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Abstract: Wearable electronic sensing devices are deemed to be a crucial technology of smart
personal electronics. Strain and pressure sensors, one of the most popular research directions
in recent years, are the key components of smart and flexible electronics. Graphene, as an advanced
nanomaterial, exerts pre-eminent characteristics including high electrical conductivity, excellent
mechanical properties, and flexibility. The above advantages of graphene provide great potential for
applications in mechatronics, robotics, automation, human-machine interaction, etc.: graphene with
diverse structures and leverages, strain and pressure sensors with new functionalities. Herein, the
recent progress in graphene-based strain and pressure sensors is presented. The sensing materials
are classified into four structures including 0D fullerene, 1D fiber, 2D film, and 3D porous structures.
Different structures of graphene-based strain and pressure sensors provide various properties and
multifunctions in crucial parameters such as sensitivity, linearity, and hysteresis. The recent and
potential applications for graphene-based sensors are also discussed, especially in the field of human
motion detection. Finally, the perspectives of graphene-based strain and pressure sensors used in
human motion detection combined with artificial intelligence are surveyed. Challenges such as the
biocompatibility, integration, and additivity of the sensors are discussed as well.

Keywords: graphene; strain sensor; pressure sensor; structure-property; artificial intelligence

1. Introduction

Wearable devices can be worn directly on the user, embedded in clothing, or implanted in the
body to detect human health motion [1–5]. These flexible sensors can monitor physiological parameters
such as pulse, blood pressure, body temperature, and heart rate signals of the human body with high
efficiency and subtle discomfort, as a part of advanced devices [6–12].
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Wearable sensors possess a wide range of applications in wearable devices due to their light
weight, good ductility, flexibility, and suitability for large-area manufacturing processes [13–15].
However, in order to mount easier the wearable sensors on the human skin for real-time human
motion detection, several performance and parameter requirements need to be fulfilled. Lightweight,
flexibility, stretchability, durability, biocompatibility, and low power consumption are crucial properties
for wearable sensors [16–18].

In general, researchers take advantage of the superior electrical, chemical, and optical properties
of nanomaterials for signal sensing, combining mechanical, flexibility, stretchability, and durability
of polymers to make the sensors flexible. These novel sensors are mainly strain sensors [19–21] and
pressure sensors [22,23]. Nowadays, various wearable sensors have been widely developed in health
monitoring, human motion detection, device system integration, human-machine interactions, and
artificial intelligence [24–28].

Graphene demonstrates outstanding characteristics such as perfect mechanical strength, good
electrical properties, chemical stability, and high thermal conductivity [29,30] which are all required
for the sensing materials of wearable mechanical sensors. Due to ultrahigh sensitivity, graphene is
one of the best nanomaterials for pressure and strain sensing applications [31,32]. It is critical and
necessary to further study and develop graphene-based strain and pressure sensors. As shown in
Figure 1, graphene-based strain and pressure sensors have achieved conspicuous progress. Over the
last decade, graphene-based sensors have been categorized into three conversion mechanisms such as
resistive, capacitance, and piezoelectricity, showing a vigorous development trend [33–35].
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pressure sensors. The data is from the Web of Science. Hundreds of papers have been published,
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the Advancement of Science; Copyright 2011, American Association for the Advancement of Science;
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In this review, we place particular emphasis on structure-property and the potential applications of
the latest graphene-based strain and pressure sensors. The fundamentals and transduction mechanisms
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of the graphene-based strain and pressure sensors are described. As shown in Figure 2, we highlight
the latest progress and breakthrough in graphene-based strain and pressure sensors classified in
four structures including 0-dimensional (0D) fullerene [53,54], 1-dimensional (1D) fiber [55–57],
2-dimensional (2D) film [58–61], and 3-dimensional (3D) porous structure [62–65] to guarantee various
properties. Herein, the 0D structure graphene-based sensors are defined as the sensors that use a
0D composite structure in the sensing layer. The 1D structure graphene-based sensors are defined
as sensors that use fibers like composite structures in the sensing layer. The 2D structure focuses on
sensors that use 2D planar film. The 3D structure refers to a porous structure. Graphene is used as the
main sensing material in the above structures. The above “composite structure” means that there are
other materials in the sensing layer except graphene [66,67]. Additionally, major technical parameters
in graphene-based strain and pressure sensors such as linearity, sensitivity, and hysteresis properties for
accurate sensing are described. Graphene-based strain and pressure sensors show various applications
including device system integration, health monitoring, human motion detection, human–machine
interaction, and artificial intelligence [68,69]. Finally, we summarize recent development trends and
application forecasts, especially the challenges in combination with artificial intelligence [70–75].
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2. Fundamentals of Graphene-Based Strain and Pressure Sensors

