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Abstract: To autonomously explore complex underwater environments, it is convenient to develop
motion planning strategies that do not depend on prior information. In this publication, we present a
robotic exploration algorithm for autonomous underwater vehicles (AUVs) that is able to guide the
robot so that it explores an unknown 2-dimensional (2D) environment. The algorithm is built upon
view planning (VP) and frontier-based (FB) strategies. Traditional robotic exploration algorithms seek
full coverage of the scene with data from only one sensor. If data coverage is required for multiple
sensors, multiple exploration missions are required. Our approach has been designed to sense the
environment achieving full coverage with data from two sensors in a single exploration mission:
occupancy data from the profiling sonar, from which the shape of the environment is perceived, and
optical data from the camera, to capture the details of the environment. This saves time and mission
costs. The algorithm has been designed to be computationally efficient, so that it can run online
in the AUV’s onboard computer. In our approach, the environment is represented using a labeled
quadtree occupancy map which, at the same time, is used to generate the viewpoints that guide the
exploration. We have tested the algorithm in different environments through numerous experiments,
which include sea operations using the Sparus II AUV and its sensor suite.

Keywords: autonomous underwater vehicle (AUV); robotic exploration; view planning (VP); motion
planning; frontier-based (FB) exploration; next-best-view (NBV)

1. Introduction

Autonomous underwater vehicles (AUVs) have become a fundamental tool to perform many
underwater tasks, such as close inspection of structures [1], near-bottom surveys [2], or intervention [3].
The use of AUVs has many advantages over alternative technologies such as remotely operated
vehicles (ROVs). For instance, the lack of an umbilical cable increases the freedom of movement of
AUVs, allowing missions to take place in complex scenarios with high relief or complex artificial
structures, where the umbilical cable could get entangled. Furthermore, AUVs require less human
intervention allowing for potentially cheaper sea operations. Providing AUVs with the ability to carry
out tasks autonomously is a challenge. When the target is in areas with a high level of relief, current
algorithms have significant limitations. Our proposal focuses on enabling the use of AUVs in these
challenging cases for inspection and mapping purposes.

In this work, we present an algorithm which is capable of guiding an underwater robot to obtain a
map of a region of interest. Traditionally, this problem has been studied in two different research fields:
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coverage path planning (CPP) algorithms are focused on obtaining a trajectory that passes through
all regions of an area or volume of interest, using a map which can sometimes be of low accuracy.
Robotic exploration algorithms, on the other hand, are designed so that there is no need for a prior
map, with the goal of obtaining a map of a completely unknown environment.

In most cases, the available information about a particular region of the sea is scarce. Because of
that, we have designed our algorithm so that it does not use a prior map of the area of interest.
The proposed algorithm is therefore an underwater robotic exploration algorithm. As a consequence,
the implementation of the algorithm has to be able to run in the robot’s computer, with limited
processing power, in order to guide the robot as the mission progresses. To meet this requirement, our
algorithm has been designed with computational efficiency in mind, selecting the best data structures
to represent the data so that the operations required by the exploration algorithm can be performed
fast enough for online planning.

Most robotic exploration algorithms are based on the following ideas:

• Frontier-based (FB) exploration. Frontier-based methods guide the exploration by focusing on
the regions between known an unknown space. This idea was first proposed by Yamauchi [4].
The exploration is guided according to interesting regions in the map. However, the sensor field
of view (FOV) is usually not taken explicitly into account. Furthermore, if the target frontier
is the boundary between known and unknown space, as done in the original and many other
publications, the robot has a tendency to navigate in a straight line exploring as much as possible
until something is reached. This behavior is desirable for indoor exploration, but it is not
appropriate for underwater exploration because the robot will only explore open water unless
some limits are specified.

• View planning (VP). View planning algorithms evaluate different candidate viewpoints to
determine the actions that the robot must perform. A viewpoint is commonly defined as a
particular configuration of robot/sensors. When performing CPP the best route that explores
all viewpoints is commonly found by solving a variant of the art gallery problem (AGP) and
the traveling salesman problem (TSP). In contrast, robotic exploration algorithms based on
VP usually use the next-best-view (NBV) approach, where the next best viewpoint is planned
online according to the current map and robot location. The first example of VP using the NBV
approach was developed by Connolly [5]. One of the advantages of VP algorithms is that they
are explicitly aware of the sensor FOV. However, since usually there is an infinite amount of
possible viewpoints it is difficult to select them for their evaluation. For this reason, it is common
to generate the viewpoints randomly or to reduce the amount of possible viewpoints according to
the specific problem. Furthermore, to properly evaluate a viewpoint it is sometimes necessary to
use a ray-casting approach, which might be too slow for online computation.

• Reactive algorithms (RAs). Reactive algorithms, such as control-based approaches, can also be used
for robotic exploration as done in McEwen et al. [6]. Even potential fields can be used for robotic
exploration [7]. They provide a simple framework which is easy to implement, but they suffer
from local minima problems, and it is difficult to precisely account for the FOV of the sensors
during planning.

