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Abstract: Bayesian methodology is a good way to infer unknown parameters in a marine environment.
A passive source location method in a shallow water waveguide with a single sensor based
on Bayesian theory is presented in this paper. The input of a Bayesian inversion algorithm is
received different normal mode impulse signals, which are separated and extracted with a warping
transformation from received broadband impulse signals. The source range, depth, and other seabed
parameters were estimated without prior knowledge of the seabed information. Different normal
mode impulse acoustic signals travelling at different group speeds arrived at the sensor at different
times because of the dispersion characteristics of the shallow water waveguide. The time delay of
different modes can be used for the passive source location. However, normal mode group speeds are
greatly affected by the environmental parameters. The performance of the passive location becomes
negative when parameters mismatch. In this paper, the source location was transformed to the
inversion of the source location and environmental parameters, which can be estimated accurately
based on the multi-dimensional posterior probability density (PPD). This method is less limited by
environmental factors, and the accuracy of inversion results can be analyzed according to the PPD of
inversion parameters, which has higher reliability and a wider application scope. The effectiveness
and robustness of the algorithm were quantified in terms of the root mean squared error (RMSE)
at a variety of signal-to-noise ratios (SNRs) in 50 simulation sets. The RMSE values decreased with
the SNR. The validity and accuracy of the method were proved by the results of simulation and
experiment data.

Keywords: single sensor; shallow water waveguide; passive location; warping transformation;
Bayesian methodology

1. Introduction

The passive location of underwater sources is the basis of underwater target detection and is
an active field in underwater acoustic research. Based on the number of sensors, passive source location
technology in a shallow water waveguide can be divided into two categories: methods using a sensor
array and those with a single sensor.

For methods with a sensor array (vertical array or horizontal array), the water column is covered
by sensors, and the marine environment information can be measured after processing the received
signal data. The source will be estimated accurately using the marine environment information.
However, in practical applications, a sensor array carries a high computational cost; additionally,
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the accuracy of the measured data can be greatly affected by the array form, which is influenced by
ocean currents and storms [1]. Therefore, passive source methods based on a single sensor have been
proposed. These methods sacrifice the environmental information provided by an array but greatly
reduce the cost and complexity of recording systems.

Less information is received by a single sensor compared with a sensor array. To solve this issue,
passive range methods based on a waveguide invariant and an array invariant are proposed [2,3].
The interference structure characteristics and the relationship between the sound field, distance, and
frequency are used in the passive source range method based on the waveguide invariant, but the
stability of the interference structure varies with the distance, so the range accuracy depends on the
propagation distance [2]. The method based on an array invariant is realized by taking advantage of
frequency dispersion, though the range accuracy is also limited to the propagation range [3].

According to normal mode theory [4], the sound source propagation is influenced by
environmental parameters in the shallow water waveguide; the received pressure field signal has
dispersion and multipath characteristics and is the sum of several normal mode signals. Each number
signal contains a significant amount of environmental information, so a single normal mode signal
can also be used for passive source location and parameter inversion after analysis and processing.
The received signal has multiple components, and each component is a non-linear frequency
modulation. To separate and extract the normal mode signals from the received signal, one solution is
to transform the received signal so that it adapts to the resolution of the time-frequency (TF) domain,
and this can be done using a warping transformation, a model-based transformation designed to
linearize the signal phase. Each mode becomes a single-frequency signal with its invariant frequency
after the warping transformation [5].

The warping transformation was first used for the Pekeris shallow water waveguide [6]. It was
then improved based on beam-displacement ray-mode (BDRM) theory, and the eigen-frequency was
closer to the cut-off frequency after the transformation [7]. The warping transformation is constantly
being perfected and can be used in a non-ideal shallow water waveguide [8,9] and a range-dependent
shallow water waveguide [10]. The warping transformation is now widely used for the passive location
of an underwater source [11–18]. For instance, according to the invariant frequency characteristics of
the Fourier transform spectrum of the received signal, the approximate relation between the extracted
value of the characteristic frequency and the invariant frequency is deduced when the propagation
distance is unknown and the source range is estimated by a single sensor [19]. Another robust location
method based on the auto-correlation function for a wide-band signal of a single sensor has been
presented; a weighting function is constructed to change the peak cross-interference by designing
neighboring location constraints. This method tolerates environment mismatch [20]. Source ranges are
estimated based on frequency band decomposition and distance weighting when a guided source is
employed to provide the crucial frequency invariant features, and the frequency band decomposition
is obtained by union processing of autocorrelation function warping spectra of both pressure and
particle horizontal velocity. This method can effectively reduce the main lobe width and significantly
improve the resolution of source range estimation [21].