2.1. Classification of Graphene-Based Strain and Pressure Sensors

The excellent characteristics and the efficient productive ability of graphene make it a suitable
choice for the sensing materials of strain and pressure sensors. Graphene-based strain and pressure
sensors exhibit one of the highest sensitivities and gauge factor [80–82]. During the last few
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years, researchers have made great progress in graphene-based strain and pressure sensors [83].
In graphene-based strain and pressure sensors, graphene [84–87] is familiarly used as active material to
sense physical signal including strain and pressure [88,89]. Due to the excellent electrical conductivity,
graphene materials are frequently used as a conducting layer or electrodes of graphene-based
strain and pressure sensors. Furthermore, various graphene structures such as 0D fullerene, 1D
fiber, 2D film, and 3D porous structure guarantee the multifunction of graphene-based strain and
pressure sensors for applications in different scenarios. As shown in Figure 3, traditional transduction
methods of graphene-based strain and pressure sensors include resistive [90,91], capacitance [92,93],
and piezoelectricity [94,95]. The details of these transduction methods are presented in this section.

Resistive sensors convert external forces into a variation of resistance, which can be directly
detected by a pre-built detection circuit through changes in the electrical signals. It obtains a resistive
sensing signal through the change of the resistance [96]. Due to a simple measurement method
and the large scope of applications [97], resistive sensors have been widely used. As shown in
Figure 3a, the resistive effect is generated by an applied external force changing the conductive path
of the sensing material, which changes the resistance [98–100]. The resistive effect is an inherent
characteristic of graphene which makes it a desired sensing material for strain and pressure sensors.
The high conductivity and favorable mechanical properties of graphene enable the graphene-based
resistive sensor to have ultrahigh sensitivity [101]. As a common type of strain and pressure sensor,
the advantages of graphene-based resistive sensors are a wide detection range, simple equipment
construction, and signal testing [84,102–104]. Due to these advantages, graphene-based resistive
sensors have attracted great attention. Moreover, graphene-based resistive sensors also demonstrate
unlimited potential in frontier applications such as human motion detection and artificial intelligence.
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(c) piezoelectric [79,96,105,106]. Copyright 2015, American Association for the Advancement of Science.

The capacitive sensor is another traditional type of graphene-based strain and pressure sensor [107,108].
Capacitive sensors can detect different forms of force by converting mechanical stimulus signals
into displacement signals [109,110]. The change of displacement causes a change in capacitance.
As shown in Figure 3b, capacitive sensors detect force variation in different directions by changing
the effective area of the sensing material and the spacing of the parallel plates to obtain an electrical
signal [101]. The sensitivity and stability of capacitive sensors mainly depend on the favorable
compression properties of the dielectric layer. Due to the excellent conductivity, favorable mechanical
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properties, and large specific surface area, graphene is the ideal electrical conductor and electrode
for capacitive sensors [111]. The extreme sensitivity of a capacitive sensor to weak changes makes it
widely used in the detection of static or tiny forces [112–115].

Piezoelectric materials are special materials which can generate electrical charges under
mechanical stress. The piezoelectric effect is caused by the presence of an oriented non-centrosymmetric
crystal structure in the piezoelectric material, resulting in an electric dipole moment [116]. The higher
the piezoelectric coefficient of a piezoelectric material, the higher the energy conversion efficiency
it has [117]. Therefore, highly sensitive and fast-responding piezoelectric materials are widely
used in pressure sensors that convert pressure into electrical signals. Previous research has
shown that single-layer graphene can achieve a negative piezoelectric effect, and two-layer and
multi-layer graphene can achieve a positive piezoelectric conductance effect [118,119]. Graphene-based
piezoelectric sensors have been used to detect continuous static pressure signals and perpendicular
vibrations due to their ultrafast response time and ultrahigh sensitivity [120,121].