The proposed approach combines the strengths of FB exploration and VP methods to obtain
an algorithm specifically tailored for underwater robotic exploration. The frontiers extracted from
the map are used to deterministically generate viewpoints for exploration. By considering frontiers
between explored and unexplored areas, and between seen and unseen areas, data continuity and
overlap is imposed, which is good for mapping purposes because it enables feature-matching and
data registration between scans. A requirement of our proposed method is that the explored structure
must have vertical relief. Then, the exploration is performed in a 2D slice at a user defined depth.
Furthermore, our algorithm is capable of autonomously guiding an underwater robot to obtain
both the occupancy map and the optical data of a region of interest in a single exploration mission.
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To demonstrate the feasibility of our approach we present simulations and experimental data using
the Sparus II AUV. The proposed approach is an extension of our previous work in [8,9]. In this work,
several aspects of the viewpoint generation process have been improved, mainly to improve robustness
and safety. New experimental data has been obtained in challenging scenarios, and a quantitative
evaluation of the obtained results is presented.

The remainder of this paper is organized as follows. Section 2 presents a review of important
related work to our underwater robotic exploration problem. Then, Section 3 explains the details of
the proposed underwater robotic exploration algorithm. Section 4 shows the robotic platform that has
been used to generate the experimental outcomes, presented in Section 5. Finally, Section 6 presents
the conclusions and evaluates further lines of investigation.

2. Related Work

This section presents important related work to our underwater robotic exploration problem.
Table 1 summarizes this section presenting a classification of algorithms by the amount of prior
knowledge used, domain, dimensionality and approach.

Table 1. Summary of the state of the art. The algorithms are classified by the amount of prior knowledge
used, domain, dimensionality and approach.

Category Domain Space Reference Approach Remarks

With prior map

Underwater

2.5D Galceran et al. [10]
CPP and
horizontal
profiles

The terrain is classified in regions of
low and high relief. The offline mission is
adapted online using stochastic trajectory
optimization

3D Palomeras et al. [11] VP
A minimum set of views and TSP is used
togenerate exploration trajectory,
followed using SLAM. Simulation only

Terrestrial 2D/3D Blaer and Allen [12] VP
Two stages. First, minimum set of views
and TSP in 2D. Then, NBV in 3D

Aerial 3D Bircher et al. [13] VP
Iterative viewpoint resampling with
TSP in 3D

Without prior map

Underwater

2D
Williams et al. [14] VP

Automatic target reinspection after an
initial constant altitude mission

Vidal et al. [8],
Vidal et al. [9] VP

Our previous work. Views are planned
according to several frontiers

3D

Kim and Eustice [15],
Hover et al. [1] VP

Perception driven navigation for the ship’s
hull without prior map. Minimum set
of views and TSP using a prior map for
the propellers

McEwen et al. [6] RA The 3D map is obtained by performing
wall following at different depths

Object reconstruction 3D

Connolly [5] VP
Original proposal of the next-best-view
(NBV) approach

Vasquez-Gomez et al. [16],
Vasquez-Gomez et al. [17]

FB
and VP

It uses the frontiers to plan the NBV.
Uncertainty is taken into account.
Position and maximum size of the object
must be known

Isler et al. [18]
FB
and VP

Information gain is used to plan the NBV.
Position and maximum size of the object
must be known

Terrestrial 2D

Yamauchi [4] FB
Original proposal of the FB
approach. It clusters the frontier cells

González-Baños and Mao [19] VP

It builds a polygonal model of the
environment and plans the NBV using a
randomized algorithm that maximizes the
information gain

Burgard et al. [20] FB
Multirobot exploration. Each robot is
equipped with a 360 degree range sensor

Fox et al. [21]
FB
and VP

Multirobot exploration. Shared maps. The
robots actively seek to verify their
relative locations

Stachniss et al. [22] FB

Multirobot exploration. A classifier assigns
labels to different locations in the map,
and these labels are used in the utility
function that guides the exploration

Renzaglia and Martinelli [7] RA
Potential fields are used to guide the
exploration of a team of robots

Aerial 3D

Schmid et al. [23] VP

Viewpoints are planned using a coarse
digital surface (DSM) in 2.5D. The data
acquired from the viewpoints is used to
create a 3D reconstruction

Yoder and Scherer [24]
FB
and VP

The exploration utility function is
based on the visibility of 2D frontiers
on the 2D surface of a 3D object

Bircher et al. [25],
Papachristos et al. [26]

Random tree
and VP

A random tree is generated where
the nodes are evaluated according to the
amount of unmapped space that it explores
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2.1. Methods That Use a Prior Map

In the underwater domain, Galceran et al. [10] presented a 2.5D approach for inspection of
complex underwater structures. In their approach, a prior map is used to compute a nominal path
that covers all the scene. Then, the robot follows the precomputed path while adapting it to what is
perceived in situ, thus allowing some deviation to account for the navigation drift and inaccuracies in
the prior map. Recently, Palomeras et al. [11] presented a VP algorithm which samples viewpoints
from a previous model and then solves the TSP. In their work, simultaneous localization and mapping
(SLAM) is used during the mission to ensure minimal deviations with respect to the previously planned
trajectory. However, results were supported by simulations only.

Regarding other domains, Blaer and Allen [12] presented a two stage VP approach for
3-dimensional (3D) site modeling with unmanned ground vehicles (UGVs). In their initial stage,
a minimal set of views is planned in 2D to cover a prior map of the scene, and then, in a second
stage, the resulting model is improved by considering 3D views of the 3D model obtained in the first
stage. Bircher et al. [13] presented a VP algorithm for structural inspection using unmanned aerial
vehicles (UAVs). Their method employs an alternating two-step optimization to find viewpoints for
coverage while reducing the path cost.

