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Abstract: The driver gaze zone is an indicator of a driver’s attention and plays an important role in the
driver’s activity monitoring. Due to the bad initialization of point-cloud transformation, gaze zone
systems using RGB-D cameras and ICP (Iterative Closet Points) algorithm do not work well under
long-time head motion. In this work, a solution for a continuous driver gaze zone estimation system
in real-world driving situations is proposed, combining multi-zone ICP-based head pose tracking and
appearance-based gaze estimation. To initiate and update the coarse transformation of ICP, a particle
filter with auxiliary sampling is employed for head state tracking, which accelerates the iterative
convergence of ICP. Multiple templates for different gaze zone are applied to balance the templates
revision of ICP under large head movement. For the RGB information, an appearance-based gaze
estimation method with two-stage neighbor selection is utilized, which treats the gaze prediction as
the combination of neighbor query (in head pose and eye image feature space) and linear regression
(between eye image feature space and gaze angle space). The experimental results show that the
proposed method outperforms the baseline methods on gaze estimation, and can provide a stable
head pose tracking for driver behavior analysis in real-world driving scenarios.

Keywords: RGB-D camera; ICP; head pose; gaze estimation

1. Introduction

Driver distraction and inattention are the key factors that cause traffic accidents. Distracted driving
increases the probability of crashes as the drivers shift their attention from driving. To recognize and
prevent these types of potential dangers, driving behavior monitoring plays an increasingly significant
role in Advanced Driver Assistance Systems (ADAS), and high level ADAS can provide higher forms
of automation, in which drivers are even expected to glance away from the primary operational task
and be guided to get through some critical situation.

Human-centric driving monitor technologies can be divided into two categories, intrusive-sensing
technologies and remote-sensing technologies. While the intrusive-sensing technologies [1] detect head
motion from attached head orientation sensors, some biomedical sensing technologies [2,3] measure
the signals from the driver immediately and intuitively, but disturb the driver in the process, leading
to inconvenience complaints. Vision-based applications usually mount the remote cameras inside
the vehicle, and are capable of monitoring the driver in a non-contact and non-invasive way. These
applications benefit from the advance in information technologies, and can present computer vision
algorithms based on low-cost sensors. Figure 1 shows the typical RGB-D camera and the corresponding
RGB-D data.
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Figure 1. (a) Exterior appearance of RGB-D camera (Kinect v1) [4], and corresponding RGB-D data
(b,c) obtained by it.

In the driver context, the dynamics of a driver’s head and eye are potential to present where or
what he/she is looking at. The allocation of a driver’s gaze is linked to a driver’s current attention.
Therefore, studying a driver’s gaze direction and fixation has been extensively applied for visual
distraction detection and understanding driver activities, and in natural driving, many drivers move
both their heads and eyes when looking at the target. Many gaze tracking systems have been
proposed for monitoring driver’s attention state [5]. Detailed surveys of gaze estimation and head
pose estimation can be seen in Refs. [6,7].

Coarse gaze direction based on a driver’s head orientation is usually acceptable in vision-based
driver behavior monitoring systems. The probability of driver gaze is often generated by a gaze
zone estimator. The discrete gaze zones are defined as the in-vehicle components where drivers are
looking at, such as windshields, rear-view mirrors, side mirrors, etc. Since head pose contributes
to gaze direction, many gaze zone estimation methods consider head orientation as the indicator of
the gaze zone in a convenient manner, and parts of many studies treat the gaze zone estimation as
a combination of head pose estimation (head pose value) and gaze estimation (gaze angle value of
eyeball) in three degree of freedom (Euler angle), yaw, pitch and roll. This is consistent with real
driving behavior in natural driving, resulting in many drivers moving both their heads and eyes when
they are looking at the target.

From the perspective of sensor information, driver gaze zone estimation systems fall into one of
two categories: systems using RGB/Grayscale cameras, and RGB-D cameras.

RGB or Grayscale Cameras: Most systems that use RGB or Grayscale cameras are largely relying
on precise localization of facial features. Constrained Local Model (CLM) is one of the Facial Landmark
Detection (FLD) methods, and has been commonly employed to extract and analyze the head pose
and its dynamic in single [8] or multiple camera systems [9,10]. The driver’s face is detected in an
unpredicted environment and further location of the frontal facial landmark points under model
constraints (typical instances are various feature points annotated around face contour, eyes, eyebrows,
nose and mouth). In order to provide robust representation against illumination and accelerate the
detection speed, Vicente et al. [11] expressed face shape by Supervised Descent Method (SDM) using
an SIFT descriptor and analyzed the geometric configurations of facial landmark points to estimate the
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head pose. After FLD process, head pose vector or facial feature landmarks are extracted as training
features for gaze zone estimation.

Besides, FLD uses eye alignment to locate the eye region for eye pose estimation. By assuming the
human eyeball as a spherical 3D eye model with a constant radius, there are only several parameters
needed. One of important parameter is pupil center. As the pupil is darker than other parts of the eye
region, Fridman et al. [12] used an adaptive threshold of the histogram of the eye image to segment
the pupil blob, but it does not work well in the non-uniform varying lighting conditions. On the low
resolution eye image, Trawari et al. [10] detected the iris center (same as the eyeball center) using the
HoG descriptor. This method trained the local patches of the eye image under different light, but to a
great extent, needed some image processing steps to ensure its detection quality. Vicente et al. [11]
used SDM tracker to detect eye landmarks including six eye contour points and the pupil. The eye
estimation followed a 3D eye model-based approach in their work.

However, it is still critical for the above systems to obtain depth information, especially when
solving the 3D head pose from the 2D images depending on the detected landmarks and their relative
3D configurations with a weak perspective projection model. To address the varying changes of head
position and head rotation, Ultrasonic sensors [13,14] or dual cameras [15] are used as extra devices
for generating more information to compensate for head movement.

