOPD-AdaBoost-A ensemble
algorithm is more effective in processing imbalanced data compared to many improved algorithms.

5. Conclusions

Traditional AdaBoost algorithm focuses on the misclassified samples instead of the samples
of minority class. In this paper, we propose an improved AdaBoost algorithm (AdaBoost-A).
Since the AUC can effectively reflect the performance of the classifier, we introduce the AUC into
error calculation, making the AdaBoost focus more on the classification accuracy of the minority.
Furthermore, the AdaBoost algorithm may generate redundant or useless weak classifiers, significantly
affecting the readability of the classifier. We propose an ensemble algorithm, PSOPD-AdaBoost-A,
which can further optimize the weight of the weak classifiers. Experimental results show
that the AdaBoost-A and PSOPD-AdaBoost-A ensemble algorithms can effectively classifying
imbalanced datasets, Vehicle, KC1, Horse Colic, Ionosphere, JM1, and Statlog. Next, we compare
the imbalanced data classification performance of PSOPD-AdaBoost-A with ensemble algorithms
including G-AdaBoost, B-AdaBoost, D-AdaBoost, Random Forest, and Extra Trees, sampling method
including Smote, and four datasets with relatively high imbalance rate, Vehicle, PC3, PC5, and CM1
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are used in the comparison. The results show that the PSOPD-AdaBoost-A ensemble algorithm is
effective in processing data with relatively high imbalance rate compared to other improved algorithms.
Our future work is dedicated to applying the proposed algorithm to the field of sensors, accurately
achieving classification of targets by processing imbalanced data acquired by sensors.
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