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Abstract: The fog radio access network (F-RAN) equipped with enhanced remote radio heads
(eRRHs), which can pre-store some requested files in the edge cache and support mobile edge
computing (MEC). To guarantee the quality-of-service (QoS) and energy efficiency of F-RAN, a proper
content caching strategy is necessary to avoid coarse content storing locally in the cache or frequent
fetching from a centralized baseband signal processing unit (BBU) pool via backhauls. In this paper
we investigate the relationships among eRRH/terminal activities and content requesting in F-RANs,
and propose an edge content caching strategy for eRRHs by mining out mobile network behavior
information. Especially, to attain the inference for appropriate content caching, we establish a
pre-mapping containing content preference information and geographical influence by an efficient
non-uniformed accelerated matrix completion algorithm. The energy consumption analysis is given
in order to discuss the energy saving properties of the proposed edge content caching strategy.
Simulation results demonstrate our theoretical analysis on the inference validity of the pre-mapping
construction method in static and dynamic cases, and show the energy efficiency achieved by the
proposed edge content pre-caching strategy.

Keywords: fog radio access network; non-uniform mobile edge caching; preference inference;
group partition; non-convex matrix/tensor completion

1. Introduction

Recently, the fog radio access network (F-RAN) has been proposed as an emerging network
architecture of a cloud radio access network (C-RAN) for fifth generation wireless systems (5G), which
aims to address the limitations of previous cellular standards and be a prospective key enabler for future
Internet-of-Things (IoT) [1]. In a typical C-RAN, a centralized baseband signal processing unit (BBU)
pool is equipped for baseband processing of a remote radio heads (RRHs) set, connected to the BBUs by
fronthaul links, to save on operational expenditures and reduce energy consumption [2–5]. Although
some efficient signal compression methods have been proposed for C-RANs [6], it is insufficient
to satisfy the dramatically increasing requirements from mobile users for real-time services with
high quality-of-service (QoS) guarantees. To address this challenge, the enhanced architecture of
F-RAN allowing the RRHs with the capability of storage and signal processing functionalities, was
proposed [7–9]. With the enhanced RRHs (eRRHs), edge caching can be performed to pre-fetch some
requested files to the eRRHs local caches (as illustrated in Figure 1). Subsequently, the burden on
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backhaul is relieved and higher spectral efficiency or lower delivery latency can be obtained for users’
requesting cached files from incorporating caching units. In general, the goal of F-RAN architecture
is to optimize the system performance in terms of delivery rate by leveraging both BBU and edge
caching, which is different from that in C-RAN.

Figure 1. An architecture of F-RAN scheduling framework. The UEs with the same preference
are denoted by the same color and the dotted loops of different colors denote the areas where the
corresponding preferences are dominant.

As a cache-aided system, F-RAN operates in the pre-fetching and delivery phases [10–12].
The pre-fetching normally stores the content by constant popularity ranking in the large time scale
corresponding to multiple transmission intervals. Instead, the delivery phase operates separately on
each transmission interval based on the cached file messages. Several recent studies involved the
scheme and the performance of F-RAN in this context. In [7,10] the fronthaul-aware design via the
pre-fetching policy was studied to minimize the average delivery latency with the cache memory
constraints, and in [13] the optimal caching and delivery strategies that minimize the delivery latency
are characterized for system designing. In [12,14], trade-off between the total power consumed and
the total backhaul capacity needed in the downlink of the cache-aided RAN was studied. It has
shown that the energy consumption is decreased due to the increase of spatial diversity by cooperative
communication, meanwhile the backhaul burden is increased due to the delivery of uncached files to
more eRRHs. The aforementioned research indicates that the content edge-storage strategy design
plays a critical role in improving the performances of F-RAN.

Designing content edge caching strategies to more closely meet the needs can greatly alleviate
the burden on backhauls, and reduce the delay and energy consumption for a large number of users.
Notice that caching popular files can make the design of the delivery phase more meaningful and
sensible to meet the needs of most users; almost all the content edge-storage strategies via pre-fetching
were directly proposed due to this most-popular-caching premise. To the best of our knowledge,
the content edge-storage strategies in the literature are considered to be based on an assumption that
all files are available at the BBU and the popularity of the file is modeled by Zipf distribution [15].
More specifically, for Zipf distribution, let the files be labeled in the order of popularity from the
most to the least popular ones, such that the most popular file has index f = 1 and the least popular
file has index f = F. Then the probability of a requested file f ∈ {1, 2, . . . , F} is P ( f ) = c f−s

satisfying ∑F
f=1 P ( f ) = 1. Therefore, consider that user equipments (UEs) in an F-RAN are served

by multiple eRRHs that are connected to a BBU pool through digital fronthaul links, UEk selects
file fk ∈ {1, 2, . . . , F} with the probability P ( fk), and the requested files fk are independent across
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the index k. The increasing of the exponent s makes the probability of selecting a small group of
files larger. When the parameter s is adjusted appropriately, only a few popular files are frequently
requested by UEs.

Although the above content selecting criterion can simplify the discussion, the real situation
of the content obtaining in F-RANs is much more complex due to the users’ social and activity
limitation, which has noticeable impact on the performances of F-RAN. For instance, there are usually
some certain activity regions for different users, which endows the content request of the individual
with regional features. Also, the preferences of the users in different districts, such as the area
around the school, the airport or the mall, are often relatively different, which can make the content
distribution non-uniformed for different groups. Moreover, for some multimedia users, the obtained
information is inevitably lagging behind once the cached contents are not desired by them. It means
that judging which content to be cached from past requesting actions is reasonable and necessary in
order to guarantee the QoS. It is shown that such contradictions are particularly prominent under
the condition of limited edge cache in eRRH, and a straightforward way to utilize Zipf distribution
for content caching is inappropriate to realistic needs. However, notice that the massive data on the
activity of request is recorded and the powerful computational capacity is provided by the computing
resources of the cloud, it is possible to design more efficient content-obtaining strategies relying on
these foundations.

With this consideration, in this paper, we propose a caching content selection strategy by digging
out users’ network behavior information and improving the distribution on content allocation.
We analyze the relationship between scope of eRRH/UEs’ activities and content requests in an
F-RAN, and then establish pre-mapping inferred by an efficient matrix completion algorithm for
an appropriate content edge pre-caching. Especially, the proposed matrix completion algorithm
gets better at the accuracy in the case of non-uniform data sampling and computational efficiency.
Furthermore, we analyze the energy consumption of the content edge pre-caching strategy based on
the proposed pre-mapping. Numerical results are provided to prove the effectiveness of the given
inference method for the pre-mapping construction in static and dynamic cases, and illustrate the
energy saving characteristics of the content edge pre-caching.

This paper is structured as follows. In Section 2 we introduce the system model considered and
state the caching file selection strategy. The data structure corresponding to the UEs’ requests for
the entire researched F-RAN is established mathematically as well. in Section 3, the optimization
problem of the content edge caching pre-mapping construction is presented and the non-uniform
non-convex matrix completion algorithm is proposed for solving the problem. The corresponding
energy consumption analysis for the caching content selection strategy is provided in Section 4.
Simulation results of the algorithm and the energy consumption performances are shown in Section 5,
followed by the conclusion in Section 6.