RGB-D Cameras: Standard RGB cameras can take advantage of color information, but lack
depth information due to inherent hardware restrictions. The great challenges for such works are the
illumination vulnerability under poor environmental conditions where light and shade bring negative
effects. To overcome some of these difficulties, RGB-D cameras are applied to obtain both RGB
images and more information using point-cloud-based sensors. RGB-D cameras can synchronously
capture RGB images and depth images. Different RGB-D cameras are implemented by stereo cameras,
structured light, time-of-flight or laser scanners. The more expensive the sensors are, the more accurate
point-cloud they achieve. RGB-D cameras benefit from the depth appearance or point-clouds that
generated by themselves to build gaze zone estimation systems.

To handle the point-clouds, ICP (Iterative Closet Points) algorithm [16,17] that is used for iterative
registration between the free-form three-dimensional rigid point-cloud surfaces, has been applied
to calculate the rotation matrix and offset vector between source face template and target face
templates. Peláez C. et al. [18] presented a gaze zone estimation system to estimate head pose
by analyzing the projection of three-dimensional point-cloud based on ICP. With continuous iterative
correction, ICP can minimize the distance from the source point-cloud to the target point-cloud within
a given three-dimensional space. However, when the point-cloud level grows larger, the time cost
increases dramatically.

Therefore, Bär et al. [19] used Newton method to optimize the ICP solution process. A Newton
method is favorable for a faster convergence than a gradient descent method. Multi-templates were
used in point-cloud alignment to compute the head pose, subsequently, driver’s gaze angle was
analyzed on the eye gaze model. Experimental results show that their system can obtain robust
estimation of head pose than single-template system, but the Newton method requires more strict
initial value, thus, their system suffers from the problem of falling into a local solution. More studies
show that in the process of ICP alignment, adding a filter (such as temporal filter [20], Kalman
Filter [21], etc.) to track and learn its state at the next timeframe can solve ICP anisotropic conversion
more effectively and stably. Particle Swarm Optimization (PSO) algorithm [22] can solve this through
the cooperative behavior of a generation of evolutionary particles. Although PSO has achieved better
results, its response is too slow.

Based on depth image appearances, the training regression model for head pose estimation can be
constructed by labelling a large number of training sample. Fanelli et al. [23,24] built a random forest
regression model and tested depth image appearances with different scanning accuracy. Random
forest regression was used to map the depth images to the continuous head pose space by probabilistic
voting, in which random sampling samples were adopted to avoid over-fitting. Their results are
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sensitive to the depth image acquisition and preprocessing, and poor solutions will result in the case of
online testing. Breitenstein et al. [25] used the depth appearance of the nose region to predict the head
pose, collected reference appearance during the offline stage, and then calculated the errors between
the candidate depth and the current input. However, these methods have not been applied in driver
gaze zone estimation systems. One of the most important reasons is that the depth appearances maybe
incomplete in real driving environments, due to the illumination changes and occlusions.

For gaze estimation or head pose estimation using RGB-D cameras [26–28], RGB and depth
images can also be used in different processing events. Usually, a depth image is used for foreground
segmentation, head localization and object tracking, while the RGB image is used for eye localization
and feature extraction. For example, Cazzato et al. [29] located the facial landmark points and position
of pupil center in RGB images, and predicted head pose by ICP alignment. The human line of gaze
was estimated by oriented feature points surrounding the eye. Mora et al. [30,31] also provided gaze
system combining of head pose estimation and gaze estimation, but they used appearance-based
gaze estimation methods instead of model-based methods. However, these methods only have better
estimation accuracy in the case of a frontal face; the errors increase on low-resolution eye images under
free movement.

This work focuses on the applicable gaze zone estimation system with RGB-D cameras
performance in a real-world driving environment, and adapts for variants of ICP to align a driver’s
face templates. The highlights of the paper are shown below:

• An application-oriented ICP-based point-clouds alignment solution for continuous driver gaze
zone estimation using RGB-D camera is proposed, applying multi-zone templates for target
face templates revision, and particle filter tracking with auxiliary sampling for initializing and
updating the best transformation of source face template; at the same time, the head state is
tracked and learned to cope with high rotation velocities under natural head turns, providing
reliable head pose value in both yaw, pitch and roll.

• A novel appearance-based eye gaze estimation with two-stage neighbor selection is utilized,
avoiding the inaccurate pupil center localization in a real remote driving environment and the
vulnerable eye gaze model under very large head rotation. The proposed eye gaze estimation
method treats gaze prediction as a combination of cascaded nearest neighbor query and local
feature regression.

A summary of driver gaze zone estimation using an RGB-D camera is provided in Table 1.
Compared with the previous gaze zone detection systems using RGB-D cameras, the proposed
system presents continuous resolution not only for the gaze zone estimation, but also for the head
pose estimation and gaze estimation. Unlike the multi-template ICP in Ref. [19], they ensured the
transformation of the point-clouds by averaging the results of multiple templates. However, the target
templates will be changed due to the varying illumination changes and large head rotations and
presence of partial occlusion of eye glasses or light source. We revise multi-zone ICP for balancing
the templates’ revision in the real driving scenario. Furthermore, particle filter tracking is used for
initialize and update the best transformation of ICP. Unlike model-based gaze estimation methods,
which have disadvantages due to the vulnerability under large head movement, the appearance-based
gaze estimation method is a better alternative. Furthermore, we conduct the gaze estimation as a
two-stage nearest neighbor selection from both head pose space and image feature space. This structure
makes it more efficient. The proposed system outputs the final gaze zone index by classifying the gaze
angle with head pose compensation.
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Table 1. Review of driver gaze zone Estimation Methods/Systems Using an RGB-D Camera.

Research Study Head Pose
(HP)

Gaze
(GA)

Gaze Zone
Estimation

Datasets
Resolution

Peláez C. et al.
[18]

Yaw, Pitch, Roll
(ICP + Alignment ) - HP Continuous

Bär et al.
[19]

Yaw, Pitch
(Multi-template ICP + Alignment)

Yaw, Pitch
(Eye Model) HP + GA Discrete

This study Yaw, Pitch, Roll
(Multi-zone ICP + Alignment)

Yaw, Pitch, Roll
(Appearance) HP + GA Continuous

The rest of this paper is organized as follows. Section 2 introduces our driver gaze zone estimation
system that combines the head pose tracking and gaze estimation. The details of implementing
multi-zone ICP-based head pose estimation appear in Section 2.1. Section 2.2 presents head state
tracking by auxiliary particle filter. Section 2.3 shows the proposed appearance-based gaze estimation
with neighbor selection. In Section 3, the proposed system is evaluated and some practical issues
regarding the implementation are considered. Finally, Section 4 gives a brief conclusion.