2.2. Major Parameters of Graphene-Based Strain and Pressure Sensors

Different fabrication procedures and structures (0D fullerene, 1D fiber, 2D film, 3D porous
structure) in graphene-based strain and pressure sensors result in various properties and functions
for applications. It is crucial to list and classify the parameters of graphene-based strain and pressure
sensors. These parameters can be used to visually distinguish the characteristics and functions of the
sensors. For graphene-based strain and pressure sensors, there are several major parameters including
sensitivity, gauge factor (mostly for the strain sensor), detection range, linearity, hysteresis, response
time, and relaxation time. It is worth noting that sensitivity exists in pressure sensors while the gauge
factor exists in the strain sensors.

The sensitivity of pressure sensors generally refers to the ratio between the variables involved
in the output and input signals. For graphene-based pressure sensors with different transduction
mechanisms, the input and output signals are different. For instance, the sensitivity of resistive
pressure sensors is calculated by dividing the relevant variation of resistance by the variation of the
applied force, as shown in Formula (1). In the same way, sensitivities of capacitive and piezoelectric
pressure sensors correspond to capacitance and voltage, respectively.

Sensitivity = |∆R/R0

∆F
| (1)

Gauge factor, which makes no sense to pressure sensors, is an important parameter for strain
sensors. Gauge factor (GF), also named strain factor, of a strain sensor is the ratio of the relevant change
in electrical resistance R, to the mechanical strain ε, which means this parameter is only significant for
the resistive strain sensor. (Formula (2))

GF = |∆R/R0

ε
| (2)

Linearity is an important indicator to describe the static characteristics of a sensor. It is used
to characterize the parameters whose actual characteristics do not match the fitted line. In certain
conditions, the ratio of the maximum deviation between the sensor calibration curve to the fitted
line and the full-scale output is called linearity, also known as nonlinearity error [122]. For the
graphene-based strain and pressure sensors, it is still a technical challenge to balance the relationship
between sensitivity and linearity [123,124]. At present, researchers still cannot achieve both high
sensitivity and good linearity for graphene-based strain and pressure sensors, which needs further
study [125–127].

The phenomenon that the input and output characteristic curves do not coincide during the input
quantity changes from small to large and from large to small is called hysteresis. It refers to the degree
of inconsistency between the forward stroke characteristics and the reverse stroke characteristics of the
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sensor under the same operating conditions [128,129]. Hysteresis is another important indicator of
sensor performance. Therefore, various factors affecting hysteresis must be strictly controlled in the
production process of the sensor. For the graphene-based strain and pressure sensors, when the sensor
is stretched or compressed and released, graphene flakes need several seconds or milliseconds to return
to their original position, by which occurs hysteresis [130,131]. High hysteresis reduces the durability
and robustness of the sensor. Hence hysteresis is an important parameter for graphene-based strain
and pressure sensors.

The detection range of strain and pressure sensors is the maximum and minimum values that
can be accurately measured. Mechanical sensors are commonly used to measure tiny disturbances,
especially in biomedical applications. Therefore, the detection range is also an important parameter to
use to judge whether the measurement of the sensor is effective.

Response time and relaxation time are two parameters to describe the speed of the response of
the sensor at the loading and unloading process, respectively. Response time and relaxation time are
important technical indicators of the sensor, reflecting the response speed of the sensor to the signal;
the smaller the value, the faster the response. The response time determines the frequency of the signal
sampling. Thus, it is crucial for the sensor.

Major parameters for recent graphene-based strain and pressure sensor research are summarized
and classified in Tables 1 and 2, respectively. The “Sensing Materials” column identifies the materials
used in the sensing layer of the sensors. The “Transduction Mechanisms” column describes the
transduction mechanisms and structure of the sensors [108,132,133]. The other columns are for the
major parameters of the sensors [134,135].

Table 1. Different parameters of the graphene-based strain sensors.

Sensing Materials Transduction
Mechanisms Gauge Factor Detection

Range
Response

Time Reference

0D–1D–2D
nanocomposite 0D Resistive Strain 2392.9 (ε = 62%) 0–62% — [136]

PDCY–rGO 1D Resistive Strain 35 (ε = 0.2%) 0.2–100% <100 ms [137]
CSF 1D Resistive Strain 37.5 (ε = 250–500%) 0–500% <70 ms [138]

AgNW/Graphene 1D Capacitance Strain — 5–200% <1 ms [139]
PMSCSS 2D Resistive Strain 647 (ε = 0.14%) 0–0.22% 0.625 ms [140]

GWF 2D Resistive Strain 500 (ε = 2%) 0–40% <30 ms [141]
BGF/BGFM 3D Resistive Strain 6.5 (ε = 10%) 0–50% — [142]

Graphene/PDMS 3D Resistive Strain 55.1 (ε = 25%) 0–64% 400 ms [143]
Graphene 1D Resistive Strain 42.8 (ε = 9%) 0–24% 1.1 s [144]
Graphene 2D Resistive Strain 1037 (ε = 2%) 0–4% — [145]

Table 2. Different parameters of the graphene-based pressure sensors.