All the aforementioned methods can be used when a prior map is available. Although they share
some similarities with the methods in the following section, they are not directly applicable to our
problem since we do not have a prior map of the area to be explored.

2.2. Methods That Do Not Use a Prior Map

In the underwater domain, the robotic exploration literature is scarce. Aside from our previous
VP work in Vidal et al. [8] and Vidal et al. [9], Williams et al. [14] proposed a target reinspection method
for AUVs equipped with a synthetic aperture sonar (SAS). In their approach, after a first constant
altitude mission, locations of potential interest are automatically inspected before the vehicle surfaces,
which can be considered a form of VP exploration. However, the initial constant altitude mission can
only be performed if the area does not contain 3D relief, so it is not suitable to our exploration problem.
Regarding 3D environments, Kim and Eustice [15] and Hover et al. [1] developed VP techniques for
ship hull inspection. While a prior rough map was necessary to plan the path to explore the propellers
and rudders, the rest of the hull was inspected without a prior model. The inspection follows a
preplanned lawn-mover trajectory that is merged with target revisiting. This approach is very specific
and it is not directly applicable to our exploration problem. McEwen et al. [6] presented a reactive
and control-based approach where an iceberg was mapped by performing several autonomous wall
following missions at different depths. This approach can not be directly applied to our problem
because we can have multiple objects with high relief (for instance, our breakwater blocks scenario).

Some of the methods that are used for object reconstruction can also be adapted for robotic
exploration. Connolly [5] proposed the NBV methodology to autonomously plan views to reconstruct
a 3D object. In the same line, Vasquez-Gomez et al. [16] presented a NBV algorithm to model arbitrary
objects in 3D, and Vasquez-Gomez et al. [17] refined the method by adding uncertainties. Their method
does not need prior knowledge regarding the shape of the object, but information about its size and
location is required. Isler et al. [18] also developed a NBV uncertainty-aware approach for active
volumetric 3D reconstruction. Although the aforementioned 3D reconstruction methods cannot be
directly applied to underwater exploration, our algorithm is based on ideas developed in these
methods, such as the NBV methodology, so they are relevant to our work.

Regarding exploration algorithms for ground vehicles, Yamauchi [4] initially proposed the FB
method for 2D robotic exploration. González- Baños and Mao [19] applied NBV strategies to robotic
exploration by planning randomized views that maximize information gain over a polygonal model
of the environment. Burgard et al. [20] explored FB methods and even extended them to work with
multiple robots. Then, Fox et al. [21] proposed a distributed multirobot exploration algorithm for
ground vehicles where the robots actively verify their relative locations with the goal of improving
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the map consistency. Finally, Stachniss et al. [22] proposed the exploration of unknown indoor
environments using a team of mobile robots. Their method uses a classifier to assign labels to different
locations in the map, and then these labels are used to guide the exploration using a utility function.

In the aerial domain, Schmid et al. [23] presented a two step process where first a coarse digital
surface (DSM) of the environment is built, and then viewpoints are planned to acquire the data for a
3D reconstruction. Yoder and Scherer [24] presented a FB algorithm for micro aerial vehicles (MAVs).
In their approach, the different viewpoints are evaluated according to the visibility of frontier cells,
determined by ray-tracing. Finally, Bircher et al. [25] and Papachristos et al. [26] proposed a method
based on the rapidly-exploring random tree (RRT) to perform exploration without a prior map.
A random tree is generated and the best branch is chosen according to the information gain, measured
by the amount of mapped and unmapped cells visited when following the generated viewpoints in
the branch.

Our algorithm combines different aspects from the presented related work. Furthermore, we extend
existing approaches by considering coverage of two sensors simultaneously in a single exploration
mission. To the best of the authors knowledge, this is the first underwater exploration algorithm that
has this capability.

3. Frontier-Based Viewpoint Generation Method for Exploration

The proposed 2D robotic exploration method seeks full coverage of the environment with two
different types of data:

• Occupancy data: a mechanically scanning profiling sonar is used to obtain occupancy data from
the environment. This kind of sonar sensors mechanically rotate a narrow acoustic beam in
order to measure ranges from different orientations. Since the beam rotates along one axis, the
field of view covers a user defined sector from a plane. A scan usually takes several seconds to
be obtained.

• Optical data: a camera acquires images from the environment. The exploration algorithm does
not use the images so no live feedback from the camera is required. Only an estimation of its FOV
is used for exploration planning purposes.

The algorithm has been designed to fit a hierarchical/deliberative robotic paradigm where,
according to Arkin [27], the tasks that the robot iteratively performs can be classified in three categories:
sense, plan and act (see Figure 1).

Sense:
- World representation
- Sonar noise filtering

Plan:
- View planning
- Path planning

Act:
- Trajectory trackingStart again

Figure 1. Each part of the proposed algorithm is associated to the corresponding task in the
hierarchical/deliberative robotic paradigm.

In the remainder of this section the different parts of the proposed method will be described.

3.1. World Representation (Sense)

Using the data received from the sonar sensor, and considering the FOV of the camera, our
approach creates a labeled grid map to represent and encode the information perceived from the
environment. The different possible cell labels are:

• Unknown cells. The environment is initially assumed to be unknown. Thus, this is the initial state
label for all cells in the map.
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• Empty cells. They represent collision-free areas where the vehicle can navigate.
• Occupied cells. They correspond to the areas where the profiling sonar has detected an obstacle.