2. Proposed System

This paper presents a combination of multi-zone ICP-based head pose tracking, and
appearance-based gaze estimation to build a continuous driver gaze zone detection system (as shown
in Figure 2). These two parts have been handled in Depth image and RGB image, respectively.

RGB-D

Depth：Face 

region detection & 

segmentation

RGB：Eye region 

localization

Multi-zone ICP-

based head pose 

estimation

Appearance-based 

gaze estimation

Head Pose

Gaze Angle

Gaze Zone

Particle Filter 

Tracking

Figure 2. Overview of the proposed system.

On the depth image, the scene depth information can be easily obtained. Therefore, as shown
in Figure 3, the face region in the foreground is segmented from the driving environment with adaptive
minimum distance restrictions. Simultaneously, face detection using Viola–Jones method [32] is used
to judge whether a driver’s face has been searched and further shrink the face region. At this point,
the three-dimensional point-cloud data of face templates has been extracted more precisely and can
basically meet the needs of subsequent operations. Some pre-processing is applied to remove outliers,
reduce noises, and preserve the geometric characteristics of point-cloud at the same time. After smooth
filtering on the depth image, its corresponding three-dimensional point-cloud is generated for rigid
transformation. This point-cloud is called the source template.
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(a) (b)

Figure 3. Point-cloud at different distance: (a) in-door, (b) in-vehicle.

To estimate head pose under large head rotation, a multi-zone ICP-based method is proposed.
By taking advantage of the least squares techniques, source point-cloud and corresponding reference
point-cloud templates are aligned under iterative operation, alignment, comparing, adjusting,
re-alignment, re-comparing, and re-adjusting. Proper templates at different gaze zones can reduce
the templates accumulative error under large head motion. In order to solve the problem that the
iteration result does not converge, the head state is tracked and learned by auxiliary particle filtering.
The ICP-based point-cloud alignment is then initialized by the prediction value of head state. Head
pose in Euler angle will output by the recent head transformation. It should be noted that the reference
templates for a multi-zone can be captured when a driver sits down and glances at the labeled center
of the pre-defined self-centered gaze zone.

On the RGB image, an eye region is localized in the face region. Due to the scale of a driver’s
face region not changing dramatically, the eye region is easier to be captured in the constraint of
face detection. The normalized eye images have been mapped into the image feature space, while
head pose that is generated in the head poses estimation have been mapped into the head pose space.
Appearance-based gaze estimation using neighbor selection is utilized, in which both head pose and
eye image features contribute to gaze prediction. By two-stage nearest neighbor searching in both head
pose and image feature space, more relevant image features can be found for building the mapping
relationship between image feature space and gaze angle space. Final gaze direction is obtained as the
gaze angle with head pose compensation. Then, gaze zone estimation is a classification of final gaze
direction by k-Nearest Neighbor.

Detailed information about head pose estimation, head state tracking and gaze estimation is
described in the following chapters.

2.1. Multi-Zone ICP-Based Head Pose Estimation

The human face region is considered as rigid surface of three-dimensional model without
deformation. Regardless of the perspective transformation and scale factor, only takes into account the
linear transformation and translation transformation of the coordinate system, the rigid transformation
between two human face point-cloud set data is defined as:

T =

[
R t
0 1

]
(1)
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where, T is a 4× 4 matrix, R is a 3× 3 rotation matrix, t is a 3× 1 translation vector. The rotation matrix
of cloud point alignment is a continuous right multiplication process of three orthogonal rotation
matrix with a determinant of 1.

R = RxRyRz, t =
[
tx ty tz

]T
(2)

Rx =

1 0 0
0 cos α sin α

0 − sin α cos α

 Ry =

 cos β 0 sin β

0 1 0
− sin β 0 cos β

 Rz =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

 (3)

To solve the transformation matrix T, ICP algorithm is applied for aligning different
point-clouds [33]. During data acquisition and rigid transformation, unavoidable data noise always
exists, and causes the alignment of target point-cloud and source point-cloud not to achieve accurate
results. Therefore, in order to improve the accuracy of calculation, it is necessary to find as many
effective corresponding point pairs as possible, to constrain the transformation matrix.

The main steps of the basic ICP algorithm for point-cloud alignment are: (1) search the nearest
neighbor point pairs between two point-cloud using the correspondence estimation; (2) calculate the
transformation matrix by the least squares method in an iterative way with all the valid point pairs,
until it meets the convergence conditions.

2.1.1. Nearest Neighbor Search

In a given point-cloud set P and Q, a set of nearest neighbor point pairs (qi, pj) can be extracted,
where qi ∈ Q and pj ∈ P. Thus, ∀qi ∈ Q, at least one closest point pj ∈ P exists. In order to reduce
the computational complexity of the rapid search, the corresponding point pairs are computed by the
normal under the minimum distance constraints, and the obtained nearest neighbor at this time is an
approximated nearest point, rather than the ground-truth nearest point. Figure 4 shows a schematic
diagram of nearest neighbor search process based on the Point-to-Plane method [34]. Firstly, based on
the normal of reference point pj at the point-cloud P, the intersection q′i of the normal at the point-cloud
Q can be found. Then, make the tangent plane of q′i, and draw the vertical line between the point pj
and the tangent plane. Finally, compute the intersection point qi at the point-cloud Q. Thus far, a point
pair (qi, pj) is extracted.