Sensing Materials Transduction
Mechanisms Sensitivity Detection

Range
Response

Time Reference

PTNWs/Graphene 1D Piezoelectric Pressure 9.4 × 10−3 kPa−1 0–1.5 kPa 5–7 ms [34]
rGO/PVDF 1D Resistive Pressure 15.6 kPa−1 1.2 Pa–60 kPa 5 ms [146]

rGO 2D Capacitance Pressure 0.8 kPa−1 0.24 Pa–4 kPa <100 ms [111]
LSG 2D Resistive Pressure 0.96 kPa−1 10–100 kPa 0.4 ms [147]

ACNT/Graphene 2D Resistive Pressure 19.8 kPa−1 0.6 Pa–0.3 kPa <16.7 ms [148]
WG 2D Resistive Pressure 6.92 kPa−1 0–5 kPa — [149]

Graphene hybrid 2D Resistive Pressure 0.032 kPa−1 0–100 kPa 10 kHz [150]
MX/rGO 3D Resistive Pressure 22.56 kPa−1 0–3.5 kPa <200 ms [151]
rGO/PU 3D Resistive Pressure 0.26 kPa−1 0–10 kPa — [86]

G-S 3D Capacitance Pressure 1.04 kPa−1 0–20 kPa <5 ms [152]
rGO/PI/HT 3D Resistive Pressure 0.36 kPa−1 0.2 Pa–14 kPa <80 ms [153]

OPG 3D Resistive Pressure 313.23 kPa−1 0–4 kPa 28 ms [154]
Graphene 2D Resistive Pressure 17.2 kPa−1 0–20 kPa — [155]
Graphene 2D Capacitance Pressure 0.33 kPa−1 0–5 kPa <20 ms [112]
Graphene 3D Resistive Pressure 110 kPa−1 0.2 Pa–75kPa <30 ms [156]
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3. A Graphene-Based Inorganic Pressure Sensor in Various Dimensionalities

3.1. Zero Dimensional

Herein, the 0D structure graphene-based sensors are defined as the sensors that use a 0D composite
structure in the sensing layer, and 0D fullerene as a lubricant and graphene as the main sensing material.
The structural characterizations of 0D structure strain and pressure sensors are shown in Figure 4a,b.
The 0D fullerene structure is incompact before the strain and pressure as shown in Figure 4a. In the
loading state, the 0D fullerene structure becomes compact (Figure 4b).Sensors 2019, 19, x FOR PEER REVIEW 8 of 27 
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Figure 4. Fabrication processes and structural characterization of 0D structure strain sensors [136].
Copyright 2018, Wiley. (a) The structure diagram for 0D strain sensors based on 0D fullerene structure
before stretch. (b) The structure diagram of the 0D strain based on 0D fullerene structure after stretch.
(c) The preparation process of this 0D structure strain sensor. (d) Schematic illustration of a sensing
mechanism for films under stretching. (e) Surface SEM images for sensing films at 0% applied strains.
(f) Surface SEM images for sensing films at 60% applied strains. (g) The Gauge factor (GF) and linear
behavior of the strain sensor. (h) The hysteresis of the strain sensor.
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Chen et al. proposed a 0D structure graphene-based strain sensor which has brilliant properties
including good linearity, high sensitivity, and low hysteresis [136]. As shown in Figure 4c, this 0D
structure strain sensor was assembled by screen-printing from a ternary aqueous ink on the stretchable
substrate. Figure 4d shows the sensing mechanism of this 0D structure strain sensor. The stretching
in the sensing layer undergoes slippage between sensing material layers. Due to this sensor being
fabricated from ternary composites, it is worth researching what role the 0D structure plays in the
sensor. As shown in Figure 4e,f, applying different degrees of stress to the film leads to microcrack
formation on the surface of the film and spreads evenly, which demonstrates the impact of the 0D
structure on the sensing mechanism. It serves as a lubricant to reduce friction between adjacent layered
materials in the sensor. In addition, this 0D structure strain sensor exhibits both large stretchability
and ultrahigh gauge factor. As shown in Figure 4g, at up to 62% strain, the gauge factor of this sensor
reaches 2392.9. This 0D structure strain sensor also exhibits negligible hysteresis at 0.8 mm s−1 strain
rate, as shown in Figure 4h.