The most passive source location methods based on a single sensor require knowledge of the
environmental information first. However, it is difficult to obtain detailed and accurate marine
information, especially seabed parameters. The Bayesian methodology is a good inversion method
with a rigorous evaluation of data errors and model parameterization, which can realize geoacoustic
inversion with estimated parameter uncertainties [5]. For the Bayesian inversion method, the inversion
scheme can be completed when the marine environmental parameters and sound source are regarded
as unknown quantities, so the method has good environmental tolerance [22]. This paper develops and
applies the warping transformation and Bayesian theory to estimate the range and depth of the source
with seabed parameter uncertainties. The warping transformation is used to extract the normal mode
signals, which are used as the input of the Bayesian inversion scheme. The source and power spectral
density of the data errors can be estimated by maximizing the likelihood. An optimization algorithm
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called the genetic algorithm (GA) is used to search the optimum solution [23], and the source range
and depth are then inverted. The method is applied to measured data collected in a shallow water
experiment in 2014, and the results compare well with global positioning system (GPS) measurements
taken during the experiment.

The remainder of this paper is organized as follows: Section 2 describes the separation process for
the received signal and the extraction of normal mode signals. Section 3 presents the location theory and
algorithms, while Section 4 applies the location method to the simulated data. Section 5 presents and
discusses the location results of the experimental data. Finally, Section 6 provides concluding remarks.

2. Separation and Extraction of Normal Mode Signals

2.1. Modal Propagation Theory

In normal mode theory, the received pressure field signal is the sum of several normal mode
signals. Assuming a broadband source emitting at depth zs in a range-independent shallow water
waveguide with a half-infinite liquid seabed, the pressure field Y(f,r) received at depth zr after
propagation over a range r can be written as [24]

Y( f , r) ≈ s( f )
N

∑
n=1

ej π
4

√
8πρ(zs)

Un(zs, f )Un(zr, f )
ejξn( f )r−βn( f )r
√

ξnr
(1)

where S(f ) is the source spectrum, N is the number of normal modes, ξn(f ) is the horizontal
wavenumber, and Un is the modal depth function, whose amplitude varies with depth, βn(f ) is
the attenuation coefficient, which is a very small value and varies with frequency, and ρ(zs) is the
density at the source depth zs, which is the density of water.

2.2. Warping Transformation

Y(f,r) consists of several normal mode signals of different numbers, each number signal contains
a significant amount of environmental information, so that a single normal mode signal can also be
used for passive source location and parameter inversion after analysis and processing.

A signal processing method called warping [25] is used to separate and extract the normal
mode signals from the received pressure field signal. The warping transformation is a model-based
transformation designed to linearize the signal phase. Each mode will become a single-frequency
signal with its invariant frequency following the warping transformation.

For a given signal y(t), which is the received signal in the time domain, the warping transformation
can be written as [21]

Wy(t) =

√∣∣∣∣∂h(t)
∂t

∣∣∣∣y[h(t)] (2)

where Wy(t) is the warped signal, and h(t) is the warping operator while ∂h(t)
∂t is the derivative

of w(t). Warping transformation is reversible; the warped signal can be unwarped using h−1(t),
and

√
|∂h(t)/∂t| only provides the energy conservation between the original and warped signals.

The warped operator can be written as

h(t) =
√

t2 + t2
r (3)

and the unwarped operator is

h−1(t) =
√

t2 − t2
r (4)

where tr =
r
c0

, and c0 is the water sound speed. Warping transformation is robust and can be applied
to most low frequency shallow water scenarios without detailed knowledge of the environment or
precise propagation range [26]. Therefore, tr can be determined empirically without knowing r or
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c0. The received signal can be presented in the TF domain using short-term Fourier transformation
(STFT) [27]. Warping transformation is then used in the TF domain, the received signal becomes the
sum of several number linear single frequency modes, and the correspondent frequency of each mode
is the eigen-frequency. The single normal mode signal is extracted by a frequency filter. The signal
in the frequency domain can be transformed from the time domain using Fourier transformation.
Therefore, when warping transformation is used, the n number normal mode pressure field signal at
frequency f can be written as