Q
Set

P
Set

j
p

i

q

q'

i

Figure 4. Point-to-Plane nearest neighbor search for point-cloud alignment.
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Through the Point-to-Plane nearest neighbor search, the found neighbor point pairs are not strictly
constrained one by one correspondence. That means the different points on the source point-cloud
maybe have built a pair relationship with the same point on the reference point could. Moreover,
because of the influence of data noise, partial outliers are produced, and confuse the related point
pairs. Furthermore, to eliminate the interference of outliers and build a stable point pairs relationship,
the reciprocal correspondence point pairs are selected after the filtering method smooth the noise in
the space. The reciprocal correspondence point pairs are intersection of two sets of nearest neighbor
points pairs, exchange the reference point-cloud source and the reference point-cloud source.

In summary, reciprocal correspondence nearest neighbor point pairs search strategy is utilized
in the proposed point-cloud alignment method, which accelerates the search speed and reduces
index complexity, generating effective point-cloud pairs for further transformation computation of
point-cloud alignment.

2.1.2. Iterative Computing of Transformation

The calculation process of transform matrix is as follows. Firstly, the space mapping reconstruction
error function is defined by least square method using the generated nearest neighbor point pairs.
Then, a coarse transformation matrix is optimized and solved by minimizing the error function.
By projecting the source point-cloud to the coordinate system of the reference point-cloud, the new
source point-cloud for next repeat is gotten. Each repeat process is a combination of the optimization
of transformation matrix and nearest neighbor point pairs searches for the new source point-cloud.
The fine transform matrix will be gotten until it satisfies the convergence condition.

When the final transformation matrix is solved, the rotation angle of head pose in Euclidean space
can be calculated using the right-hand Cartesian coordinate system (as shown in Figure 5).

α = arctan (
R32

R33
), β = arctan (

−R31√
R2

32 + R2
33

), γ = arctan (
R21

R11
) (4)

where, Rij denotes the element of R at i row j column. α, β and γ denotes the yaw, pitch and roll of
driver’s head pose, respectively.

Roll

Yaw

Pitch

y

z

x

Figure 5. Three degrees of freedom of head pose.

In general, there are large rotations of a driver’s head in the real driving condition, but the vast
majority of the related head poses are concentrated on several gaze regions, such as the left mirror,
right mirror, rear-view mirror, windshield, etc. All these areas are known as the gaze zone.

To reduce the cumulative error of ICP iteration, a multi-zone ICP-based head pose estimation
method is proposed by applying templates of different gaze zones in continuous tracking. To accelerate
the iterative process of ICP, particle filtering is used in tracking the head pose, initializing the coarse
transformation matrix. Detailed descriptions of particle filtering are in Section 2.2. All reference
templates are collected with ground-truth head pose values and represent different gaze zones.
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The head pose estimation system first initializes the reference template with zero angle in head
pose Euclidean space, then calculates the Euclidean distance of the estimated head pose and the
corresponding head pose of the reference templates, and determines the current template index by
choosing the 1-Nearest Neighbor. Typically, a driver’s head pose will vary depending on the driving
behavior.

The steps of the proposed head pose estimation method are shown in the Algorithm 1.

Algorithm 1: Multi-zone ICP-based Driver’s Head Pose Estimation.
1: Initialize multiple cloud point templates for different driver gaze zone

P = {P1, P2, · · ·, Pm}.
2: For each new cloud point Q, calculate the predicted head state by Particle Filter tracking,

and get the initial value of (R, t): (R̂, t̂).
3: Update the coarse head pose value (α, β, γ) based on Equation (4) with (R̂, t̂).
4: Update the current gaze zone index m of templates using k-NN method.
5: Search the nearest point pairs between Q and Pm using Nearest Neighbor Search algorithm:

∀pj ∈ Pm, ∃qi = arg min
q′i∈Q

nnsp(pj, q′i)

where, nnsp(·) is a Point-to-Plane Nearest Neighbor Search function with correspondence

strategy.
6: Calculate the optimal transformation (Rbest, tbest) via minimize the reconstruction error

between Q and Pm by:

(Rbest, tbest) = arg min
R̂,t̂

e(R̂, t̂) = arg min
R̂,t̂

∑
NP

‖R̂Pm + t̂−Q‖

(Rbest, tbest) is computed in a iterative process, until the reconstruction error is below the

given threshold τ.
7: According to the Right-hand Cartesian Coordinate system, update the fine head pose value

(α, β, γ) based on Equation (4) with (Rbest, tbest).
8: Tracking the head state by particle filter and goto Step 2

2.2. Head State Tracking by Particle Filter

Particle filter is a nonlinear filtering algorithm based on Bayesian estimation, and has unique
advantages in dealing with parameter estimation and state tracking. In this chapter, it is assumed that
the driver’s face is a rigid mesh, and we treat the alignment of the 3D point-cloud between source and
templates as motion variant of head pose state. Therefore, the driver’s head state dynamic model is
established based on particle filter, and the translation and rotation of a head in a given state space is
tracked and learned by particle filters. In order to solve the particle impoverish and weight assignation
problem of particle filter, an auxiliary sampling method is used in Sequential Importance Sampling
(SIS). Figure 6 shows the overall framework of head state tracking by particle filter.
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Figure 6. Head state tracking by particle filter.

2.2.1. State Space Model

In state space, an unobservable driver’s head state is part of time series dynamics, and defined
as X1:t = {X1, X2, · · ·, Xt}. At the same time, some observations Y1:t = {Y1, Y2, · · ·, Yt} are made at
continuous time points; it is assumed that all the state sequence is a Markov chain. In this case, similar
to [35], the driver state space model can represent the process of the time series, the main composition
of which is:

Xt = Ft(Xt−1, Ut)↔

Transition Density︷ ︸︸ ︷
ft(Xt|Xt−1)

Yt = Gt(Xt, Vt)↔

Observation Density︷ ︸︸ ︷
gt(Yt|Xt)

(5)

where, Xt = (At, vt) is the driver’s head state. vt is a two-dimensional vector consisting of line
velocity and angular velocity. The driver’s head state Xt and data Yt are assumed to be generated
by nonlinear functions Ft and Gt, respectively, of the state and noise disturbances Ut and Vt, and
At = (tx, ty, tz, α, β, γ) is a six-dimensional vector, which is consisting of head displacements of the
axis tx, ty, tz, and head rotation α, β, γ. Based on Equation (4), At can be convert into ICP initial value
R and t of the rigid transformation.