Due to the complicated preparation process and limited role in sensing materials, there are rare
studies on the 0D structure graphene-based strain and pressure sensors. It is difficult to support a
complete sensing structure alone for 0D structure graphene, which is usually used as a lubricant to
improve sensor performance. Most 0D structure graphene-based strain and pressure sensors have
negligible hysteresis and ultrahigh sensitivity due to the structural lubrication of the 0D structure.
However, its linearity still needs to be improved.

3.2. One Dimensional

Herein, the 1D structure graphene-based sensors are defined as sensors that use fibers like composite
structure in the sensing layer, and graphene as the main sensing material. In general, to fabricate the
1D structure, the polymer material is used as a substrate and the graphene is deposited on the polymer
by chemical or physical methods. The representative structural characterizations of 1D structure
strain and pressure sensors are shown in Figure 5a,b. The 1D fibers are tortuous before the strain
and pressure as shown in Figure 5a. In the loading state, the 1D fiber structure becomes unbent
(Figure 5b) [157–162].

In a typical case, Xu et al. described a flexible graphene-based pressure sensor by using a novel
material called PbTiO3 nanowires (PTNWs), which has been applied in human motion detection
and health monitoring [34]. Compared to the traditional chemical vapor deposition (CVD)-grown
graphene-based pressure sensor, this graphene-based pressure sensor shows a higher sensitivity. The
fabricating processes of this 1D structure graphene pressure sensor are shown in Figure 5c. A Raman
spectrum of graphene shows a small D peak at 1350 cm−1, which depicts low-density defects or
disordered carbon in graphene. The distributive diameter of the PTNWs is about 500 nm, with the
lengths reaching up to 10 µm. This sensor takes advantage of the polarization charges in PbTiO3

nanowires to stimulate carrier mobility of the graphene, which drastically increases the sensitivity.
As shown in Figure 5d, this sensor exhibits both good linearity ranging from 0 to 1400 Pa and
ultrahigh sensitivity up to 9.4 × 10−3 kPa−1. The response time and relaxation time are 5 ms and 7 ms,
respectively, as shown in Figure 5e, which indicates negligible hysteresis of this sensor.

In the other representative case, Oopark et al. proposed different types of graphene-based strain
sensors possessing large stretchability, high sensitivity, and special negative sensing response, which
can also be used in human motion detection and health monitoring [163]. As shown in Figure 5f,
these graphene-based fiber strain sensors were fabricated from a graphene nanoplatelet dispersion
and a poly vinyl alcohol solution using the layer-by-layer assembly technique. The SEM images of
the graphene-based strain sensors without strain and with strain demonstrate the characterization of
the 1D structure, which determines the properties of the graphene-based strain sensors. Figure 5g,h
show the wide detection scale up to 150%, excellent linearity stretching up to 100%, high sensitivity,
and negligible hysteresis of these sensors. Especially, the wool yarn graphene-based strain sensor
demonstrates peculiar negative resistive property.
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Figure 5. Fabrication processes and structural characterization of 1D structure strain and pressure
sensors [34,163]. Copyright 2017, American Chemical Society; Copyright 2015, American Chemical
Society. (a) The structure diagram of the 1D strain and pressure sensors based on 1D graphene structure
before the strain and pressure. (b) The structure diagram of the 1D strain and pressure sensors based
on 1D graphene structure after the strain and pressure. (c) The fabrication process of a 1D structure
pressure sensor and its representations. (d) The sensitivity and linearity of this pressure sensor. (e) The
hysteresis of this pressure sensor. (f) The fabrication process of a 1D structure strain sensor and its
representations. (g) The sensitivity and linearity of three types of strain sensors. (h) The function of the
Polydimethylsiloxane (PDMS) coating.
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The 1D structure is a common form of graphene-based strain and sensors, which can be used
in most traditional transduction methods. However, the dimensional limitations cause anisotropy
limitations. In general, the 1D structure graphene-based strain and sensors can only be pressured
or stretched in one direction. Most 1D structure graphene-based strain and pressure sensors have
negligible hysteresis and favorable linearity. However, the detection scale of the 1D structure sensors
is limited and the sensitivity is relatively tiny compared to other structures.