They represent walls and objects in the environment.
• Viewed cells. The occupied cells that have been inside the camera FOV are labeled as viewed.
• Range candidate cells. The unknown cells that are next to empty and occupied cells are

range candidate cells because they represent regions of potential interest to continue the
occupancy exploration.

• Camera candidate cells. The occupied cells that are next to empty and viewed cells are camera
candidate cells because they represent the areas that should be optically explored.

Figure 2 depicts all labels in a single exploration capture. When new data is received from the
sonar, the cell logic diagram represented in Figure 3 is followed to determine the label that each cell
is given. The label of a cell can change several times during a mission. For instance, a cell that was
initially given the occupied label might become empty if it receives enough empty measurements from
the sonar (this behavior is represented by the proportion thresholding node in the diagram of Figure 3).

Empty cells

Occupied cells

Viewed cells

Range candidates

Camera candidates

Camera FOV

Range viewpoint

Camera viewpoint

Planned path

Previous path

Sonar beam

Sonar FOV

Figure 2. This figure shows all possible cell labels in a single exploration picture. The FOVs of the
sensors are also shown.

Data available?

Proportion thresholding Next to empty and occupied?

Viewed? Empty Range candidate Unknown

Viewed Next to viewed and empty?

Camera candidate Occupied

Yes No

Above Below Yes No

Yes No

Yes No

Figure 3. Map generation algorithm. After following the algorithm, a cell is classified and a label
is obtained (leafs). When new measurements are received for a cell, the algorithm reevaluates its
new label.
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One of the novelties of our proposed algorithm is that the grid map is internally stored in several
quadtrees. A quadtree is a space partitioning tree-based data structure which recursively subdivides
each node to exactly four children (see Figure 4). This data structure enables some operations to be
performed efficiently, such as:

• Nearest neighbors and k-nearest neighbors queries. For any specific target cell, it is possible to
find the nearest cell or cells of a particular label.

• Range queries. For any specific target cell, it is possible to find all the cells within a certain
distance for cells of a particular label.

1 2
3 4

(a) (b)

(c) (d)

Figure 4. Example of a quadtree data structure: (a) the structure to represent; (b) a rasterized version
of the structure, where the space represented using equally sized cells; (c) recursive subdivision of the
space to represent the occupancy as a quadtree; and (d) the corresponding tree.

In our approach, several quadtrees are used so that the previous operations can be performed to
the required cell labels in isolation, and we take advantage of this in the viewpoint generation process.

There exist public implementations of such tree data structures. For instance, the Octomap
framework from Hornung et al. [28] implements an octree data structure (3D equivalent of a quadtree)
and it is common in the robotic community. However, at the time of this publication, Octomap does
not provide an implementation of nearest neighbor and range queries. To overcome this limitation,
we have implemented our own quadtree data structure.

Finally, our map representation can be easily adapted to 3D environments by using an octree data
structure instead of a quadtree. The rest of the operations, such as the computation of the surface
normal and queries to the tree, are also well defined in a 3D space.

3.2. Sonar Noise Filtering (Sense)

Underwater sonar sensors suffer from different kinds of noise, which can potentially corrupt the
map created from such data. Our robotic exploration algorithm relies on sonar data to determine what
are the next best actions to take for exploration, so it is important to minimize the negative effects of
the sonar noise.

When a sonar measurement is obtained, we first apply some basic filtering, which discards data
in several situations:
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• When the measurement is close to the minimum and maximum range of the sensor.
• When the measurement corresponds to a location near the water surface.
• When the vehicle is not stable or moving fast.

After basic filtering has been performed, the measurement is incorporated into the map according
to the strategy we defined in Vidal et al. [9], which improves the map consistency when false negatives
are present. If the right combination of sensor measurements is received, empty space can appear
behind obstacles, as depicted in Figure 5. Our approach is able to overcome this problem and generates
coherent maps even when false negatives are received. The basic idea behind the false negative noise
rejection algorithm is that empty measurements can only come from nearby empty cells, so when a
cell changes its state from empty to a different state, neighboring empty cells must be reevaluated.

ObstacleProfiling sonar

Beam Unknown cells

Empty cell behind an obstacle

The empty cell is automatically erased

(a)

(b)

(c)

(d)

Figure 5. If not accounted for, false negatives can affect the map consistency. Consider the following
sequence of events: (a) initially all cells have unknown state; (b) a false negative is received, resulting
in empty cells along the beam until the maximum range of the sensor; and (c,d) finally a correct
measurement is received. If each cell is considered independently, this sequence of events leaves
empty cells behind the occupied cell (c). With our approach, this situation is detected and empty
cells behind the obstacle are automatically erased (d) so that empty space is consistent with all
occupied measurements.

3.3. View Planning (Plan)

Once the data from the sensors has been incorporated into our map, the next step is to generate
viewpoints at locations that allow the exploration to continue. The proposed view planning strategy has
been designed so that it takes advantage of the efficient operations allowed by our map representation.
This is key to achieve the required performance to enable online missions.

Two different types of viewpoints are generated:

• Range viewpoints. Each range candidate cell in the map potentially generates a range viewpoint.
Range viewpoints allow the exploration of the environment using the scanning profiling sonar, as
they are focused on the frontier between occupied and unknown regions.