Generally, the driver’s typical head motions can be divided into two parts. One is static state
that focuses on the straight ahead direction without offset. The other motion is the linear dynamics
that moves from one position to another. These situations can be modeled as mixed driver’s head
state [36]: X∗t = (Xt, τt), where Xt = (1− τt)X

(1)
t + τtX

(2)
t , and τt is a binary sign of velocity, with a

value of 0 or 1. X(1)
t =

(
1 0
0 0

)
X(1)

t−1 +

(
u(1)

t
0

)
denotes the state with a speed of almost zero, while

X(2)
t =

(
1 1
0 1

)
X(2)

t−1 +

(
u(2)

t
0

)
denotes the state of constant velocity. u(1)

t and u(2)
t are random variables

that account for changes of the head state from different i.i.d. stochastic sequences.
The driver’s head state observation model is defined as Yt = T∈Xt + Vt, where T∈ is conversion

matrix between two space, and Vt is the noise at time t. The distribution of τt is based on the rotational
speed of the driver head. When τt = 1, d(Yt, Yt−1) > ε1, d(At, At−1) > ε2, where ε1, ε2 are the
threshold of rotation speed, it means that the movement of head exceeds the range. Otherwise, when
τt = 0, the head is stay still.
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2.2.2. Particle Filter Tracking

On the basis of the above driver’s head state space model, auxiliary particle filter method is
applied to improve the probability distribution of the driver’s head state at the new time point. Relying
on the probability inference of posterior probability density, the joint probability density of driver’s
head state and observed state is given as:

p0:T,0:T(X0:T , Y0:T) = p0(X0)g(Y0|X0)×
T

∏
t=1

f(Xt|Xt−1)g(Yt|Xt) (6)

where, p0 is the initial probability density of X0. According to the driver’s head state conversion
model and observation model, the states and the data are from randomly sampling process. Their
sample pathes (x̃0, x̃1, · · · , x̃T) take the initial value x̃0 ∼ p0(X0), and otherwise x̃t ∼ ft(xt|Xt = x̃t−1).
The corresponding ỹ0 ∼ g(Y0|X0) with a initial value ỹ0 ∼ g(Y0|X0), and otherwise ỹt ∼ gt(yt|Xt = x̃t).

Since it is not possible to accurately obtain the current driver’s head state distribution trend
p(X), the standardized distribution of importance q(X) is utilized as an alternative, and the weight
of current state sample data is updated by the previous observed driver’s head state. For the

i-th sample weight w(i)
t , w(i)

t =
pt(x(1)t )

qt(x(i)t )
. By p(Xt = xt|Y1:t = y1:t) = p(yt |xt)p(xt |y1:t−1)

p(yt |y1:t−1)
, and set

σt|0:t−1 =
∫
<Nx gt(Yt = yt)pt|0:t−1(Xt = x|y0:t−1)dx, therefore the joint probability density can be

computed by

p0:t|0:t(X0:t = x0:t|Y0:t = y0:t) =
gt(xt|Yt)p0:t|0:t−1(x0:t|y0:t)

σt|0:t−1(yt|yt−1)
(7)

Since it is impossible to sample according to the density function p0:t|0:t(X0:t|Y0:t), the N samples

x̃(i)0:t , i = 1, 2, · · · , N are selected based on the probability density q0:t|0:t(X0:t|Y0:t), and the sampling
importance weights are computed by

w̃(i)
t =

p0:t|0:t(x̃0:t|y0:t)

q0:t(x0:t|y0:t)
(8)

All these weights are standardized and mapped to the interval [0, 1].
The weights will gradually probably fail after a long time of running, so the importance

re-sampling is added after each weight calculation. In order to facilitate the survival of particles
in the next moment, auxiliary sampling is used in the standard re-sampling process of the probability
distribution of the driver’s head state. It is assumed that the joint posterior probability function at the
time point can be well approximated using the Dirac measure of that time point.

A rough approximation function f (dxt|x(i)t−1) ≈ δ
µ
(i)
t
(dxt) is used in the re-sampling, then the joint

probability density can be approximated by

p0:t|0:t(dx0:t−1|y0:t) ≈
N

∑
i=1

g(yt|µ(i)
t )w(i)

t−1δ
x(i)0:t−1

(dx0:t−1) (9)

At this point, the generalized importance ratio of particles is given as

w̃(i)
t =

w̃(i)
t−1

ṽ(i)t−1

×
g(yt|x(i)t )f(x(i)t |x

(i)
t−1)

qt(x(i)t |x
(i)
t−1, yt)

(10)

Compared with the standard sequential importance sampling, the sampling in this chapter revises

the important weights by 1
v(i)t−1

, and the weight ratios by
w(i)

t−1

v(i)t−1

. In this way, during the re-sampling
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process before sampling, the particles predicted at the previous moment are extended to increase
particle diversity at the current moment and to reduce the variance of the importance weights,
producing a more accurate estimate.

At this point, the driver’s head state transition density ft(Xt|Xt−1) can be estimated based on
the observation density gt(Yt|Xt) ∝ 1

B exp(−λd(Yt, T∈Xt + Vt)), where B is a standardized constant.
Therefore, the current driver’s head state Xt is computed by the weighted average of the samples
X̂t = ∑N

n=1 w(n)
t x̃(n)t .

2.3. Appearance-Based Gaze Estimation Using Neighbor Selection

The proposed appearance-based gaze estimation is modeled in a local neighbor-based regression
way, which contains three steps: feature extraction, two-stage neighbor selection and PLSR for gaze
regression. The facial landmark detection and eye region localization contribute in extracting the eye
images and head pose for gaze prediction. Neighbor selection seeks the neighbor of test sample in a
training dataset. The nearest neighbors have similar properties in head pose and image feature. Gaze
regression based on PLSR (Partial Least Squares Regression) is then employed to model using these
neighbor samples.

The driver’s face always appears fully in the field of view. After the face region, which takes the
bounding box, is localized, it is easy to obtain the eye region according to the landmarks, and head
angle values are computed through trigonometry operations using elements from a rotation matrix.
The head vector is converted from the rotation matrix to its axis-magnitude representation by Rodrigues
Transform, which can also be used to transform three basic vectors to a rotation matrix.