3.3. Two Dimensional

Herein, we present the 2D structure focus on sensors that use 2D planar film and graphene as the
main sensing material. The 2D structure can be obtained by methods such as suction filtration, CVD
growth, chemical synthesis, etc. The classical structural characterization of 2D structure strain and
pressure sensors is shown in Figure 6a,b. The 2D graphene layer structure is fluffy before the strain
and pressure as shown in Figure 6a. In the loading state, the 2D graphene layer structure becomes
impacted (Figure 6b) [164–168].

In a typical case, Ren et al. proposed a paper of the 2D graphene-based pressure sensor which
has wide potential in the use of human motion detection and health monitoring [155]. This 2D
graphene-based pressure sensor has ultrahigh sensitivity, stable repeatability, and good hysteresis.
As shown in Figure 6c, this 2D graphene-based strain sensor was fabricated by several simple steps.
The graphene 2D structure of this paper like the 2D graphene-based pressure sensor can be clearly
observed in the optical image of graphene paper. The optical image of the cross-section shows the folds
and collapses in the graphene film, which makes it so called graphene paper. The sensing mechanism
of this paper like the 2D graphene-based pressure sensor is the many voids and pores between the
graphene layers. When pressure is applied, the indirect contact dots of the graphene sheets rapidly
increase, and the resistance rapidly decreases, which is the main reason why this sensor has ultrahigh
sensitivity up to 17.2 kPa−1 in the range of 0–2 kPa (Figure 6d). Figure 6e shows the response time is
about 60 ms which indicates negligible hysteresis of this sensor.

In the other representative case, a high sensitivity and negligible hysteresis capacitive graphene-based
pressure sensor is proposed by Sun et al. which can be used in human-machine interactions and
artificial intelligence [111]. As shown in Figure 6f, this 2D graphene-based strain sensor is fabricated
by individual reduced graphene oxide materials in six steps. The SEM images apparently indicate
the 2D graphene layers structure in sensing materials and substrates and the graphene electrodes
demonstrate homogeneity and smoothness. By changing the density of the sensing material, the
detection range of this 2D graphene-based strain sensor can be changed. In Figure 6g, it is shown that
this 2D graphene-based strain sensor has ultrahigh sensitivity up to 0.8 kPa−1 at extreme low-pressure
regime about 0–1 kPa. This sensor also exhibits fast response time about 100 ms as shown in Figure 6h.

The 2D structure is the most hackneyed form of graphene-based strain and sensors, which can be
applied in all transduction methods. The 2D structure graphene-based strain and pressure sensors can
be pressured or stretched in all directions in the plane. According to different needs, the 2D structure
graphene-based strain and pressure sensors can detect large or tiny forces. Most 2D structures have
negligible hysteresis, favorable linearity, and above-average sensitivity. Even if the 2D structure
graphene-based strain and sensors have the above benign properties, it is impossible to generate a
large deformation by a tiny force because the sensing layer is essentially a thin film.



Sensors 2019, 19, 1250 11 of 27
Sensors 2019, 19, x FOR PEER REVIEW 12 of 27 

 

 
Figure 6. Fabrication processes and structural characterization of 2D structure strain and pressure 
sensors [111,155]. Copyright 2017, Elsevier; Copyright 2017, American Chemical Society. (a) The 
structure diagram of the 2D strain and pressure sensors based on 2D graphene layers structure before 
the strain and pressure. (b) The structure diagram of the 2D strain and pressure sensors based on 2D 
graphene layers structure after the strain and pressure. (c) The fabrication process of a 2D structure 
pressure sensor and its representations. (d) The sensitivity and linearity of this pressure sensor. (e) 
The response time and hysteresis of this pressure sensor. (f) The fabrication process of a 2D structure 
pressure sensor and its representations. (g) The sensitivity and linearity of this pressure sensor (h) 
The response time and hysteresis of this pressure sensor. 