2. System Model and Problem Statement

We consider the downlink transmission of an F-RAN as illustrated in Figure 1. N eRRHs are
deployed in the network and cooperatively serve all users. Each eRRH, equipped with L antennas and
a cache of the same size, can connect to the BBU pool via individual backhaul links with finite capacity.
The cluster-scale joint management, such as scheduling and resource allocation, can be implemented.
On the other hand, UEs are uniformly and independently distributed within the network. In each
scheduling interval, K users will be scheduled, and send their content requests according to some
preferences. Assume that each user can request at most one content at its scheduled time and the
content cache in BBU pool stores the set of all content objects required by the users, which is denoted as
a set Sc = {F1, . . . , FC}, with F1, . . . , FC all of the same size and belonging to I types. Then in their own
activity regions, UEs requesting the contents that belong to the same subset Sm ⊂ Sc (with the same
color icon shown in Figure 1) can form a multicast UE cluster Gm. The m-th cluster Gm, limited by the
preferences and activity regions, is served cooperatively by a cluster of eRRHs, which is denoted as Rm.
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It should be noted that, although the eRRH clusters serving UE clusters can overlap with each other,
the overlap of the eRRH clusters is relatively small and irregular since the service area of an eRRH is
limited and the eRRH equipments are deployed in the sufficiently large area. With this consideration,
we ignore this characteristic here to simplify the analysis and assume that the users in the overlap are
served by only one eRRH cluster with high probability, i.e., Gm ∩ Gm′ = ∅ and Rm ∩ Rm′ = ∅, m 6= m′.

Content caching and transmission: Without loss of generality, we set K > N and focus on a
typical eRRH/UE cluster, i.e., Gm and Rm (represent by the icons with the same color in Figure 1).
While the content cache of BBU pool is deployed to fully exploit the potential of content caching in
the F-RAN, the content cache of each eRRH in the same cluster only contains the contents that are
most likely to be requested by the users in the same area. The content requests from served users are
aggregated at the edge eRRH cluster in the F-RAN, and can be treated as follows: First, the eRRH
cluster checks its cluster content caches and the requests can be served immediately if the desired
content is available at the caches (illustrated as the procedure (1) in Figure 2). Otherwise, the requests
will be forwarded to the BBU pool content cache, and then the corresponding content can be provided
through the fronthaul link from the BBU pool. Then the requests can be handled similarly to the
case in which the content resides in the content caches in the cluster (illustrated as the procedure (2)
in Figure 2).

Figure 2. Queueing model of content object transmission with one eRRH-cluster content caching
in F-RANs.

To increasing the operability, the preferences of the UEs’ requests and the corresponding contents
will be classified into different types. For each type, the contents will be sorted according to the
timeliness and the popularity, and pre-cached in the eRRHs according to the UEs’ preferences inferred
by the requests. Because the caching via the preferences of the individual can reduce the probability of
the procedure (2) execution, which can lead to improved QoS guarantees with low power consumption
in practical F-RANs, it is reasonable to propose an eRRH content per-caching strategy depending on
the UEs’ behaviors.

Content preference data model: Note that the restricted mobility and the randomness of request
for UEs in line with the assumptions at the beginning of this section, we establish the content preference
data model associated with the UEs’ requests based on the following setting: (i) the users usually stay
in some limited areas depending on the occupation and habit, etc. This results in that only a limited
part of the eRRHs (compared with the overall scale in the researched F-RAN) can serve the certain
UEs; (ii) Due to the restricted mobility of each UE, the eRRH in the service cluster to receive the UE’s
request can be deemed to be selected randomly. This means that some eRRHs in the serving cluster Sm

may not obtain the request of the UE in the Gm; (iii) It is also obvious that the number of content types
interested in is far less than the scale of the users. Hence, with these prerequisites, we first let j and k
denote the indices of eRRHs and UEs respectively, the basic dataset reflecting the content types that
the UEs’ requests and can be structured as the preference matrix A ∈ {a1, a2, . . . , aI , 0}N×K with the
entry as follows:
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Ajk =


ϕm,i if k is served by the j-th eRRH belonging to Rm and has

sent the request to j for the content in the i-th type,

0 if the relationship between k and j does not exist,
(1)

where ϕm,i is a positive integer and ϕm,i = ai ∈ {a1, a2, . . . , aI}. The value of ai can be set as an arbitrary
integer for simplicity provided that there is no popular rank. However, if the popular rank exists,
the value of ai will be set according to the way used for Zipf distribution setting and refer to the request
history of the corresponding user.

We now show that the preference matrix A with the complete request dataset is low rank. For UE k,
the entries Ajk corresponding to the m-th eRRH cluster Rm are assigned as the same ai since all eRRHs
in the cluster should serve UE k. Thus, with a suitable realignment of users and eRRHs, A can be
represented as a block-diagonal matrix where the entries within the diagonal blocks are positive and
the others within the off-diagonal blocks are all 0’s. Furthermore, for each “positive" block, all entries
of the diagonal sub-blocks are ϕm,i (shown in Figure 3). The following theorem provides the upper
bound for the rank of the complete preference matrix.

Figure 3. The structure of matrix A corresponding to the complete request data for the entire F-RAN.
(a) presents the structure of the entire matrix; (b) is used to illustrate each positive sub-block with
different shades of gray, the rows and the columns of the sub-block correspond to the users and the
eRRHs in the same cluster.

Theorem 1. (Low rank structure of request preference data model): The complete preference matrix
A ∈ {a1, a2, . . . , aI , 0}N×K has rank r = Ne−ug I at most, where Ne−ug and I correspond to the number of
multicast eRRH/UE clusters and that of content types respectively.

Proof. Suppose that all clusters of eRRHs are in service, then the eRRHs set can be divided into Ne−ug

clusters, i.e., Rm, m = 1, . . . , Ne−ug. Further, for each eRRH/UE cluster, the UEs of Gm can be classified
into several common preference sub-groups, denoted by Gm(i) and the number of the sub-group Gm(i)
in the entire network is no more than Ne−ug I. After suitable reordering indices of nodes (UEs) in Gm(i),
the corresponding row vector of A are all identical to the following form

a = (0, . . . , 0, ϕm,i1 , . . . , ϕm,i1 , . . . , ϕm,idm
, . . . , ϕm,idm︸ ︷︷ ︸

the mth cluster

, 0, . . . , 0), (2)

where dm is the cardinality of the requested content type subset {i1, . . . , idm} in Gm and dm ≤ I.
Then let us take all UE subgroups into account, we operate column vectors of the m(i) sub-group
by the column elementary transformation, which is equivalent to subtracting the first column vector
of the i-th sub-group from the other ones, etc. Do the similar operations for row vectors of A and
rearrange the rows and columns of A, we obtain
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A→
(

Φ 0

0 0

)
and Φ =


ϕ̃ 0 · · · 0

0 ϕ̃ · · · 0
...

...
. . .

...

0 0 · · · ϕ̃

 , (3)

where Φ ∈ Rr×r and rank(A) = rank(Φ). ϕ̃ denotes arbitrary ai for convenience. It is easy to deduce
that rank(Φ) ≤ Ne−ug I, therefore rank(A) ≤ Ne−ug I.