Yn(r, f ) ≈ s( f )
ej π

4
√

8πρ(zs)
Un(zs, f )Un(zr, f )

ejξn( f )r−βn( f )r
√

ξnr
. (5)

The procedure for the separation and extraction of the normal mode signals is described
in Figure 1.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 18 

 

without knowing r or 0c . The received signal can be presented in the TF domain using short-term 
Fourier transformation (STFT) [27]. Warping transformation is then used in the TF domain, the 
received signal becomes the sum of several number linear single frequency modes, and the 
correspondent frequency of each mode is the eigen-frequency. The single normal mode signal is 
extracted by a frequency filter. The signal in the frequency domain can be transformed from the time 
domain using Fourier transformation. Therefore, when warping transformation is used, the n number 
normal mode pressure field signal at frequency f can be written as 

( )
π

ξ β

π ρ ξ

−

≈
( ) ( )4

, ( ) ( , ) ( , )
8 ( )

n n
j j f r f r

n n s n r
s n

e eY r f s f U z f U z f
z r .

 (5) 

The procedure for the separation and extraction of the normal mode signals is described in 
Figure 1. 

 
Figure 1. The procedure for the separation and extraction of the normal mode signals using a warping 
transformation. 

3. Source Location Scheme 

3.1. Bayesian Inversion Theory 

In a Bayesian inversion, the multi-dimensional posterior probability density (PPD) is usually 
interpreted in terms of model-parameter estimates and uncertainties. In a Bayesian approach, let m 
be a vector of M free parameters representing a realization, and let d represent N measured data 
which constrain the model. These quantities are considered random variables that are related via 
Bayes’ rule [28]: 

=( ) ( ) ( ) / ( )P P P Pm d d m m d
.
 (6) 

The P(m|d) is the PPD, P(m) is the prior distribution, P(d) is the probability density of the 
measured data, which is independent of m, and P(d|m) represents the conditional probability density 
for d, which is interpreted as the likelihood L(m) for the measured data. Thus, Equation (6) can be 
written as 

( ) ( ) ( )P L P∝m d m m  (7) 

where 

( )= ( ) exp[ ( )]L P E∝ −m d m m
.
 (8) 

The likelihood function depends on the statistical distribution of the data expression and errors 
(measurement error and theoretical error), and E(m) is the data misfit function. In cases where the 
error distribution is not known independently, a good strategy is to choose the Gaussian distribution 

Figure 1. The procedure for the separation and extraction of the normal mode signals using
a warping transformation.

3. Source Location Scheme

3.1. Bayesian Inversion Theory

In a Bayesian inversion, the multi-dimensional posterior probability density (PPD) is usually
interpreted in terms of model-parameter estimates and uncertainties. In a Bayesian approach, let m be
a vector of M free parameters representing a realization, and let d represent N measured data which
constrain the model. These quantities are considered random variables that are related via Bayes’
rule [28]:

P(m |d ) = P(d |m )P(m)/P(d). (6)

The P(m|d) is the PPD, P(m) is the prior distribution, P(d) is the probability density of the
measured data, which is independent of m, and P(d|m) represents the conditional probability density
for d, which is interpreted as the likelihood L(m) for the measured data. Thus, Equation (6) can be
written as

P(m |d ) ∝ L(m)P(m) (7)

where
L(m) = P(d |m ) ∝ exp[−E(m)]. (8)

The likelihood function depends on the statistical distribution of the data expression and errors
(measurement error and theoretical error), and E(m) is the data misfit function. In cases where the
error distribution is not known independently, a good strategy is to choose the Gaussian distribution
and estimate the statistical parameters from the data. A generalized misfit combining data and prior
can be defined as

ϕ(m) = E(m)− ln P(m) (9)
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where ϕ(m) is the cost function. PPD is written as

P(m |d ) =
exp[−ϕ(m)]∫

exp[−ϕ(m′, d)]dm′
. (10)

The integration domain spans an M-dimensional parameter space.
In Bayesian inversion, the PPD of m is interpreted as the inversion results. In this paper,

the maximum a posteriori (MAP) model is used, and the expression is

m̂ = Argmax{P(m |d )}. (11)

Based on Equation (9), Equation (11) can be written as

m̂ = Argmax{L(m)} = Argmin{ϕ(m)}. (12)

Additionally, the mean model, the posterior model covariance matrix, and the one- and
two-dimensional marginal probability densities are defined respectively as

E(m) =
∫

m′P(m′
∣∣d)dm′ (13)

Cm =
∫

(m′ − E(m′))(m′ − E(m′))T P(m′|d)dm′ (14)

P(mi, mj|d) =
∫

δ(mi −mi
′)δ(mj −mj

′)P(m′|d)dm′ (15)

P(mi|d) =
∫

δ(mi −mi
′)P(m′|d)dm′ (16)

where (m
′ − E(m

′
))

T
is the transpose of (m

′ − E(m
′
)).