• Camera viewpoints. Camera candidate cells represent the frontier between optically explored and
unexplored areas, and they potentially generate camera viewpoints.

Figure 6 depicts an example of the viewpoint generation process. To generate a viewpoint from a
candidate cell the following deterministic procedure is followed:

• The surface normal is computed using as a reference the occupied and viewed cells around the
candidate cell.
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• The viewpoint is placed along the surface normal at a user defined distance, which must account
for the sensor FOV.

• If the generated viewpoint is inside an empty cell it is stored for further evaluation. Otherwise, it
is discarded.

• If the generated viewpoint is too close to the obstacles it is discarded. Otherwise, it is considered
a safe viewpoint. Due to safety concerns, in this work, the concept of safe viewpoints is more
strict than in [8,9].

The fact that the viewpoint generation process is deterministic is good for repeatability and overall
understanding of the exploration maneuvers.

δβ

Target cells

Camera viewpoint

Range viewpoint

Figure 6. Viewpoint generation example. Each target cell generates a viewpoint at a user configurable
distance (in this case, β and δ) along the estimated surface normal.

Once the set of all safe viewpoints has been computed, the viewpoints are evaluated according to
a cost function, which captures how far a viewpoint is with respect to the current robot configuration.
At this stage, both range and camera viewpoints are considered without prioritizing one over the other.
Unfortunately, solving a complete path planning problem for each viewpoint is not possible online
due to computational time constraints. Alternatively, the proposed cost function uses a weighted
Euclidean distance which additionally accounts for the difference in orientation at the beginning and
at the end of the path. While in [8,9] the weighting factor had to be manually chosen, in this work it is
automatically computed using the maximum surge velocity and maximum yaw turning rate. Once all
viewpoints have been evaluated, the viewpoint with the lowest cost value is selected. The cost function
is described by Equations (1) and (2):

β = atan2(py − qy, px − qx) (1)

cost(q, p) = ‖pxy − qxy‖+
vmax

θ̇max
(|wrap(β− qθ)|+ |wrap(pθ − β)|) (2)

where q represents the robot configuration, p represents the viewpoint configuration, vmax is the
maximum surge velocity, θ̇max is the maximum turning rate and wrap() converts an angle to a value
contained within the range (−π, π].

Finally, the algorithm stops the exploration when there are no more candidate viewpoints or
when a timeout has expired.

3.4. Path Planning (Plan)

After computing the next best viewpoint, the robot has to navigate from its current configuration
to the selected viewpoint, while avoiding the obstacles present in the current map. To generate such
trajectories, we propose the use of the asymptotic optimal rapidly-exploring random tree (RRT*)
path planner.

Since the robotic exploration algorithm runs on the robot’s computer, with limited computational
resources, we have simplified the planning problem to compute paths in a 2D configuration space,
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where a configuration contains only the position of the robot. Considering the orientation of the
vehicle in the path planning would significantly slow down the planner, making it unsuitable for
online purposes. At the same time, safety can be preserved by checking whether the smallest possible
circular area containing the robot is colliding with the obstacles in the map (thus ensuring the state is
valid in any possible orientation).

In our implementation, the path planner optimizes the integral of a risk function along the
path. The risk associated with a particular state reflects how close it is to the obstacles in the map.
Therefore, the risk is high next to obstacles and lessens as the distance increases. Figure 7 visually
represents the risk cost in a particular map example.

(a) (b)

Figure 7. Correspondence between a real map and its risk value map. The real map is displayed in (a).
In (b) the risk is displayed using a gradient from white to black color (white represents the lowest risk
and black represents the highest risk). The highest risk appears near the walls of the obstacles.

The risk function is described by the following equation:

risk(M, q, r) = 1 + ψ2O(M, q, r) (3)

where M represents our labeled quadtree-based grid map, q represents the robot configuration, ψ

represents the map resolution and O(M, q, r) returns the amount of occupied cells around the given
configuration q up to a distance r.

By optimizing the integral of the risk we achieve two goals simultaneously:

• Shorter paths are preferred.
• Paths that navigate far from the obstacles are preferred.

3.5. Trajectory Tracking (Act)

Once the path that allows the vehicle to reach the selected viewpoint has been computed, a line
of sight (LOS) trajectory tracking controller [29] is used to follow it with minimum error. When the
vehicle approaches the target viewpoint, the trajectory tracking controller is stopped and the vehicle
is oriented according to the orientation of the viewpoint. Due to the thrusters configuration in the
robot and the trajectory tracking controller used, lateral currents can affect the trajectory tracking
performance. However, the control problem with water currents is out of the scope of this work.
From our experimental experience, the selected approach can operate with lateral currents of up to
0.3 m/s, which is sufficient for the autonomous tasks shown in this work.

3.6. Summary of the Algorithm

Algorithm 1 summarizes the proposed robotic exploration approach. Lines 3 to 6 represent
Sections 3.1 and 3.2. Lines 7 to 11 correspond to Section 3.3 and line 12 corresponds to Section 3.4.
Finally, Section 3.5 is represented by line 13.
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Algorithm 1: Exploration methodology
Input: Range measurements, robot position.
Output: Exploration trajectory, map.