Despite of a clear structure retained by complete preference matrix A, the restricted mobility and
the randomness of request for UEs (i.e., the Prerequisite (i) and (ii)) lead to a serious observation missing
on the complete request preference data (the preference matrix A). The more likely situation is that a
very limited number of requests are recorded and can be indicated by PΩ (A) , where Ω is the index
set of the recorded entries, PΩ denotes the orthogonal projection operator onto the span of matrices
vanishing outside of Ω, so that the (j,k)-th component of PΩ (A) is equal to the (j,k)-th component of A
when (j, k) ∈ Ω and zero otherwise. Especially, for each row (column) of A, we find that the number
of non-zero entries in the row indicates the activity of the corresponding UE. Therewith, we denote
the number of non-zero entries in the kth column as Nk, and then define the activity of the kth UE as
q̃k = Nk/NΩ, where NΩ = |Ω| represents the number of observed non-zero entries in A. The activity
vector of all UEs can be further defined as q = (q̃1, . . . , q̃K)

T . Similarly, the activity of eRRH means
the measurement that the eRRH caches the proper contents and serves UEs. The activity vector of all
eRRHs can also be defined as p = ( p̃1, . . . , p̃N)

T where p̃j = Nj
/

NΩ (Nj is the number of non-zero
entries in the jth row). It is observed that activity brings out the non-uniform observations/samples.

With these known conditions, we define the content edge-caching pre-mapping construction as
preference data matrix inferring. More specifically, the core mission is inferring the unknown potential
relationships between the UE and eRRH in the F-RAN, and further partitioning the cluster according
to the criterion associated with preference and randomness of requests in active area. On this basis,
our eRRH content per-caching strategy is designed as follows: Guided by the entries of the inferred
preference matrix (i.e., the pre-mapping), BBU pool selects the most popular content of each type
according to the inferred results, and then pre-sends contents to several alternative eRRHs for the
corresponding UE cluster service. Besides, if the eRRH cache exists in free space, the most popular
contents except the pre-sent ones will be transmitted to the eRRH until no space left in the edge-cache.
Due to the prediction, this strategy based on pre-mapping seems to satisfy the users’ needs with high
probability and meaningful in the scenario such as the super-resolution videos pre-caching for high
throughput transmission QoS and low energy consumption.

3. Nonuniform Pre-Mapping Construction via Nonconvex Optimization

In this section, on the basis of Theorem 1 and properties aforementioned, we establish a
non-uniform pre-mapping to infer the unknown potential preference data in the F-RAN and further
achieve eRRH/UE cluster partition according to the structure of the preference matrix. Since the
complete preference matrix A obeys the low-rank structure, it is reasonable to utilize the low-rank
matrix completion [16–18] to achieve pre-mapping construction. However, main methods based
upon low-rank matrix completion algorithms are assumed that the data are sampled under uniform
distribution. This does not hold for our scenario and system model, owing to the close relationship
between the preference data distribution and the distinct activity levels of participants. To overcome
the obstacle of non-uniform observation, we propose the non-convex matrix completion with iteratively
re-weighted modified trace norm regularization for clustering:

Given a distribution Pjk (j = 1, . . . , N and k = 1, . . . , K) that reflects the UEs’ activity
of requesting, for the objective matrix X ∈ {a1, a2, . . . , aI , 0}N×K, the modified trace norm of
X ∈ RN×K is defined as ‖X‖∗(p,q) =

∥∥∥diag(p)1/2Xdiag(q)1/2
∥∥∥
∗
. Here, ‖•‖∗ denotes the trace
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norm, σĩ

(
diag(p)1/2Xdiag(q)1/2

)
denotes the ĩ-th singular value of the matrix and redesignated as

σĩ,(p,q) for simplicity. diag(p)1/2 is the diagonal matrix with the activity vector of all participants:

p =
(

p1, . . . , pj, . . . , pN
)T , where pj represents the row marginal, i.e., pj = ∑K

k=1 Pjk. Similarly
diag(q)1/2 corresponds to the columns of X and possesses similar relations (i.e., qk = ∑N

j=1 Pjk)
(see Section 2). With this definition, matrix completion with modified trace norm regularization
involves the following optimization

arg min
X

‖X‖∗(p,q) s.t. PΩ (X) = PΩ (A). (4)

Note that compared to l1 norm, the lϑ quasi-norm , 0 < ϑ < 1, makes a closer approximation
to the counting norm l0, which is the number of nonzero entries of x, the variants of non-convex
ls for 0 < ϑ < 1 have been used to develop algorithms for recovering low-rank matrices in [19,20].
With this consideration, we let ‖X‖ϑ

ϑ(p,q) = ∑i σϑ
i,(p,q) and the substitution of the optimization (4) can

be given as follows:
arg min

X
‖X‖ϑ

ϑ(p,q) s.t. PΩ (X) = PΩ (A), (5)

where 0 < ϑ < 1. We then propose an accelerated non-convex non-uniformed matrix completion
algorithm (ANNMC) via variant quasi-norm optimization to adapt to the preference inference and
eRRH/UE cluster partition for pre-caching in this section. The iteratively re-weighted framework and
the accelerated framework are utilized for the algorithm design.

3.1. Nonconvex Nonuniformed Matrix Completion Agorithm

Inspired by the iterately re-weighted framework via l1 norm in compressed sensing, an iterative
procedure for solving the minimization problem (5) is as follows:

1. Set the iteration count t = 1 and w(0)
ĩ

= 1, ĩ = 1, . . . , N.
2. Solve the weighted modified trace norm minimization problem

X(t) = arg min
X

∑̃
i

w(t−1)
ĩ

σĩ,(p,q) s.t. PΩ (X) = PΩ (A), (6)

3. Update the weights: for each ĩ = 1, . . . , N,

w(t)
ĩ

=
1(

σ
(t)
ĩ,(p,q)

+ ε ĩ

)1−ϑ
, (7)

where ε ĩ > 0 in order to provide stability and to ensure that a zero-valued

σ
(t)
ĩ

(
diag(p)1/2Xdiag(q)1/2

)
does not strictly prohibit a nozero estimate at the next step.

4. Terminate on convergence or when t = tmax. Otherwise, increment t and go to step 2.

In this method, using an iterative framework to construct the w(t)
i tends to allow for successively

better estimation of the nonzero coefficients. Even though the early iterations may find inaccurate signal
estimates, the largest signal coefficients are most likely to be identified as nonzero. Once these locations
are identified, their influence is downweighted in order to allow more sensitivity for identifying the
remaining small but nonzero signal coefficients.
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3.2. Accelerated Agorithm for Convex Subproblem

Subsequently, we develop an accelerated variant for non-convex non-uniformed low-rank matrix
completion algorithm. By referring optimization in [21], the subproblem (6) in iteration t can
come down to

arg min
X

τ ∑̃
i

w(t−1)
ĩ

σĩ,(p,q)+
1
2
‖X‖2

F s.t. PΩ (X) = PΩ (A). (8)

Its Lagrangian function is defined as

L (X, Y) = τ ∑̃
i

w(t−1)
ĩ

σĩ,(p,q)+
1
2
‖X‖2

F + 〈Y,PΩ (X)−PΩ (A)〉 , (9)

and its dual function is
f (Y) = inf

X
L (X, Y). (10)

We then intend to utilize the dual function (10) to solve the subproblem (8). To this end, We first
deduce the properties of the dual function f (Y) and then illustrate how to achieve the optimal solution
of the subproblem (8) from its dual optimum directly. Now the following results should be given,
which are essential to obtain the properties of f (Y). We omit the proofs of the properties here and
present them in Appendix A.