3.2. Cost Function

To estimate the marine environment parameters using Bayesian inversion methodology,
a sufficient cost function is necessary.

The traditional Bayesian inversion method is usually carried out by a sensor array (horizontal
array or vertical array). Not only can the accuracy of measured data be affected by the array form,
the array also carries a significant computational cost when used. In this paper, the different number
normal mode signals in frequency are the input of Bayesian methodology, and estimation of the
source range and depth is carried out by matching different amounts of normal mode signals in the
frequency domain.

Consider the measured data Pm, which is a matrix of N × Nf, where N is the number of modes,
and Nf is the number of frequency points. The element of Pm at line n and column nf is therefore
pm

nn f
(m, f ).

pm
nn f

(m, f ) = Yn(r, f ) ≈ s( f )
ej π

4
√

8πρ(zs)
Un(zs, f )Un(zr, f )

ejξn( f )r−βn( f )r
√

ξnr
(17)

where ∑
n=1

n = N and ∑
n f =1

n f = N f . Assuming the data errors are Gaussian-distributed random

variables and covariance matrix Cn f , the likelihood function is

L(m, r) =
N f

∏
n f =1

1

π−N
∣∣∣Cn f

∣∣∣1/2 exp{−(Pm
n f
− Pc

n f
)TC−1

n f (Pm
n f
− Pc

n f
)} (18)
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where Pm
n f

represents the measured data at the nf-th frequency point of Pc, Pc
n f

represents the modeled
data at the nf-th frequency point of Pc, and Pc can be written as

Pc(m) = H(m)S (19)

where H(m) is the channel transition function, and S is the source spectrogram.
In many cases, the error statistics are unknown; the covariance matrices Cn f should be estimated

from data. Consider first the common approximation of the independent, identical errors and diagonal
covariance matrices Cn f = υ2

n f
I, where υ2

n f
is the variance for the nf-th frequency point and I is the

identity matrix. The likelihood function is

L(m, r) =
N f

∏
n f =1

1
(πυ2

n f
)
−N exp{−

∣∣∣Pm
n f
− Pc

n f

∣∣∣2/υ2
n f
}

=
N f

∏
n f =1

1
(πυ2

n f
)
−N exp{−

∣∣∣Pm
n f
− Hn f

Sn f

∣∣∣2/υ2
n f
}

(20)

where Snf is the source spectrum for the nf-th frequency point. The likelihood function L(m) can be
expressed as the experiential index of the cost function ϕ(m), so the likelihood function is

L(m, r) = exp{−ϕ(m)}. (21)

The cost function is

ϕ(m) =

N f

∑
n f =1

[N ln(πυ2
n f
) +

∣∣∣Pm
n f
− Hn f

Sn f

∣∣∣2/υ2
n f
]. (22)

The υn f and S can be estimated by maximizing the likelihood [29], setting
∂ϕ

∂Sn f
= 0

∂ϕ
∂υn f

= 0
. (23)

When ∂ϕ
∂Sn f

= 0,

Pm
n f

= Hn f
Sn f

(24)

and Equation (24) can be written as

HT
n f

Pm
n f

= HT
n f

Hn f
Sn f

(25)

where HT
n f

is the conjugate transpose matrix of Hn f
, and the estimation of the source spectrum is

S̃n f
= (HT

n f
Hn f

)
−1

HT
n f

Pm
n f

(26)

where (HT
n f

Hn f
)
−1 is the inverse matrix of (HT

n f
Hn f

). The S̃n f
is substituted for Sn f

in Equation (20),
and the cost function can be written as

ϕ(m) =

N f

∑
n f =1

[N ln(πυ2
n f
) +

∣∣∣(I − Hn f
(HT

n f
Hn f

)
−1

HT
n f
)Pm

n f

∣∣∣2/υ2
n f
]. (27)
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According to ∂ϕ
∂υn f