Figure 6. Fabrication processes and structural characterization of 2D structure strain and pressure
sensors [111,155]. Copyright 2017, Elsevier; Copyright 2017, American Chemical Society. (a) The
structure diagram of the 2D strain and pressure sensors based on 2D graphene layers structure before
the strain and pressure. (b) The structure diagram of the 2D strain and pressure sensors based on 2D
graphene layers structure after the strain and pressure. (c) The fabrication process of a 2D structure
pressure sensor and its representations. (d) The sensitivity and linearity of this pressure sensor. (e) The
response time and hysteresis of this pressure sensor. (f) The fabrication process of a 2D structure
pressure sensor and its representations. (g) The sensitivity and linearity of this pressure sensor (h) The
response time and hysteresis of this pressure sensor.
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3.4. Three Dimensional

Herein, the 3D structure refers to the porous structure and graphene as the main sensing material.
The methods for preparing the 3D structure graphene-based strain and pressure sensors are various,
such as skeleton erosion and freeze drying. In general, the 3D graphene structure has an internal loose
porous structure, which makes it more compressible. The typical structural characterizations of 3D
structure strain and pressure sensors are shown in Figure 7a,b. The 3D graphene sponge structure
is loose before the strain and pressure, as shown in Figure 7a. In the loading state, the 3D graphene
sponge structure becomes shriveled (Figure 7b) [169–172].

Recently, a 3D structure graphene-based strain and pressure sensor was prepared by Zhu et al.
by using a neoteric method [142]. This sensor is fabricated by a novel material named as the 3D
bubble-derived graphene-based porous material which shows ultrahigh sensitivity, magnificent
linearity, and great hysteresis. The above superiorities make it suitable for use in vibration testing
and health monitoring. The preparation process of bubble-derived graphene foams (BGFs) was
demonstrated in Figure 7c, including the bubbling and ice templating steps. The optic image shows the
in-kind shooting of the BGFs. The SEM image shows the porous structure inside the BGFs. As shown
in Figure 7d, this 3D structure graphene-based strain and pressure sensor exhibits good linearity over
different strain ranges. This phenomenon is due to the different degrees of tearing and fracture under
stresses in the internal structure of three-dimensional graphene. This 3D structure graphene-based
strain and pressure sensor is also able to test subtle vibration, as shown in Figure 7e.

In another representative case, a novel graphene-based strain and pressure sensor was prepared
by dip-coating a polyimide foam template followed by chemical reduction and thermal reduction [153].
This 3D structure graphene-based strain and pressure sensor displays high sensitivity and good
linearity, which can be used in health monitoring and human motion detection. The fabrication
processes of the sensor are exhibited in Figure 7f including three main steps. The optic image shows
the size can be adjusted. The SEM image shows the inside porous structure. By regulating the density
and size of the sensing materials, the internal pore size of the three-dimensional graphene foam can
be controlled. As shown in Figure 7g, this 3D structure graphene-based strain and pressure sensor
exhibits good linearity over different strain ranges owing to the 3D structure. Figure 7h shows high
sensitivity up to 0.36 kPa−1 in the range of 0–4 kPa under pressure, which demonstrates this 3D
structure graphene-based strain and pressure sensor can both respond to pressure and tension.

The 3D structure is an important part of graphene-based pressure and strain sensors which can
be mass produced in large quantities. The graphene 3D structure has both flexible and compressible
and good mechanical repeatability of graphene. The 3D structure is a newly-developing form of
graphene-based pressure and strain sensors, which also can be used in all transduction methods.
The 3D structure graphene-based pressure and strain sensors can be pressured or stretched in all
directions in an effective three-dimensional space. It can detect a large or tiny force and has negligible
hysteresis, favorable linearity, and ultrahigh dynamic sensitivity. The 3D structure graphene-based
pressure and strain sensors have great developing potential in the next decade.
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Figure 7. Fabrication processes and structural characterization of 3D structure strain and pressure
sensors [142,153]. Copyright 2017, Wiley; Copyright 2018, Elsevier. (a) The structure diagram of the
3D strain and pressure sensors based on 3D graphene sponge structure before the strain and pressure.
(b) The structure diagram of the 3D strain and pressure sensors based on 3D graphene sponge structure
after the strain and pressure. (c) The fabrication process of a 3D structure strain and pressure sensor
and its representations. (d) The sensitivity and linearity of this strain and pressure sensor. (e) The
repeatability and hysteresis of this strain and pressure sensor. (f) The fabrication process of a 3D
structure strain and pressure sensor and its representations. (g) The linearity and hysteresis of this
strain and pressure sensor. (h) The sensitivity and hysteresis of this pressure sensor.
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4. Recent Development and Applications of Pressure Sensors