Theorem 2. For τ ≥ 0, Y ∈ RN×K and w =
{

wĩ
}

ĩ∈N+ , 0 ≤ w1 ≤ · · · ≤ wN , the solution of the optimal
problem minX

1
2 ‖X− Y‖2

F + τ ∑ĩ wĩσi,(p,q) obeys

Dτ,w,(p,q) (Y) = diag(p)1/2U(p,q)Στ,w,(p,q)V
T
(p,q)diag(q)1/2, (11)

where Στ,w,(p,q) = diag
(

σĩ

(
diag(p)−1/2Ydiag(q)−1/2

)
− τwĩ

)
+

, and diag(p )−1/2Ydiag(q)−1/2 =

U(p,q)ΣY,(p,q)VT
(p,q).

Theorem 2 plays the crucial role in formulating the optimal of the subproblem (8). Additionally,
Dτ,w,(p,q) (•) is equal to Dτ (•) when vector w = p = q = 1 = (1, . . . , 1)T , which is the crucial
value for the traditional trace norm minimization solving. Based on the properties of Moreau-Yosida
regularization and Theorem 2, we obtain the following result.

Theorem 3. For any X, Y ∈ RN×K, we have:∥∥∥Dτ,w,(p,q) (X)−Dτ,w,(p,q) (Y)
∥∥∥2

F
≤
〈
Dτ,w,(p,q) (X)−Dτ,w,(p,q) (Y) , X− Y〉 , (12)

which indicates that Dτ,w,(p,q) (Y) is globally Lipschitz continuous with modulus 1.

With Theorems 2 and 3, we obtain the following property of the dual function f (Y).

Theorem 4. For any τ ≥ 0, the dual function f (Y) is continuously differentiable with Lipschitz continuous
gradient at most 1, and the primal optimal X̂ of the subproblem (8) is given by X̂ = Dτ,w,(p,q)

(
PΩ

(
Ŷ
))

, when
the dual optimal Ŷ of the subproblem (8) is obtained.

With the above properties, let q (Y) = − f (Y). Since f (Y) is the dual function of (8), f (Y) is
concave and subsequently q (Y) is convex. Thus, for any Y1, Y2 ∈ RN×K, 〈q (Y1)− q (Y2) , Y1 − Y2〉 ≥
0. From Equations (A8) and (A10) in Appendix A, it is also easy to show that q (Y) satisfies
∇q (Y) = PΩ

(
Dτ,w,(p,q) ((Y))−A

)
and belongs to S1,1

0,1
(

RN×K), which is the class of convex

functions with Lipschitz gradient (i.e., for some 0 ≤ µ ≤ 1 and any Y1, Y2 ∈ RN×K, q (Y) satisfies
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‖∇q (Y1)−∇q (Y2)‖F ≤ ‖Y1 − Y1‖F and 〈∇ f (Y1)−∇ f (Y2) , Y1 − Y2〉 ≥ µ ‖Y1 − Y2‖2
F). Therefore,

optimization (8) can be solved by minimizing the objective function q (Y), i.e.,

min
Y

q (Y). (13)

After acquiring this equivalent optimization minY q (Y), in the following we propose to solve this
smooth convex optimization problem by using the Nesterov’s method, a very powerful optimization
technique for class S1,1

µ,L
(

RN×K) , µ ≥ 0, L < +∞ [22]. For q (Y) belonging to S1,1
0,1
(

RN×K),
The Nesterov’s method for this problem utilizes two sequences: {Yl} and {Zl}, Yl , Zl ∈ RN×K,

Zl = Yl + βl (Yl − Yl−1), Yl+1 = Zl −
1
Ll
∇q (Zl).

where βl is a tuning parameter, and 1/Ll is the step size. By utilizing the Nemirovski’s line search
scheme [23], which developed from the Nesterov’s method, for Ll and βl , the update scheme is that
Ll+1 = 2Ll and βl is independent on Ll . Starting from an initial point Y0, Zl and Yl+1 can be computed
recursively, and arrive at the optimal solution Ŷ. We get Algorithm 1 to achieve the optimal solution of
the subproblem (8) in the t-th iteration from its dual optimum directly. By using the Nesterov’s and
Nemirovski’s scheme framework, the Algorithm 1 for the subproblem can achieve the convergence
rate of O

(
1
/

t2
max
)
.

Algorithm 1 Accelerated Algorithm for Subproblem (6)

Input: µ̃, α−1 = 0.5, Y(t)
−1 = Y(t)

0 = Y(t−1)
n , L−1 = L0, γ0 ≥ µ̃, λ0 = 1, ϑ, ε ĩ > 0;

Output:Y(t)
n , rank

(
Y(t)

n

)
;

1: for l = 0, 1, 2, . . . , n do
2: while true do
3: compute αl ∈ (0, 1) as the root of Llα

2
l − (1− αl) γl − αl µ̃ = 0, γl+1 = (1− αl) γl + αl µ̃,

βl =
(1−αl−1)γl

(γl+Ll αl)αl−1
;

4: computeZ(t)
l = Y(t)

l + βl

(
Y(t)

l − Y(t)
l−1

)
; Y(t)

l+1 = Z(t)
l −

1
Ll
∇q
(

Z(t)
l

)
; Ll = 2Ll ;

5: end while
6: λl+1 = (1− αl)λl ;
7: end for
8: return Y(t)

n , rank
(

Y(t)
n

)
;

We then summarize the proposed ANNMC algorithm and represent the execution steps. For the
t-th iteration, we solve the subproblem (8) by Algorithm 1 to get a coarse result firstly. Since the entries
of the objective preference matrix belong to the set {a1, a2, . . . , aI , 0}, we add the quantification steps
to ensure the result matrix in the feasible domain. To fit the observations better, the quantification
thresholds are amended by the rate of value ai in the observations. Thus let the rate pai = NΩ (ai)

/
NΩ

where NΩ (ai) is the number of ai in the observation and the quantification rule is shown in Algorithm 2.
It aims to reduce the number of iterations as much as possible that the quantification is integrated
in the t-th iteration but not after solving problem (5). In addition, the convergence of the ANNMC
algorithm can be guaranteed due to the convergence of the iteratively re-weighted minimization for ls
quasi-norm [19]. Specifically, because the ANNMC algorithm is based on the iteratively re-weighted
framework and the

{
Y(t)

}
is generated by solving subproblem (8), there exists Ŷ, an accumulation

point of
{

Y(t)
}

, which is the first-order stationary point of problem (5). The method of the convergence
proof is analogous to the method in [19,24], we omit it for conciseness.

There exists an additional remark that in practice the pre-mapping constructed by the proposed
algorithms can only predict the preference-caching relations between UEs and eRRHs accurately
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with high probability due to the posteriori estimation. However, based on sufficient sampled data in
a certain period, the preference/caching manner can be mining via the pre-mapping. The edge
pre-caching strategy mentioned in Section 2 can facilitate the service with high QoS for users
based on recommendation.