1 begin
2 while not shutdownRequested () do

/* Sense */
3 foreach measurement ∈ getNewMeasurements () do
4 f iltered_measurement = filterMeasurement (measurement)
5 map.updateOccupancy ( f iltered_measurement)

6 map.updateViewed (getRobotConfiguration ())

/* Plan */
7 range_candidates = map.getRangeCandidates ()
8 camera_candidates = map.getCameraCandidates ()
9 range_viewpoints = getRangeViewpoints (map, range_candidates)

10 camera_viewpoints = getCameraViewpoints (map, camera_candidates)
11 best_viewpoint = selectBestViewpoint (getRobotConfiguration (), range_viewpoints, camera_viewpoints)

12 path = planPath (getRobotConfiguration (), best_viewpoint, map)

/* Act */
13 controller.sendPath(path)
14 pro f iler.updateOrientation(best_viewpoint)

/* Check if done */
15 if map.mapped () or map.outsideLimits () or timeoutExpired () break

Figure 8 depicts the sequence of operations performed by the proposed exploration algorithm in
a particular example.

(a) (b) (c)

(d) (e) (f)

Figure 8. Sequence of operations performed by the proposed robotic exploration algorithm: (a) Initially
the robot receives data from the sonar sensor. (b) The data is incorporated into the map. (c) The
best view is selected. (d) A safe path is computed from the robot configuration to the selected
viewpoint. (e) The path (blue line) is followed by the trajectory tracking controllers. (f) Finally, the
robot reaches the viewpoint. By then, the map has changed and new viewpoints are generated to
continue the exploration.
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4. Experimental Platform

To validate the proposed robotic exploration algorithm we have used the Sparus II AUV (see
Figure 9). This robot has two horizontal and one vertical thruster, allowing for partial hovering
capabilities. The surge, heave and yaw degrees of freedom (DOFs) are actuated while the sway, roll
and pitch DOFs are underactuated. It has a diameter of 0.23 m and it is 1.6 m long. It is rated for a
maximum depth of 200 m. It has a 1.4 kWh battery which allows between 8 and 10 h of operation.
Regarding the onboard computer, this particular robot has a dual core i7 CPU with 8 Gb of RAM.
To estimate its position and orientation, the vehicle has a Doppler velocity log (DVL) sensor, an attitude
and heading reference system (AHRS), a pressure sensor, and a global positioning system (GPS) sensor
to receive fixes at surface. Further information regarding the vehicle can be found in Carreras et al. [30].

Figure 9. Sparus II AUV, a torpedo-shaped robot with partial hovering capabilities. It has been used to
validate our robotic exploration algorithm.

The front part of the vehicle is the payload area, where the cameras and the scanning profiling
sonar have been installed.

By means of a mechanically rotating beam, the sonar FOV spans 120 degrees. Although the robot
is oriented according to the viewpoint, the FOV of the profiling sonar is also dynamically adjusted
during the mission, so that it points towards the exploration target, while always covering the front of
the vehicle. Figure 10 shows a representation of the FOV of all sensors.

Profiler FOV

Camera FOV

Robot

Figure 10. The camera FOV is represented by the black frame (the camera is oriented towards the right
side of the vehicle), and the profiling sonar FOV is represented by the red frame (covering mainly the
front part of the vehicle).

Throughout this work we have used GoPro Hero 4 Black cameras (GoPro, San Mateo, CA, USA)
to acquire the images used for the reconstruction purposes (the optical reconstruction procedure,
described in Hernandez et al. [31], is out of the scope of this work, but it is useful for us to demonstrate
that the algorithm ensures full optical coverage according to the obtained map). A set of three cameras
have been used, positioned at the front of the vehicle and oriented in the right, right-down and
forward-right-down directions. Although the exploration algorithm planned the viewpoints for the
right oriented camera, the other cameras maximized the optical coverage while maintaining the ability
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to perform feature matching between the obtained images. No artificial light has been used for the
experiments presented in this work, but it could be used during low visibility operations.

The proposed algorithm has been implemented using the C++ programming language, and it has
been connected to the rest of the robot’s software architecture using the robot operating system
(ROS) [32]. Figure 11 shows the interconnections between the different parts of the proposed
exploration method.

Profiling sonar View planning

Map generation Path planning Controller

Thrusters

Navigation filter

DVL AHRS Pressure GPS

Exploration component

Robot component

Sensor or actuator

Figure 11. The modular design of our proposal eases integration with typical robotic software
architectures. The green blocks are the components developed in our proposal. They interact with
the profiling sonar sensor, the vehicle controller and the navigation block. The navigation block is in
charge of the localization of the vehicle through dead reckoning, using a Doppler velocity log (DVL)
sensor, an attitude and heading reference system (AHRS), a pressure sensor and a global positioning
system (GPS) sensor.

5. Experimental Outcomes

The proposed robotic exploration algorithm has been validated in three different scenarios.
The first scenario corresponds to a series of breakwater concrete blocks, which provide a challenging
testing environment because of its narrow passages. The second scenario is an isolated rock next to
the coast cliffs. This natural environment has been used to test the algorithm so that it can explore
targets with complex geometry. Finally the algorithm has also been tested at 28 m depth by exploring
an underwater seamount. In this section the obtained exploration trajectories and their corresponding
3D optical reconstructions are presented and discussed.