= 0, the estimation of υ2
n f

is

υ2
n f

=
1
N

∣∣∣(I−Hn f
(HT

n f
Hn f

)
−1

HT
n f
)Pm

n f

∣∣∣2. (28)

Therefore, the cost function is

ϕ(m) =

N f

∑
n f =1

[2N ln
∣∣∣(I − Hn f

(HT
n f

Hn f
)
−1

HT
n f
)Pm

n f

∣∣∣+ (N + N ln π − N ln N)]. (29)

When the constant term is ignored, the cost function is

ϕ(m) =

N f

∑
n f =1

[2N ln
∣∣∣(I − Hn f

(HT
n f

Hn f
)
−1

HT
n f
)Pm

n f

∣∣∣]. (30)

The source range, depth, and other seabed parameters can be inverted by minimizing ϕ(m).
The GA is used to search for the optimum solution, when the optimal value of search does not change,
and converges to a fixed value, which is considered the optimal value. The mutation probability,
selection probability, crossover probability, generation number, and initial population size are 0.05, 0.5,
0.8, 5000, and 64, respectively. In addition, 20 sets are computed in parallel to ensure the parameters
converge to the global optimum.

4. Simulation Example

The simulation was performed in a shallow water waveguide with a half-infinite liquid seabed.
The depth was 25 m, the sound speed in water was an isovelocity with c0 = 1500 m/s, a broadband
source was emitted at depth zs = 20 m with frequency band 200~300 Hz, the source is a linear frequency
modulated impulse signal, the SNR was 20 dB, and the signal was received at depth zr = 23 m after
propagation range r = 7700 m. The seabed sound speed was cb = 1650 m/s, and seabed density was
ρb = 1.8 g/cm3.

4.1. The Extraction of Normal Mode

The received signal in the time domain and the extracted modes are shown in Figure 2.
The received signal contains several normal modes from Figure 2b, Figure 2c shows that the normal
mode can be separated after warping transformation, and the phases of the mode signals are
transformed from non-linear frequency modulation to linear. Each mode becomes a single-frequency
signal with its invariant frequency after warping transformation, and the spectrum characteristics
are shown in Figure 2d. Warping transformation is reversible. The mode signals are extracted by
a frequency filter and unwarping transformation. The extracted signals in time and TF domains of
the first four modes are shown in Figure 3. Additionally, a comparison between the original received
signal in the time domain and the signal recovered from the first four warped mode signals was made,
and the result illustrates that the recovery signal is consistent with the original signal, but a small
amount of noise was ignored (Figure 4).
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Figure 2. Simulated results. (a) Received signal in time domain; (b) received signal in the TF domain;
(c) warped signal in the TF domain; (d) spectrogram of the warped signal.
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Figure 3. Extracted results of the first four modes, including the mode signal in the TF domain and the
time domain, and (a–d) are results of the 1st to 4th mode, respectively.
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Figure 4. The comparison between the original signal and recovery signal.

The input signals of the Bayesian inversion theory are the extracted normal mode signals in the
frequency domain. The signal in the frequency domain can be transformed from the time domain
using Fourier transformation. When the input signals are obtained, the source depth and range can be
estimated based on Section 3.

4.2. The Analysis of the Inversion Parameter Sensitivity

To illustrate the validity of the cost function in Section 3.2, the inversion parameter sensitivity
to the cost function is analyzed. When the parameter sensitivity is analyzed, the parameter to
be analyzed is constantly changing in a certain range, while the other three parameters remain
unchanged. When the analyzed parameter is near the true value, the cost function obtains the
minimum value. Four parameters of source range, depth, seabed sound speed, and seabed density are
analyzed. The results are as seen in Figure 5; parameters are sensitive to the cost function. The cost
function is minimized at the true values, and the analysis curve of parameters varies sharply near
the true value, so all inversion parameters are sensitive. The cost function is valid with respect to the
inverse parameters.
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Figure 5. Inversion parameter sensitivity analysis to the cost function. (a–d) are analysis results of four
inversion parameters (source range, depth, seabed sound speed, and seabed density), respectively.

4.3. The Inversion Results

The input signals of the inverse scheme are given in Section 4.1, and the replica (model signal) is
computed by KRAKEN, an acoustic computation program [30]. All parameters were searched over
relatively wide intervals based on Equation (30) by the GA, and the corresponding search bounds
are given in Table 1. When the parameters of the search converge to the optimal value, the optimal
value is placed into Equations (10) and (16), and the PPD and the marginal probability densities can
be estimated. The inverse value of the parameter corresponds to the maximum marginal probability.
Figure 6 presents the marginal probability densities for each individual parameter.