At the end of this section, we provide a concise example from an application to illustrate our
algorithm at work. Assume that there exist C files prepared to be sent to eRRHs for pre-caching.
Then, we execute the following steps to accomplish the task: (i) By recording the fragmentary request
information of the UEs in the designated region, we first use the ANNMC algorithm to get the
pre-mapping which concludes the UEs’ preference inferences and the corresponding eRRHs accessing
information associated with the geographical influence. (ii) Since there are many intersection among
the preference sets of different UEs in the same group, we merge these preference sets and regard the
derived union as the criterion of the edge pre-caching. (iii) Classify the C files as I types according to
the UEs’ preferences, and rank the file types and the files of each type respectively via the popularity in
society and history of the UEs’ requests. (iv) Determine which eRRH cluster serves the corresponding
UE group by using the pre-mapping. Then divide files into messages of the same size and deliver
to the eRRHs based on the criterion of the edge pre-caching, until the cache capacity is exhausted.
(V) If the pre-cached messages match the requests of the served UEs, the messages will be sent to the
UEs and get the subsequent messages of the same files from BBU pool. Otherwise the fragmentary
request information record of the UEs will be updated and then the pre-mapping is modified based on
the ANNMC algorithm, and so on.

Algorithm 2 ANNMC Algorithm
Input: µ̃, α−1 = 0.5, Y−1 = Y0, L−1 = L0, γ0 ≥ µ̃, λ0 = 1, ϑ, ε ĩ > 0;
Output:Ytmax , rank (Ytmax );

1: for t = 1, 2, . . . , tmax do
2: solve subproblem (8) by Algorithm 1;
3: end for
4: if the (k,j)-th component of Ytmax satisfies(

pai−1 ai−1 + pai ai
)/(

pai−1 + pai

)
≤ (Ytmax )j,k <

(
pai ai + pai+1 ai+1

)/(
pai + pai+1

)
,

where pai = NΩ (ai)
/

NΩ and i = 2, . . . , I;
5: then
6: (Ytmax )j,k = ai;
7: else
8: (Ytmax )j,k = 0;
9: end if

10: return Ytmax , rank (Ytmax );

4. Energy Consumption Analysis

In light of mass data generated by billions of devices, we always prefer less energy consumption
in data transmission, storing and processing. For this reason, edge caching aims to reduce repeated
data transmission from original servers, which means that unnecessary energy consumption on packet
delivery between the edge tier and the server tier can be saved. Moreover, caching itself also consumes
extra energy while keeping RAM or disk memory running. To determine and sum up the overall
cost of the entire simulation on the F-RAN network architecture, in summary, we may consider three
parts of the energy consumption, the energy for device maintaining, content caching and transmission.
Based on the content service strategy mentioned in Section 2 (also shown in Figure 2), we present the
calculation of total energy consumption for each eRRH as follows:

Etotal = Edevice + Ecache + Etrans. (14)
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Note that once the devices are deployed and work, the part to maintain all devices in the F-RAN
can not be expressed in the total energy consumption since it is a fixed cost and can only be reduced
by shutting down some devices [25]. Therefore, consider a fixed number of devices (eRRHs and users)
in the F-RAN obeying the content per-caching strategy in Section 2 and all eRRHs are received and
caches contents with the same size and number as the initial state. Then the total energy consumption
analysis for each eRRH can be equivalent to the discussion on its total energy consumption change,
which is the total energy cost for the content caching and the transmission for content update:

Etotal∆ = Ecache + Etrans∆. (15)

Especially, the caching energy cost

Ecache = ηEcontent, (16)

where Econtent is the power consumption of keeping a content object in an eRRH and η is the is the
size of the eRRH cache (the number of the content object). Meanwhile, since the content transmission
energy cost of each eRRH contains the content sending and receiving energy cost by BBU pool and
eRRH respectively, the transmission energy cost for the single content update Econtent∆ = Esend + Erecv.
Then similar to the energy consumption linear model in [26,27],

Etrans∆ = η ((1− θ) Econtent∆ + δ) , (17)

where δ represents fixed costs and θ represents the rate of the required contents for the cluster users in
the cache (i.e., 1− θ represents the content update rate).

With this energy consumption analysis model, we discuss Etotal∆ under the condition upon
the implement of the pre-mapping constructed by the proposed preference inference algorithm,
i.e., ANNMC. For Ecache, one part of the Etotal∆, because the inference algorithm with appropriate
non-uniform sampling rate may accurately estimate the preference data of the cluster with high
probability, the number of the caching contents η would be less than that of the blind caching.
In other words, the accurate preference estimation may prompt the eRRH cluster cache only several
certain kinds of contents but not as many kinds as possible to ensure the QoS of F-RAN. On the
other hand, for Etrans∆, θ will be determined by the inference error of the preference data. Thus,
the Etrans∆ directly associates with the accuracy of the proposed inference algorithm. Let ηmin denote
the minimum number of cached content objects and ηmax denote the specific maximum number of
contents allowed for caching, then the range of the total energy consumption change for each eRRH
with the inference guidance is

ηminEcontent ≤ Etotal∆|in f er ≤ ηmax (Econtent + Econtent∆ + δ) . (18)

Especially, with the low-rank assumption of the preference data and the proper low non-uniform
sampling rate, the proposed ANNMC for inference can ensure the total energy consumption to
approximate the lower bound with high probability, due to the foreseeable algorithm accuracy.

5. Performance Evaluations

The performance evaluations are illustrated in this section by using MATLAB. We first perform
experiments on the synthetic networks, including static and dynamic cases, and show that our system
model and the proposed pre-mapping construction method is feasible on the task of content preference
distribution inference for the pre-caching in the F-RAN. Additionally, experimental simulations about
the energy consumption performance of the pre-caching strategy are provided as well. To ensure
that our results are reliable, we conduct all experiments 200 times, and average the results from
all of the trials.
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5.1. Performance of the Preference Inference

To verify the validity, we first consider a pre-mapping (complete preference matrix A) constructed
by the synthetic F-RAN link data. The observation matrix PΩ (A) is formed by sampling some entries
from A. To be specific, for the F-RAN, we set several eRRH clusters. The clusters of UEs are formed on
the basic pattern of the A and located randomly. Each UE cluster is served by one of eRRH cluster.
Accordingly, A possesses complete diagonal-block structure which is mentioned and analysed in
Section 2. The size of each UE cluster is larger than 20 and the sum of the sizes is K = 1000 and the size
of each eRRH cluster is larger than 5 and the sum of the sizes is N = 200. Meanwhile, in the F-RAN
the content types is sorted via popularity and its number I = 15. For convenience, the preferred
type subset of each UE cluster is sampled from the type set by Zipf distribution obeying the sorting.
We further assume that only a part of requests are recorded by non-uniform sampling and the file types
are valued by different integers (the max number of the content types contained by each eRRH cluster
is set to be 5 as an example). The probability distribution of sampling ensures that each row (column)
of the original matrix is sampled with different ps ∈ (0, 1), and the practical sampling-rate of the
original matrix A is defined as ‖PΩ (A)‖0,1

/
‖A‖0,1, where ‖•‖0,1 is equal to the number of non-zero

entries in the matrix. Then we use our proposed ANNMC algorithm to estimate the complete matrix
A and compare the performance of our approach to traditional Alternating Least Square (tALS) [28],
the weighted trace norm regularization (WTNR) [29] and Accelerated Singular Value Thresholding
(ASVT) [30] for the content caching pre-mapping construction problem. The details of the ANNMC
parameters are shown in Table 1, and the experimental settings of the compared methods are the same
with the corresponding literatures.

Table 1. The parameter settings of the ANNMC.