5.1. Breakwater Blocks

The first scenario is a series of breakwater concrete blocks located outside the harbor of St.
Feliu de Guíxols, Girona. The size of each block is approximately 12 × 12 m. It is a man-made scenario
presenting a simple geometry. However, due to its narrow passages, it is a challenging scenario for
underwater exploration. Figure 12 shows an aerial view of this site and Figure 13 shows the Sparus II
AUV during an autonomous mission in the breakwater blocks.

Figure 12. Aerial view of the harbor of St. Feliu de Guíxols. The breakwater blocks can be seen at the
bottom part of the image.
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Figure 13. Sparus II AUV performing an autonomous mission in the blocks environment.

The robot performed the mission at a depth of 1.75 m, allowing for the use of a surface buoy with
a Wi-Fi connection, which was used for visualization and safety purposes. The exploration trajectory
was about 100 m long and the maximum surge speed was 0.3 m/s. Figure 14 shows the robot trajectory
during an autonomous exploration of the breakwater blocks.

Figure 14. Real inspection of two breakwater concrete blocks. Each block spans an area of
approximately 12 × 12 m. The robot trajectory began in front of the block that appears on the right side
of the image.

As it can be seen, the robot’s estimated position drifted. The shape of the blocks is distorted
and some of the walls appear twice in the map. However, correcting the localization drift is out
of the scope of this work. At the same time, localization drift can be assumed to accumulate over
time, so is usually low in areas that have been recently explored, and high in areas that have been
previously explored and are revisited after some time. Since the vehicle normally operates near areas
that have been recently explored, some navigation drift can be tolerated without negatively affecting
the performance of the algorithm. Finally, Figure 15 shows the optical reconstruction obtained in the
Breakwater blocks scenario.

Figure 15. Reconstruction of the breakwater blocks using optical data.

This scenario has been extensively used to test our previous versions of the the presented
approach. In Vidal et al. [8] the robot was able to autonomously explore 8 consecutive blocks.
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This demonstrated that our method is suitable for man-made structured environments. However, the
approach used in [8] had safety issues which caused the robot to navigate too close to the concrete
blocks in some circumstances. In this work, only safe viewpoints are used for exploration, leading to
safer exploration trajectories.

5.2. Punta del Molar

The second scenario corresponds to an isolated rock located next to the coast cliffs of St. Feliu de
Guíxols, Girona. Figure 16 shows a satellite view of this site. The rock is about 60 m with a variable
and irregular width.

30 m

Figure 16. Satellite view of Punta del Molar, Google Earth, 2017. The coast cliffs can be seen at the top
and left sides of the image.

Figure 17 shows the robot trajectory during the exploration of Punta del Molar. This mission was
performed at a depth of 2.5 m, also allowing for a safety Wi-Fi buoy. The full exploration took 17 min
and the traveled distance was around 170 m.

Figure 17. Real experiment showing the inspection of a natural rock surrounded by water near the
coast cliffs. The rock is approximately 60 m long (please, see Figure16). The inspection trajectory ended
near the initial point, following the rock clockwise. This is the result of having the cameras mounted
pointing towards the right hand side of the robot. In this figure, empty space cells are not represented.

For this scenario a 3D reconstruction has also been performed. It is shown in Figure 18. In this
case, due to accumulated drift and poor visibility, the optical reconstruction pipeline was not able to
close the loop and provide a complete 3D model.
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Figure 18. Optical reconstruction of the Punta del molar environment.

The experiments in this scenario show that the algorithm is suitable for natural
unstructured environments.

5.3. Amarrador Seamount

The Amarrador seamount is a 12 m high underwater seamount, rising from 40 m depth. Its base
spans an area of 15 × 30 m. This natural environment has been used to demonstrate that the algorithm
is able to explore targets with complex geometry. Furthermore, it is located in an area with strong
currents of up to 0.5 m/s, which makes operations more difficult.

In order to autonomously find the Amarrador seamount (only an approximate GPS position
was available) and trigger the exploration algorithm, the AUV performed the following sequence
of actions:

1. The robot navigates to the diving location, which is located at a distance from the target.
2. The robot dives to the desired exploration depth.
3. The robot performs a spiral maneuver around the expected underwater boulder location to

localize the structure.
4. When the sonar detects the structure, the proposed robotic exploration algorithm is triggered.
5. The exploration finishes once the map is complete or when a timeout has expired.

This sequence of actions is tailored for this specific scenario and it is not part of the presented
algorithm. The procedure was first tested in simulation. Figure 19 shows a picture of the robot
exploring the seamount in simulation.

Figure 19. Simulated exploration of the Amarrador seamount.

Then, the approach was tested in real sea experiments. Several autonomous missions were
successfully performed using Sparus II AUV. Figure 20 shows different successful exploration missions,



Sensors 2019, 19, 1460 17 of 22

and Figure 21 shows the evolution of one of the missions to help understanding the sequence of
maneuvers that are performed.

Figure 20. Experimental results in the Amarrador seamount. The four images depict the trajectory of
four different successful missions conducted with Sparus II AUV. The robot autonomously explored
the underwater seamount in 2D, circumnavigating the rock while keeping the distance suitable for
data acquisition. The orientation of each image has been adapted to better visualize the map. Red axis
is north, green axis is east, and blue axis is down.