Table 1. Inversion parameter list. The search bounds, true values, and inversion values are shown.

Inversion Parameter True Values Search Bounds Inversion Values

Range r (km) 7.7 [6,9] 7.67
Depth zs (m) 20 [18,22] 19.74

Seabed sound speed cb (m/s) 1650 / 1638.168
Seabed density ρb (g/cm3) 1.8 [1.7,1.9] 1.78

To study the inter-relationship of these parameters, Figure 7 shows the correlation coefficient
matrix of arbitrary two inversion parameters calculated by correlating the marginal probability
densities of two parameters and normalizing them. Range r and source depth zs correlate with
the seabed sound speed c̃b, which causes multiple peaks in PPD for cb. When the inversion parameters
have multiple peaks in marginal probability densities, many sets computed in parallel are necessary
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to ensure that the parameters converge to the global optimum. Other parameters do not indicate
a strong correlation.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 18 

 

 
Figure 6. Marginal probability densities from Bayesian inversion: (a)the source range; (b) the source 
depth; (c) the seabed sound speed; (d) the seabed density. 

To study the inter-relationship of these parameters, Figure 7 shows the correlation coefficient 
matrix of arbitrary two inversion parameters calculated by correlating the marginal probability 
densities of two parameters and normalizing them. Range r and source depth zs correlate with the 
seabed sound speed bc , which causes multiple peaks in PPD for cb. When the inversion parameters 
have multiple peaks in marginal probability densities, many sets computed in parallel are necessary 
to ensure that the parameters converge to the global optimum. Other parameters do not indicate a 
strong correlation. 

6 7 8 9
0

20

40

60

r (km)
18 19 20 21 22
0

10

20

30

40

50

zs(m)

1700 1800 1900 2000
0

5

10

15

20

cb(m/s)
1.7 1.75 1.8 1.85 1.9
0

10

20

30

40

50

ρb(cm3)

(a) (b)

(c) (d)

Figure 6. Marginal probability densities from Bayesian inversion: (a) the source range; (b) the source
depth; (c) the seabed sound speed; (d) the seabed density.
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When there is strong correlation between inverse parameters, the inverse results will be multiply
valued. The seabed sound speed c̃b can be estimated by seabed speed empirical formula [29]:

cb = 2330.4− 1257.0ρb + 487.7ρ2
b. (31)

The inverse parameters were range r, source depth zs, and seabed density ρb. The lower the
number of inverse parameters, the faster the calculating speed. The multi-valuedness can be avoided,
and the location result is more accurate.

The estimated values are the MAP values; these results are listed in Table 1.
According to the estimated results, the source range r̃ = 7.67 km and z̃s = 19.74 m are close to the

true values, and the errors are less than 3%. The estimated values of the seabed parameters are also in
a good agreement with the true values. The source range r̃, source depth z̃s, and seabed density ρ̃b are
well estimated, while the seabed sound speed c̃b is calculated by Equation (31).

4.4. The Validity and Robustness of the Algorithm

To evaluate the effectiveness and robustness of the algorithm, location performance is quantified
in terms of the root mean squared error (RMSE) at a variety of SNRs—−10, −5, 0, 5, 10, 15, 20 and
25 dB—in 50 simulation sets. The RMSE can be computed by [31]

RMSE =

√√√√√ Mo
∑

i=1
(Xi − X0)

2

Mo
(32)

where M0 is the number of simulation sets, Xi is the inverse results, and X0 is the true value. In different
SNRs, the RMSE of location results (source range and source depth) at a variety of SNRs in 50 simulation
sets are shown in Figure 8. Figure 8 shows that the RMSE values decrease with the SNR. When the
SNR is higher than 10 dB, the RMSE values near 0. The location results are almost all acceptable.
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Figure 8. RMSE of different SNRs over the 50 simulations.

5. Processing Results of Measured Data

The experiment was performed in a shallow water waveguide with a half-infinite liquid seabed
in an area of the Yellow Sea, China. The depth is 25 m. The sound speed profile in water is shown
in Figure 9. A broadband linear frequency modulated impulse source was emitted by UW350 at
depth zs = 10 m with a frequency band of 200~500 Hz. The signal duration was 3 s, and the signal
was received at depth zr = 9 m by a single sensor after propagation range r = 4972 m, which was
measured via a global positioning system (GPS). The seabed sound speed cb and seabed density ρb
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have been inversed by other methods before; the results will here be compared with these inversed
results. The equipment of this experiment is shown in Figure 10.Sensors 2019, 19, x FOR PEER REVIEW 14 of 18 
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Figure 9. The sound speed profile in water.