Parameter τ ϑ εi µ̃ α−1 L0 λ0

Setting 2
√

NK 0.5 10−7 0.1 0.5 ps
/

1.1 1

We evaluate the performances by the similarity between the inferred matrix Â and the original
matrix A to indicate the accuracy of estimation, the definition of which is SA,Â =

∣∣〈A, Â
〉∣∣/‖A‖F

∥∥Â
∥∥

F.
The range of the practical sampling-rate is from 0.1 to 0.9 and plot the inference accuracy in Figure 4.
Apparently, the proposed non-uniform algorithm outperforms others due to higher accuracy. Moreover,
we choose matrices (200× 1000) with ranks r = 6, 8, . . . , 24, 26 (i.e., the number of the clusters) and
non-uniform sampling rate ps = 0.25 for matrix completion. For each algorithm, we complete the
structure with different Ne−ug and compute recovery relative accuracy by similarity. The result is
shown in Figure 5a. It is observed that ANNMC possesses the better robustness of non-uniform matrix
completion in the certain range of eRRH/UE cluster number. We further compare ANNMC and
WTNR due to their better estimation performance than the others in the simulation. As the results
shown in Figure 5b, ANNMC outperforms WTNR with non-uniform sampling on low sampling-rate
based estimation, even though its convergence rate is only slightly faster than WTNR. An visualized
example of the pre-mapping constructed by ANNMC algorithm is also shown in Figure 6 (Ne−ug = 15
and I = 15 with sampling rates ps = 0.2 and ps = 0.4), which consists with our results.

5.2. Performance of the Dynamic Preference Inference

In general, the pre-mapping A varies during a time period long enough. Accordingly,
the observations of this dynamic preference matrix over time essentially introduce time dimension
to the problem of mining the potential eRRH/content-UE relationships. Therefore, a more realistic
scenario is inferring the A by utilizing the historical records of the eRRH content caching and UEs’
requests in global and temporal evolvement perspectives. In particular, assume that we are given
an incomplete non-uniformed observation tensor (or 3-dimensional array), which consists of the
preference matrix pattern corresponding to the snapshots of the underlying dynamic relationships at



Sensors 2019, 19, 1422 13 of 21

time T = T0 + 1, T0 + 2, . . . , T0 + T̂. Then the preference inference task is to estimate the possible pattern
of the dynamic preference matrix at time T0 + T̂ based on the given the 3-dimensional observation
tensor. It is notice that, despite maintaining the dynamic property, the underlying eRRH/content-UE
relationships in reality always display some “redundancy” attributed to the gradual periodic variation
and the relatively stability [31]. With this property, the tensor consisting of the preference matrix
patterns at T can be considered to be low-rank.

Figure 4. Comparison of similarity by different preference inferring algorithms (tALS, ASVT, WTNR
and ANNMC) on the synthetic dataset. The number of blocks Ne−ug = 10 corresponding to (a),
20 corresponding to (b) and 30 corresponding to (c). The range of the non-uniform sampling-rate ps is
varied from 0.1 to 0.9 and the content types I = 15.

Figure 5. (a) shows the estimation similarity of the structure estimation for the preference matrix A
with the number of the content types I = 15, the number of groups Ne−ug = 6, 8, . . . , 26 and the
non-uniform sampling-rate ps = 0.25; (b) is Convergence rate of ANNMC and WTNR on the synthetic
data A with the number of the content types I = 15, Ne−ug = 15 and the non-uniform sampling-rate
ps = 0.25.

Figure 6. An visualized example of the pre-mapping construction for the preference matrix A
(Ne−ug = 15, I = 15). (a) is the original preference matrix; (b) is the estimation result with 20%
non-uniform samples (the similarity is 0.9942); (c) is the estimation result with 40% non-uniform
samples (the similarity is 0.9991).
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To construct synthetic networks for simulation, we first consider a complete dynamic
eRRH/content-UE relationship network whose preference tensor is A ∈ RI1×I2×I3 ,
I1 = N, I2 = K, I3 = T̂. The slide of A at time T is an preference matrix pattern A(T) in
the form of (1). In addition, for the gradual periodic variation, only a few kinds of A(T) (eRRH-UE
group partition styles) exist in A and the patterns similar to each others are usually close in time.
The observation tensor PΩ (A) is formed by sampling some entries from A non-uniformly. Concretely,
we let the F-RAN with the same settings in Section 5.1. Besides, for A, let the eRRH-UE cluster number
be varied from 10 to 30 with step size 5, and for each cluster, 4 eRRH-UE group styles are generated
randomly with Gaussian distribution as the basic styles. Then each basic style generates the other
derived styles by perturbation and the total number of group style set is 40. We further assume
that I3 = T̂ = 100 and each group style appears randomly but more than once. The non-uniform
sampling-rate of the original tensor A from 0.1 to 0.9 (it is realized by non-uniform sampling each
slide with the given sampling-rate). Then with the given observed PΩ (A), the task of the preference
inference at time T0 + T̂ is achieved by solving the following problem:

arg min
X∈RI1×I2×I3

3

∑̂
i=1

∥∥∥X(î)

∥∥∥ϑ

ϑ(p,q)
s.t. PΩ (X ) = PΩ (A), (19)

where X(î) ∈ RIî×I1···Iî−1 Iî+1···I3 is the kth mode on X , and extracting the slide of X at the time T0 + T̂

as the inferred pattern Â(T0+T̂).
Similar with the approach in Section 3, we use ten-ANNMC, the variation of the algorithm

(2) for tensor completion problem (19) to estimate Â(T0+T̂), and compare the performance of our
approach to the variations of the same algorithms in Section 5.1 for tensor completion (ten-tALS,
ten-ASVT and ten-WTNR). S

A(T0+T̂),Â(T0+T̂) , the similarity between the inferred matrix Â(T0+T̂) and the

original setting A(T0+T̂), is utilized to indicate the accuracy of estimation as well. We implement
the algorithms to infer one of the group patterns generated before with the eRRH-UE cluster

number N(T̂)
e−ug = 10, 20, 30 respectively and plot the inference accuracy in Figure 7. The inferred

results is shown that our inference approach can almost be accurately estimated the objective group
style and apparently outperforms the others. Meanwhile, the results for tensor completion case is
worse than the matrix completion in Section 5.1 when the sampling-rate is low (ps = 0.1 and 0.2).
This phenomenon is due to the fact that the inference based on tensor completion blends the the
observation records of the different patterns with the Â(T0+T̂). However, this strategy is benefit for the
content pre-caching since the inferred matrix pattern can partly integrate the features of the observation
A(T) (T = T0 + 1, . . . , T0 + T̂ − 1) and be more likely to meet the requests.

Figure 7. Comparison of similarity by different preference inferring algorithms for tensor completion
(ten-tALS, ten-ASVT, ten-WTNR and ten-ANNMC) on the synthetic dataset. The number of blocks

N(T̂)
e−ug = 10 corresponding to (a), 20 corresponding to (b) and 30 corresponding to (c). The range of the

non-uniform sampling-rate ps is varied from 0.1 to 0.9 and the content types I = 15.
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5.3. Performance of the Energy Consumption

In this section, simulation results are provided to evaluate the energy consumption of the proposed
cluster content caching strategy in the F-RAN. The terms for energy consumption simulation are
consistent with the description in Section 4. Referring to the linear energy consumption model
and the real energy measurements in [26], the power consumption of the single content caching for
the eRRH and backhaul transmissions are set as Econtent = 0.05 W·sec and Econtent∆ = 0.24 W·sec,
respectively. Assume that the content type number I and Ncont, the number of the best popular
contents corresponding to the different types, are given and large enough. Also, all of the eRRHs
in one cluster cache the same contents to ensure the service quality. We then construct the complete
preference matrix A according to the method mentioned in Section 5.1 at the beginning as reference.
The contents cached in each eRRH cluster for UEs’ requests are determined by using pre-caching
strategy in Section 2 (which can be presented by the value set of the corresponding block in A).
Since the caching contents in this scenario are exactly matched the UEs’ requests without retransmission,
the corresponding average total energy cost for each eRRH can be considered to be the minimum, i.e,
Emin−total = Aver{0.05ηmin}W·sec.