The success of neighbor selection is highly depent on the appropriate construction of neighbor
feature space. However, finding the proper neighbors from large scale eye image dataset is still a
challenging problem. Because eye appearance is sensitive to head movement, head pose feature is
significant for appearance-based gaze estimation with free head movement. Similar gaze direction
under the same head pose for the same subject has a closet pupil center.

Here, gaze directions are regressed under similar head pose and image feature using the local
manifold.

As shown in Figure 7, the proposed neighbor selection method consists of a double k-NN query
in different feature spaces. This work provides a simple version of our previous work [37]. Here, Raw
features are used as the appearance descriptor. A training dataset with query table has been built, in
which each item of table contains index, eye image and its corresponding features (head pose and
image feature). Image features with less nearest neighbors are found in the scope of the test data.
The found image features are used as neighbor samples appearance for gaze local regression.

Neighbor indexes

Head pose space

Image feature space

Two-Stage Neighbor Selection

Pre-labeled 

head pose

Extracted image 

feature

Head Pose 

estimation by 

multi-zone ICP

Build PLSR model 

in image feature 

space

Feature Extraction Gaze Regression

Neighbor

indexes

Image feature 

extraction on 

localized eye 

region

Compute gaze 

angle in gaze angle 

space

Regression

coefficients

Figure 7. Appearance-based gaze estimation using neighbor selection.
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Previous local regression method based on k-NN usually estimates gaze angle using the mean
of selected neighbors, which ignores the correlation between samples and gaze angles. To handle
this, PLSR is utilized to reduce the dimensionality and project the gaze angle data onto components
of maximum covariance with the image feature data. It is a combination of two methods: partial
least squares (PLS) analysis and multiple linear regression. Furthermore, the statistically inspired
modification of the PLS method (SIMPLS) algorithm is used in the gaze local regression for its
competitiveness on large scale dataset [38].

Given eye appearances X f eature ∈ Rk×n and gaze directions Ygaze ∈ R3×n, then the gaze regression
can be modeled as [39] by

X f eature = T f eatureP
T
f eature + E (11)

Ygaze = UgazeGT
gaze + F (12)

where, T f eature and Ugaze are the scores of X and Y, respectively. P f eature and Ggaze are the loadings of
X f eature and Ygaze, respectively. E and F are the residual matrixs.

PLS matrices T f eature and Ugaze contain latent variables which are calculated as the linear
combination of X f eature and Ygaze. Assume T f eature = X f eatureW and Ugaze = YgazeN. Thus, according
to Ref. [39], PLSR model is reformulated as follows:

Ygaze = X f eatureB + F? (13)

where, B = W(PT
f eatureW)−1N. The covariance between score vectors is maximized in each iteration of

PLS, the i-th components of W and N can be computed by

w(i), n(i) = arg maxw,nnT(YT
gaze,0X f eature,0)w

s.t. |w| = 1, |n| = 1, t(i)f eature ⊥ t(j)
f eature ∀j < i

(14)

where, t(i)f eature is i-th score vector of X f eature. Ygaze,0 and X f eature,0 are the refined value of Ygaze and
X f eature, that have subtracted the mean vector of themselves. When the regression coefficients B is
obtained, the predicted gaze angle can be determined by Ytest = XtestB, where Xtest is the image feature
of test sample.

3. Experimental Results and Discussion

This section evaluates the accuracy of the proposed system in different tasks on natural driving
data. First, we report the performance of our head pose estimation in different gaze zones. Second,
we compare our gaze estimation with head pose compensation to other baseline methods. Finally,
we evaluate the driver’s gaze point and analyze the driver’s attention transfer probability between
different gaze zones.

3.1. Experiment Setup and Data Sources

Evaluation is performed on a collection of video sequences of driving subjects with depth
measurements. All image data (RGB images and Depth images) are collected from natural and
on-road driving using the Kinect v1. For the Kinect’s installation in the real driving environment, it
needs to be placed at the position that neither interfere the driver’s operation, nor occlude the effective
field of view of the depth sensor, and the Kinect is designed for indoor applications with a range of
detection at 0.8–4.0 m and with a field of view at 57◦(Horizontal)× 43◦(Vertical).

Therefore, in the evaluation, the Kinect is mounted facing the driver with the placement above
the instrument board and in front of the windshield (as shown in Figure 8). It captures both depth
and RGB video stream of the face view at 30 frames/s. The resolution of the Depth image is 320× 240,
while the RGB image resolution is 640× 480. After image interpolation, they are of the same resolution.
Afterwards, all images in which the face images are out of camera range or the eyes blink are discarded



Sensors 2019, 19, 1287 14 of 22

automatically. In this manner, the image dataset delivers almost 50,000 RGB data and Depth data from
single driver in natural driving. For each frame, a depth image, a color image, the ground truth head
pose, and gaze zone index are provided.

3

1

7

4

6
5

2

98

Figure 8. Driver gaze zone partition in real driving environment.

To provide the precise ground truth head pose value, the IMU (Inertial Motion Units), consists
of three MPU6050 sensors, and is attached on the driver’s head to track its respective motion. IMU
sensor outputs continuous head rotation angle by interior gyroscope with Kalman filter at 50 frames/s.
To balance the sampling frequency of the IMU and the Kinect, IMU data is sub-sampled after data
acquisition. The Kinect and the IMU are connected to a laptop via the USB interface and serial port,
respectively. The whole system is powered by a 220-V portable power bank, and runs on one laptop
with 2.30 GHz Intel Core i5 CPU and 8 GB RAM.

To evaluate the gaze direction, particular regions of interest are annotated as gaze zones in our
dataset. All gaze zones are partitioned in the front of driver seat and contain most normal driving
behavior movements. The considered gaze zones are left mirror, right mirror, rear-view mirror,
instrument board, steering wheel, navigation system, glove box and several regions of the windshield,
as shown in Figure 8.