(a) (b) (c)

(d) (e)

Figure 21. Different captures during a real exploration of the Amarrador seamount. In (a) the robot
finds the seamount and starts mapping it. Then, in (b–d) the robot keeps going to the next best view to
keep the exploration going. Finally, in (e) the robot has a complete map, so no more viewpoints can be
generated. The mission is finished.
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Finally, Figure 22 shows different images obtained from the cameras during the autonomous
exploration mission, and Figure 23 shows the reconstruction of the Amarrador seamount. The images
show the obtained textured 3D model from different angles.

Figure 22. Different images obtained during autonomous exploration missions of the Amarrador
underwater boulder. The robot performed the exploration at a depth of 28 m, and the distance between
the robot and the rock was 5 m.

Figure 23. Using the images acquired during a 2D autonomous exploration of the Amarrador seamount,
a 3D reconstruction has been obtained. The geometry is presented with the texture extracted from the
same images.

These experiments are also a proof of reliability. Since the missions were performed at depth
of 28 m, it was not possible to use a buoy with a high bandwidth Wi-Fi connection. Only acoustic
communication was available during the experiments.

5.4. Quantitative Evaluation

As stated in Section 3, the viewpoints are placed so that images are obtained along the direction of
the surface normal (small incidence angle). After all datasets have been acquired, the incidence angle
has been evaluated in an offline procedure. Figure 24 represents the distribution of the best incidence
angle for each viewed cell in the final map. In the breakwater blocks scenario, 98% of the viewed
cells had been imaged with an incidence angle between 0 and 15 degrees. This measure decreases for
environments with higher geometrical complexity. In the Punta del Molar, 75% of the viewed cells
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were imaged with an incidence angle between 0 and 15 degrees, and for the Amarrador seamount this
measure increases to 88%. It is also important to remark that in all scenarios, more than 95% of the
viewed cells have been observed within ±5% degrees from the central part of the camera’s FOV.
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(a) Breakwater blocks (b) Punta del Molar (c) Amarrador seamount

Figure 24. Histograms of the angles between the surface normal and the observation angle for all
scenarios (a–c). Most viewed cells have been observed from a direction close to the surface normal.

The distance from which each viewed cell has been observed has also been analyzed. Figure 25
shows histograms of the distance error for each scenario. In the breakwater blocks, 92% of the viewed
cells were imaged from a distance within 0.5 m from the target distance. For the Punta del Molar and
Amarrador scenarios, this value is 76% and 81%, respectively.
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Figure 25. Histograms of the distance errors (distance between the target distance δ and the best
observation distance) for all scenarios (a–c). Most viewed cells have been observed from a distance
close to the desired distance.

6. Conclusions and Further Work

In this work we have presented a 2D frontier-based viewpoint generation algorithm for
exploration using AUVs. While most of the existing underwater literature is focused on CPP algorithms,
where previous information such as a rough map is used to plan coverage trajectories, our proposal
does not require prior information and it is able to explore unknown 2D environments with elements
of high relief.

The main contributions of this work are: (1) A novel 2D exploration algorithm which accounts for
occupancy and optical data coverage simultaneously. (2) The combination of FB and view planning
ideas in a single algorithm while keeping the computational requirements low. (3) Experimental
evaluation through different sea trials, including a the breakwater concrete blocks, the Punta del Molar
and the Amarrador scenarios, also showing a possible application such as 3D seabed reconstruction.

Further work will focus on finding an exploration strategy for the case where no initial viewpoints
can be generated. We also plan to extend the algorithm to 3D environments, where we will use
a multibeam sensor mounted in a tilting device on the Girona 500 AUV (see Ribas et al. [33]).
Additionally, we would also like to expand the algorithm to be able to take into account viewpoints for
multiple cameras.
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Our robotic exploration system would also benefit from a SLAM back-end to correct the drift
present in the dead reckoning navigation of our vehicle. In this regard, Guillem et al. [34] has
already used datasets, obtained with the previous version of the presented approach, to test a
SLAM back-end. Having live feedback from the cameras would also open new possibilities for
active localization/navigation and SLAM. Finally, modeling the uncertainty in the environment with
probabilistic methods could be useful to improve the consistency of the map and the generation of
next best viewpoints.
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Abbreviations

The following abbreviations are used in this manuscript:

2D 2-dimensional
2.5D 2.5-dimensional
3D 3-dimensional
AGP art gallery problem
AHRS attitude and heading reference system
AUV autonomous underwater vehicle
AUVs autonomous underwater vehicles
CIRS underwater robotics research center
CPP coverage path planning
DOF degree of freedom
DOFs degrees of freedom
DVL Doppler velocity log
FB frontier-based
FOV field of view
FOVs fields of view
GPS global positioning system
ICS inevitable collision state
ICSs inevitable collision states
LOS line of sight
MAV micro aerial vehicle
MAVs micro aerial vehicles
NBV next-best-view
OMPL open motion planning library
PDN perception-driven navigation
PID proportional-integral-derivative
RA reactive algorithm
RAs reactive algorithms
ROS robot operating system
ROV remotely operated vehicle
ROVs remotely operated vehicles
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RIG rapidly-exploring information gathering
RRT rapidly-exploring random tree
RRT* asymptotic optimal rapidly-exploring random tree
SAS synthetic aperture sonar
SLAM simultaneous localization and mapping
TSP traveling salesman problem
UAV unmanned aerial vehicle
UAVs unmanned aerial vehicles
UdG university of Girona
UGV unmanned ground vehicle
UGVs unmanned ground vehicles
USBL ultra-short baseline
VICOROB computer vision and robotics group
VP view planning
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