With the aforementioned assumptions, two pre-caching strategies are applied and compared for
energy consumption analysis. The first one is the proposed edge caching/transmission strategy based
on the content caching pre-mapping and description in Section 2. Due to the fact that η is the is the
size of the eRRH cache (see Equation (16)) and η ≥ ηmin, to improve the QoS for users, we will use
the residual memory space to non-repetitively cache the contents by Zipf distribution, which obeys
the popularity sorting for all contents. Subsequently, all cache in eRRH will be used and the average
caching anergy cost is 0.05η W·sec. Furthermore, note that the probability of retransmission is closely
associated with the accuracy of the A inferred by ANNMC, we set θ is equal to the similarity between
the Â and the A, i.e., SA,Â. Therefore, with (16) and (17), the average total energy cost for each eRRH
based on the proposed strategy is presented as Aver{Etotal∆|in f er} = (0.05 + 0.24 (1− θ)) η W·sec
(δ in (17) is omitted since it is extremely smaller than the other terms). To compare performances,
the traditional uniform per-caching strategy is given for simulation. For the traditional one, the active
eRRHs in the F-RAN utilize all caches to retain the same content set Sη selected by Zipf distribution
obeying the popularity sorting for all contents. Hence, while the Ecache is equal to that of the proposed
strategy, the retransmission energy cost is Aver {0.24ηretrans} W·sec where ηretrans =

∣∣Sm − Sη

∣∣.
Then Aver{Etotal∆|trad} =

(
0.05η + 0.24Aver

{∣∣Sm − Sη

∣∣}) W·sec. Both of the strategies are compared
with the minimum consumption Emin−total , which represents the lower bound.

The energy consumption performances of the per-caching strategies are evaluated as follows.
For one thing, given the numbers of the UEs and eRRHs respectively (K = 1000, N = 200) and fixed
the UE/eRRH cluster number (Ne−ug = 15), the number of the all alternative contents Ncont and the
Zipf exponent s are changed respectively (Ncont = 15, 25; s = 0, 0.5, 1, 2). The non-uniform sampling
rate for pre-mapping construction by ANNMC is set to be ps = 0.2 and the corresponding inference
similarity SA,Â = 0.9942. The average energy consumptions generated by the different number of
caching contents in each eRRH are illustrated in Figure 8. By given Ne−ug = 15 and s = 0.5, the trends
of the energy consumption via the changes of the caching content number and the alternative content
number are shown in Figure 9 as well. As shown in the figures, the proposed caching strategy via the
pre-mapping inference emerges better performance of the energy efficiency than the traditional one.

Meanwhile, the energy efficiency performance of the traditional strategy is approximating to the
caching strategy via inference as s increasing, since the user interests converge to fewer popular content
objects stored in the BBU pool. For the other, we fix Ncont and the number of caching contents in each
eRRH (µ) and show the energy consumption associated with the number of the UE/eRRH clusters in
Figure 10. While the better performance of the proposed strategy and the similar properties related
to the Zipf exponent s are illustrated in this figure, the average energy consumption of the proposed
strategy slightly increases as the UE/eRRH cluster number is enlarged (i.e., the size of the cluster is
decreased), since the rank of the matrix (i.e., Ne−ug) effects the inferring accuracy by using ANNMC
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(SA,Â = 0.9954, 0.9908, 0.9866, 0.9799, 0.9749, 0.9712 when Ne−ug changes from 15 to 40 with 5 interval).
Also, due to the user interests converging to fewer popular content objects when s is increasing as well,
the average energy consumption increasing trend is weaken. Furthermore, by given µ = 10, s = 0.5
and varied Ne−ug form 40 to 200, the trends of the energy consumption via the changes of the caching
content number and the UE/eRRH cluster number are shown in Figure 11. It illustrates that the energy
efficiency performance is weaken along with the increasing of the caching content number and the
UE/eRRH cluster number. Especially, fixing the caching content number, the worst energy efficiency
performance of our proposed strategy is almost reached when the UE/eRRH cluster number meets
the maximum (i.e., Ne−ug = 200).

Figure 8. Average energy consumption of each eRRH in the F-RAN on the synthetic dataset (measured
as J due to J = W·sec). Two different edge caching strategies are considered: (i) uniform caching
strategy via content Zipf distribution, (ii) inferring caching strategy via pre-mapping (inferred by
ANNMC with non-uniform sampling rate ps = 0.2) and Zipf distribution. The average energy
consumptions of both strategies are compared with the minimum consumption Emin−total . The range
of the caching content number of each eRRH is varied from 2 to 12. The Zipf exponent s = 0, 0.5, 1, 2,
and (a–d) correspond to different s with Ne−ug = 15, Ncont = 15 and 25.

Figure 9. Average energy consumption range of each eRRH in the F-RAN on the synthetic dataset
(measured as J) with the setting that Ne−ug = 15 and Zipf exponent s = 0.5. (a) is the uniform caching
strategy via content Zipf distribution; (b) is the proposed inferring caching strategy via pre-mapping
(inferring by ANNMC with non-uniform sampling rate ps = 0.2) and Zipf distribution; (c) is the
minimum consumption Emin−total .
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Figure 10. Average energy consumption of each eRRH in the F-RAN on the synthetic dataset
(J = W·sec). Two different edge caching strategies are considered: (i) uniform caching strategy
via content Zipf distribution, (ii) inferring caching strategy via pre-mapping (inferred by ANNMC with
non-uniform sampling rate ps = 0.2) and Zipf distribution. The average energy consumptions of both
strategies are compared with the minimum consumption Emin−total . The range of the eRRH/UE cluster
number is varied from 15 to 40. The Zipf exponent s = 0, 0.5, 1, 2, and (a–d) correspond to different s
with µ = 10, Ncont = 20 and 40.

Figure 11. Average energy consumption range of each eRRH in the F-RAN on the synthetic dataset
(measured as J) with the setting that µ = 10 and Zipf exponent s = 0.5. (a) is the uniform caching
strategy via content Zipf distribution; (b) is the proposed inferring caching strategy via pre-mapping
(inferring by ANNMC with non-uniform sampling rate ps = 0.2) and Zipf distribution; (c) is the
minimum consumption Emin−total .