Head pose estimation needs to be initialized under a condition in which the zero point of yaw,
pitch and roll represents straight-ahead head direction as gaze zone 3. Due to each driver having his or
her distinct head behavior when he/she turns face to the fixed gaze zone, we calibrate the head pose
in one time when the driver looks the windshield region at a specific direction. There are some error
degrees about −0.7 to +0.6 in yaw, −0.3 to +0.3 in pitch and −0.4 to +0.3 in roll. This initialization
is performed using the first 100 frames, and the center point is determined by a weighted average of
estimated head pose. Typically, the personalized head pose values for each gaze zone are stabilized.
The nine calibrated head poses and their corresponding gaze zone are shown in Figure 9. The gaze
zone index is displayed above the templates, and the head pose angle in Euclidean angle space is
shown under the template in Euler angle (yaw, pitch, roll).
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Figure 9. Point-cloud templates of different gaze zone.

3.2. Results of Head Pose Estimation

The head pose template data for each gaze zone is generated with calibrated head pose values.
We collected a standard data set of head poses for each gaze zone using a head motion sensor.
Our estimated angle degree of head pose was multiplied by an expanded coefficient. The motion-sensor
ground-truth data were then used to compare with the head pose computed using our algorithms.
Driver head pose referring to our gaze zone are focused on areas which yaw ranges from −60 degree
to +60 degree, pitch ranges from −45 degree to +45 degree and roll ranges from −10 degree to +10
degree. Figure 10 shows the tracking errors for randomly selected data segments as an example. This
figure indicates that the estimation of yaw has a little large error rate than other two items, because
driver rotates large angle in this dimension.

Since we apply it in a real driving environment, therefore, the tolerance error range is considered
based on the gaze zone estimation. For different gaze zones, statistical results are counted (See
Table 2). In this table, AME means Average Mean Error, VAR represents variance which demonstrates
the derivation degree of mean error and SDR is acronyms of Success Detection Rate which is the
characterization of acceptance rates in the range of tolerance. The acceptance values of yaw, pitch and
roll are the estimation values whose absolute errors do not exceed the corresponding threshold (5, 2, 2
degrees for yaw, pitch and roll respectively). In Table 2, the estimation of gaze zone 1 and gaze zone 2
does not exhibit a greater stability on the edge of yaw and pitch. However, the estimations of gaze
zone 6 are surrounded by more gaze zone which takes the advantages of multiple information fusion
contributed by estimation of other six gaze zone. Gaze zone 3 with highest frequency is the zone when
driver looks straight ahead. So, it has the highest SDR for less change of head pose.
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Figure 10. Comparisons of GT (Ground-truth) and predicted head pose value on (a) yaw, (b) pitch, and
(c) roll.

Table 2. Statistical Results for Head Pose Estimation.

Gaze Zone
Yaw Pitch Roll

AME(deg.) VAR SDR(%) AME(deg.) VAR SDR(%) AME(deg.) VAR SDR(%)

1 5.272 3.159 88.83 2.411 2.085 88.67 2.455 2.334 87.16
2 5.254 3.273 88.78 2.652 2.386 87.35 2.546 2.462 87.60
3 4.370 2.585 94.54 1.790 1.504 92.54 1.724 1.041 93.91
4 4.772 2.582 92.37 2.556 2.124 89.26 2.472 2.427 88.34
5 4.682 2.537 91.81 2.430 2.427 87.85 2.527 2.460 87.41
6 4.576 2.189 93.22 2.475 1.945 89.46 1.646 1.934 92.66
7 4.621 2.982 91.47 2.083 2.057 90.45 2.334 2.435 88.63
8 5.082 2.964 92.22 2.546 2.024 89.70 2.234 2.516 89.14
9 5.156 3.022 91.87 2.723 2.083 88.45 2.362 2.411 88.77

AME: Absolute Mean Error, VAR: Variance, SDR: Success Detection Rate of gaze zone.

Figure 11 shows the visualization of accuracy rates that have been partitioned into 15× 15 degrees
squared regions in two-dimensional head pose (yaw and pitch). The square’s color denotes total
number of frames which falls into the particular region. Since the drivers always put their attention on
the road (gaze zone 3), two on-road squared regions have the most amount of frames, other squared
regions have less frames. Comparing with Ref. [19], our results have a good accuracy around the
zero points of head pose, and a low dynamics range of head pose, due to the multi-zone templates at
particular head pose and the driving behaviour in the real-world scenarios.
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Figure 11. Head pose success classification rate for 5 degrees tolerance.

When drivers turn their head from left to right in yaw, angle velocity of the head movements is
really high per second. Table 3 shows the mean absolute error of head pose estimation at different head
motions. All head movements that slower than 0.3 radians can be recognized as small rotation, any
other measured head angle velocities are large rotation. It can be remarked that our work demonstrates
the continuous head pose estimation using RGB-D sensor for natural and on-road driving. Previous
works provide short-session or pre-arranged on-road evaluation [18,19]. Although the mean errors
presented in these papers are less than our work’s results, it is worth noting that the evaluation
performed on a head pose-free natural active driving scenario is a more practical solution to driver’s
eye gaze problems. In addition, the particle filter tracking for a driver’s head state can cope with high
rotation angle velocities in both yaw, pitch and roll directions.

Table 3. The Mean Absolute Error of head pose estimation at different head motions.

Head State Yaw(deg.) Pitch(deg.) Roll(deg.)

Small Rotation (Proposed) 3.934 1.652 1.425
Large Rotation (Proposed) 5.797 2.562 2.848

Overall (Proposed) 4.493 1.925 1.852
Peláez C. et al. [18] 3.7 2.1 2.9

In the evaluation, our system also has some limitations: under complex light conditions, frequent
non-uniform illumination changes may result in the incomplete face region of a three-dimensional
point-cloud, so the template registration processing is greatly disturbed and the head pose cannot be
accurately estimated. As in Ref. [18], the sunlight sensitivity is common for vision-based systems.