Figure 10. The sound speed profile in water.

The pulse compression technique is used to receive signals for convenience. The received signals
in the time domain and the TF domain, the warped signal in the TF domain, and the warped signal
spectrum are shown in Figure 11a–d, respectively. There are three obvious normal mode signals shown
in Figure 11b, while four modes can be seen in Figure 11c,d, which illustrate the advantage of the
warping transformation. From Figure 11d, we see that the 3rd mode is faint; one reason is that the
received sensor is at the null point of the 3rd mode, and the thermocline in the sound speed profile
(SSP) may be another reason. To obtain a better estimated result, the 1st, 2nd, and 4th modes with
strong energy were used. The extracted modes are shown in Figure 12.

As in Section 4.3, the inversion results are listed in Table 2, and the marginal probability densities
of the inversion parameters are shown in Figure 13.

Table 2. Inversion parameter list. The search bound, true values, and inversion values are shown.
(measured data).

Inversion Parameter
True

Values Search Bounds
Inversion Values in Different Methods

This Paper Ref. [29] Ref. [32] Ref. [33]

Range r (km) 4.792 [3,6] 5.04 / / /
Depth zs (m) 10 [8,20] 9.85 / / /

Seabed sound speed cb (m/s) / / 1615.4 1610.9 1642.1 1590.7
Seabed density ρb (g/cm3) / [1.6,1.8] 1.73 1.71 1.75 1.69
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Figure 11. (a) Received signal in the time domain; (b) received signal in the TF domain; (c) warped
signal in the TF domain; (d) spectrogram of the warped signal.
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Figure 12. Extracted results of the 1st, 2nd, and 4th modes: (a) the 1st mode; (b) the 2nd mode;
(c) the 4th mode.
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Figure 13. Marginal probability densities from Bayesian inversion: (a) the source range; (b) the source
depth; (c) the seabed density.

According to the estimated results, the source range r̃ = 5.04 km was close to the independent
range from the GPS data obtained during the experiment (4.792 km), while z̃s = 9.99 m was close to
the true value, and the errors of the source range and depth were both less than 10%. The estimated
values of the seabed parameters were also in a good agreement with the mean inverted values from
other methods. The estimated result was acceptable.

6. Conclusions

This paper presents a passive location method of an underwater source based on a single received
sensor. Bayesian methodology was used to build the cost function. The methodology was adapted for
low frequency propagation in shallow water. In this case, propagation was dispersive, and the received
signal consisted of several normal modes, which could be described in the TF domain. A signal
processing method called the warping transformation was used to separate and extract different
numbers of normal modes, which were then used as the input for the Bayesian inversion scheme.
A GA was used to search for the optimum solution, and 10 sets were computed in parallel to ensure
the parameters converge to the global optimum.

The key point of this paper is that applying different numbers of normal mode signals instead
of array (vertical array or horizontal array) data can reduce cost and avoid measurement errors
caused by external environmental factors. Additionally, Bayesian methodology is a good inversion
method with a rigorous evaluation of data errors and model parameterization, which can realize
geoacoustic inversion with estimated parameter uncertainties, so the source range, depth, and other
seabed parameters can be estimated without prior knowledge of the seabed information. The estimated
results were in a good agreement with true values and estimated values from other inversion methods.
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The inversion parameter sensitivity to the cost function and the inter-relationship of parameters
was analyzed. The results illustrate the following: The cost function to every single parameter was
effective, and source range r and source depth zs correlated with seabed sound speed cb, while other
parameters did not indicate a strong correlation. The seabed sound speed cb can be estimated by the
seabed speed empirical formula to solve the multi-valuedness caused by strong correlations between
inverse parameters. The effectiveness and robustness of the algorithm were quantified in terms of
the root mean squared error (RMSE) at a variety of signal-to-noise ratios (SNRs) in 50 simulation sets.
The RMSE values decrease with the SNR. The method described in this paper was applied to the
shallow water waveguide with a half-infinite liquid seabed, and the sound speed in water and the
water depth were known, so the application to more complex marine environments can be studied
in the future.
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