6. Conclusions

In this paper, based on digging out the non-uniform observed users’ network behavior
information, we propose an edge content pre-caching strategy in F-RANs to improve the QoS for
the users and energy efficiency. Especially, we analyze the relationships among the users’ activity,
the content requesting and the state of the eRRH caching, and established pre-mapping for users’
content preference inferring by an accelerated non-convex matrix completion algorithm with the
non-uniform observations. The dynamic scenario is also discussed and the developed variation based
on tensor completion possesses good performance for the inferring task. In addition, the energy
consumption analysis is given to reveal the properties of the pre-mapping based caching strategy.
The simulation results show that the inferring algorithm for pre-mapping construction (preference
inferring) is effective. Meanwhile, the inferring-based caching strategy possesses the advantages in
energy saving compared to traditional uniform caching via Zipf distribution.
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Appendix A

Proof of Theorem 2. Let Σ = diag
(

σĩ,X

)
and Σ(p,q) = diag

(
σĩ,(p,q)

)
, which implies the nonzero

entries of the diagonal matrices are in non-increasing order. Since the penalty term only depends
on the singular values of diag(p)1/2Xdiag(q)1/2, problem minX

1
2 ‖X− Y‖2

F + τ ∑ĩ wĩσĩ,(p,q) can be
equivalently written as

min
Σ(p,q)

{
min

X

(
1
2
‖X− Y‖2

F + τ ∑̃
i

wĩσĩ,(p,q)

)}
. (A1)

For the inner minimization, due to von Neumann’s trace inequality, we have

1
2
‖Y− X‖2

F = tr
(

YYT
)
− 2tr

(
YXT

)
+ tr

(
XXT

)
= tr

(
Σ2

Y

)
− 2tr

(
diag(p)−1/2Ydiag(q)−1/2

(
diag(p)−1/2Xdiag(q)−1/2

)T
)
+ tr

(
Σ2
)

≥ tr
(

Σ2
Y

)
− 2tr

(
ΣY,(p,q)Σ(p,q)

)
+ tr

(
Σ2
)

.

Especially the equality holds when diag(p)1/2Xdiag(q)1/2 admits the singular value
decomposition diag(p)1/2Xdiag(q)1/2 = U(p,q)Σ(p,q)VT

(p,q), where U(p,q) and V(p,q) are defined as

the left and right singular matrices of p−1/2Yq−1/2. Meanwhile X = UΣVT , where U and V are
defined as the left and right singular matrices of Y. Then the optimization reduces to

min
Σ(p,q)

{
1
2

tr
(

Σ2
)
− tr

(
ΣY,(p,q)Σ(p,q)

)
+ τtr

(
diag

(
wĩ
)

Σ(p,q)

)
+

1
2

tr
(

Σ2
Y

)}
. (A2)

Note that diag(p)1/2Xdiag(q)1/2 = diag(p)1/2UΣVTdiag(q)1/2, i.e.,

Σ = UTdiag(p)1/2U(p,q)Σ(p,q)V
T
(p,q)diag(q)1/2V, (A3)

the objective function is completely separable and is minimized only when

∇Σ(p,q)

(
1
2

tr
(

ΣΣT
)
− tr

(
ΣY,(p,q)Σ(p,q)

)
+ tr

(
τdiag

(
wĩ
)

Σ(p,q)

))
= 0, (A4)

where ∇Σ(p,q)
(•) denotes the gradient for Σ(p,q).

Utilizing ∇Xtr
(
ATXB

)
= ABT and ∇Xtr

(
AXBXT) = ATXBT + AXB, we have

UT
(p,q)diag(p)1/2U

(
UTdiag(p)1/2U(p,q)Σ(p,q)V

T
(p,q)diag(q)1/2V

)
VTdiag(q)1/2V(p,q)

=
(

ΣY,(p,q) − diag
(
τwĩ

))
+

,

i.e.,
UT

(p,q)diag(p)1/2Xdiag(q)1/2V(p,q) =
(

ΣY,(p,q) − diag
(
τwĩ

))
+

(A5)
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Therefore Dτ,w,(p,q) (Y) = p1/2U(p,q)

(
ΣY,(p,q) − diag

(
τwĩ

))
+

VT
(p,q)q

1/2 is a global optimal

solution to the optimization problem. The uniqueness of the solution follows by the equality condition
for the von Neumann’s trace inequality when has distinct nonzero singular values, and the uniqueness
of the strictly convex optimization (A2). This concludes the proof.

Proof of Theorem 4. Since L (X, Y) = τ ∑
ĩ

w(t)
ĩ

σĩ,(p,q)+
1
2 ‖X‖

2
F + 〈Y,PΩ (X)−PΩ (A)〉,

f (Y) = inf
X
L (X, Y) = inf

X

(
τ ∑̃

i

w(t)
ĩ

σĩ,(p,q)+
1
2
‖X‖2

F + 〈Y,PΩ (X)−PΩ (A)〉
)

= inf
X

(
τ ∑̃

i

w(t)
ĩ

σĩ,(p,q) +
1
2
‖X‖2

F + 〈Y,PΩ (X)〉 − 〈Y,PΩ (A)〉
)

= inf
X

(
τ ∑̃

i

w(t)
ĩ

σĩ,(p,q) +
1
2
‖X−PΩ (Y)‖2

F

)
+ 〈Y,PΩ (A)〉 − 1

2
‖PΩ (Y)‖2

F

= g (Y) + 〈Y,PΩ (A)〉 − 1
2
‖PΩ (Y)‖2

F (A6)

For g (Y), using the well-known properties of Moreau-Yosida Regularization [32], we get the
results that g (Y) is a globally continuously differentiable convex function.

Moreover, ∇g (Y) = PΩ

(
Y−Dτ,w,(p,q) (PΩ (Y))

)
and ∇g (Y) is continuously differentiable

with Lipschitz continuous gradient 1, i.e., for any Y1, Y2 ∈ RN×K,

‖∇g (Y1)−∇g (Y2)‖F ≤ ‖PΩ (Y1)−PΩ (Y2)‖F ≤ ‖Y1 − Y2‖F. (A7)

Then the gradient of f (Y) can be obtained as follows:

∇ f (Y) = ∇g (Y) + PΩ (A)−PΩ (Y)

= PΩ

(
Y−Dτ,w,(p,q) (PΩ (Y))

)
+ PΩ (A)−PΩ (Y)

= PΩ

(
A−Dτ,w,(p,q) (PΩ (Y))

)
. (A8)

It follows that for any Y1, Y2 ∈ RN×K,

‖∇ f (Y1)−∇ f (Y2)‖F =
∥∥∥PΩ

(
A−Dτ,w,(p,q) (PΩ (Y1))

)
−PΩ

(
A−Dτ,w,(p,q) (PΩ (Y2))

)∥∥∥
F

=
∥∥∥PΩ

(
Dτ,w,(p,q) (PΩ (Y1))−Dτ,w,(p,q) (PΩ (Y2))

)∥∥∥
F

≤
∥∥∥Dτ,w,(p,q) (PΩ (Y1))−Dτ,w,(p,q) (PΩ (Y2))

∥∥∥
F
. (A9)

Following from Theorem 3 and Cauchy-Schwarz inequality, we have

‖∇ f (Y1)−∇ f (Y2)‖F ≤ ‖PΩ (Y1)−PΩ (Y2)‖F ≤ ‖Y1 − Y2‖F. (A10)

When the dual optimal Ŷ is obtained, by using the result of Equation (A6), we can get

X̂ = arg min
X
L (X, Y) = arg min

X

(
τ ∑̃

i

w(t)
ĩ

σĩ,(p,q) +
1
2

∥∥X−PΩ
(
Ŷ
)∥∥2

F

)
= Dτ,w,(p,q)

(
PΩ

(
Ŷ
))

. (A11)

This concludes the proof.
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