3.3. Results of Gaze Estimation

While the head pose estimation is applied on the 3D point-cloud that derives from the depth data,
the gaze estimation is mainly performed on the RGB data. The human eye images are cropped from
the whole face images under natural illumination after facial landmark detection and anthropometry
computation, and 5000 frames valid data has been retained. The cropped low-resolution human
eye image are shown in Figure 12. To test the effectiveness of the proposed appearance-based gaze
estimation method, some baseline appearance-based methods and model-based methods are compared
on three-fold cross-validation. To be fair, all methods are compensated with the same head pose
estimation (See in Section 2.1). Among them, ALR (Adaptive Linear Regression) [40] and CALR
(Coupled ALR) [31] are solved using 100 selected images. The methods based on modified RF and SVR
are classically trained on all training data. EGM (3D Eye Gaze model) [10] is a model-based method,
and computes the gaze angle on the 3D eye model based on detected pupil center and eye center.
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Figure 12. Example eye images.

Table 4 depicts the results of gaze estimation with head pose compensation, and from it, it is
clear that the overall gaze estimation performance for our method is better than that for other baseline
methods. As expected, the appearance-based methods have certain tolerance level to non-uniform
illumination, but when the light gets low, it is hard to generate discriminated features from the RGB
image, due to its all values are tends to be zeros. Actually, if some eye images under dark light are exist
in the training data, the performance of the appearance-based methods will be much better. However,
it is much harder for model-based method to locate the pupil center or iris center, which makes the
model-based method unstable under difference head pose variations and illumination variations.

Table 4. The Mean Absolute Error of gaze estimation using head pose and gaze angle.

Methods AME(deg.)

Head pose, HOG + Modified RF [41] 8.0234
Head pose, HoG + SVR [42] 8.7216

Head pose, ALR [40] 12.723
Head pose, CALR [31] 10.39
Head pose, EGM [10] 9.58

Head pose, PLSR (Proposed) 7.5682

3.4. Analysis of Gaze Zone Frequency

This part reports the experimental results of gaze zone frequency and transfer probability. Note
that in a real car scenario, driver gaze zone frequency represents the state of a driver’s attention off/on
the road for visual distraction, and the transfer probability provides the driver’s probable gaze zone in
the next frame or motion, depicts the driver’s driving behavior habit in a temporal context.

The frequencies of different driver gaze zones during driving is analyzed in Table 5. It can be
seen that the gaze zone 3 (bottom left region of windshield) cases have the highest frequencies both on
estimation with head pose solely, and with head pose and gaze pose. The other gaze zones with high
frequency are gaze zone 2 (right mirror), gaze zone 1 (left mirror) and gaze zone 4 (rear-view mirror),
which are in-car components that drivers often look at. This is consistent with the characteristics in
real driving conditions. Note that the frequencies of gaze zone 1 and gaze zone 2 are almost the same.
In addition, the gaze zone 9 is with the lowest frequency of gaze, because in the case of driving, it is a
place that the drivers seldom glance at.

In Table 5, it is clear that the gaze zone frequencies are similar between the estimation with
gaze pose and without gaze pose. More specifically, the index of gaze zone with highest frequency
is the same and other gaze zones’ frequencies are slightly changes. The frequency of gaze zone 3 is
too large in estimation without gaze pose, when joint the gaze pose and head pose, the frequencies
of its neighbor gaze zone are increased. The main reason for this is that during driving, the driver
will use more eye movement while looking ahead. However, the gaze zone estimation systems with
only head pose usually ignore this situation and put focus on coarse gaze directions. Therefore,
the combination of head pose estimation and gaze estimation for gaze zone classification is more
reasonable and accurate.
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Table 5. Frequency value of each gaze zone estimation.

Gaze Zone
No.

Frequency only
with Head Pose (%)

Frequency with both Head
Pose and Gaze Angle (%)

1 5.2 4.5
2 4.9 4.7
3 81.2 74.4
4 3.5 4.4
5 2.1 4.0
6 1.6 2.8
7 0.5 1.4
8 0.9 3.1
9 0.1 0.7

Figure 13 provides a statistical analysis of the transfer probability between different gaze zones
of 50,000 frame data from natural and on-road driving. Here, the transfer probability is defined as
the frequencies of gaze zone when driver’s attention convert from current image frame to next image
frame. In Figure 13, the directions that those arrows point to, are the probable gaze zone for next frame,
and the numbers range in [0, 1] are the corresponding probability values. For example, the probability
in gaze zone 1 that remains itself is 0.9190, and that transfers to gaze zone is 0.0757, and that goes
to gaze zone 7 is 0.0053. Generally, driver will look at each predefined gaze zone during a period of
few seconds, resulting in many frames duration of the self transfer. Overall, most of gaze zones have
high transfer probability to gaze zone 3 except themselves. This is a quick gaze return to the on-road
gaze zone after viewing other gaze zones. It should also be noted that the gaze zone 4 to gaze zone
5 is a single-way transfer, that is, the driver never look at gaze zone 4 after gaze zone 5. When the
driver’s gaze stays in a certain gaze zone for a long time, the driving assistance system could alarm
the distraction state of the driver by the dynamic transfer probability of the gaze zone.
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Figure 13. Transfer probability between different driver gaze zone.
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4. Conclusions

In this paper, we introduce an application-oriented solution for continuous driver gaze zone
estimation systems, using multi-zone ICP-based point-cloud alignment for head pose estimation and
two-stage neighbor selection for appearance-based eye gaze estimation. To accelerate the convergence
speed of the ICP iteration, we utilize multi-zone templates and particle filter tracking to initialize and
update the best transformation of source face template. Based on the characteristic features of head
pose, and eye images, we apply a cascaded structure for a neighbor selection framework to select
the nearest neighbor data that is more similar to the test head pose and eye images. Then, through
the local regression of selected nearest neighbor data, a gaze estimation model is built for current
gaze angle prediction. With the described solution, head orientation and gaze angle are calculated,
and the gaze zone is determined by the gaze angle with head pose compensation. Our system has a
reliable performance on head pose tracking and gaze estimation, making it applicable for in-vehicle
driver monitoring applications. In the future, we hope to improve the accuracy of appearance-based
gaze estimation in real driving environments, and to perform another study on cross-subject gaze
zone estimation.
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