4.1. Wearable Devices in the Biomedical Field

Nowadays, developing wearable devices have drawn tremendous attention in improving health
awareness of people. Compared with traditional medical diagnosis, E-skins possess the ability of
human motion detection and health parameter collectivity and real-time monitoring. These detected
signs can be broadly classified into the inner physiological signal, such as pulse and heart rate, along
with the external motion and sound signals like gesture, gait state, and facial expressions [173–176].
Graphene-based sensors show great sensibility in pressure and strain detection, which have provided
potential in remote medical diagnosis and in improvement of the bionic machine [177,178].

The physiological signals like pulse and heart rate ought to be recorded with high-precision. Thus,
detectability in the low-pressure region and low gauge factors and high sensitivity are essential to the
reliable detection of the subtle pulse pressure located variously in the human body, mainly in the radial
artery. Gong and co-workers proposed an efficient, low-cost, and ultrathin graphene-based strain
sensor with high stretchability and sensitivity [179]. This sensor exhibits GF up to 9.9, stretchability
reaches up to 350%, rapid response time about 22 ms, and repeatability greater than 5000 cycles.
This graphene-based strain sensor has been applied in human motion detection, which can read
radial artery pulse in real-time. In the experiment, the wrist pulses can be measured accurately under
ordinary conditions (≈66 beats min−1), as demonstrated in Figure 8c. The same as with a typical radial
artery pulse waveform, the curve obtained has two clearly distinguishable peaks, proving the high
sensitivity of strain sensors. In light of the radial artery, the pulse wave originates from cardiovascular
activity. A close association can be perceived between heart rate and pulse.

Shen and co-workers demonstrated a stable and highly sensitive graphene-based pressure sensor
can be applied in human motion detection [180]. The pressure signals sensitivity up to 31.6 kPa−1 can
be effectively and independently detected in this sensor, which makes it become a simply integrated
sensor array with outstanding properties. As shown in the Figure 8d, the sensor records the current
signal generated by the undulation of the chest during normal and exercise conditions within 6 s,
which can realize the function of monitoring heartbeat signal in real time.

In the case of external motion and sound detection, regular monitoring of these signals is probably
an efficient method to supervise the human kinematic state, which puts forward the requirements
for sensitivity and detection range. Ren and co-workers proposed a highly sensitive and integrable
graphene-based pressure sensor to detect dynamic gait motion [181]. This sensor has ultrahigh
sensitivity up to 25.1 kPa−1 in a linearity range of 0−2.6 kPa, which demonstrates the ability to detect
real-time human motion. Three pressure sensors were immobilized on the calcaneus, first metatarsal,
and fifth metatarsal to monitor dynamic foot pressure on human skin. As shown in Figure 8e, this
sensor can distinguish the neutral gait, supination gait, and pronation gait by monitoring changes in
plantar pressure. Except for gait state, gesture and facial expressions are also required to be detected
precisely, because of the relevant multiple joints of a single gesture and a large number of muscles on
the face. It is worth mentioning the fist–palm salute, a specific gesture. To detect a gesture like that,
Gong and co-workers integrated graphene-based strain sensors with existing clothing. As shown in
Figure 8f, five strip sensors are stitched onto the finger surface of the glove to detect the movement of
each finger, and the sensor assemblies were shown to have quick responses to finger motion. They also
applied the sensors to detect facial expressions. Illustrated in Figure 8b, human facial movement can
be clearly detected in a highly reproducible manner with a high signal to noise ratio. Another exigent
function of e-skin is the identification of sound. The complex motion of the skin extending down a
person’s throat while saying “Hello” can be reliably identified repeatable. As shown in Figure 8a, the
two syllables of the word “Hello” correspond to the two small peaks in the output curve.

All in all, graphene-based strain and pressure sensors exhibit outstanding behavior and great
potential for human motion detection and health monitoring, both for physiological and physical
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aspects. With improvement to the properties of the sensor, more accurate health monitoring and
motion detection can be achieved [182–184].Sensors 2019, 19, x FOR PEER REVIEW 16 of 27 
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Figure 8. Monitoring in real-time of the graphene-based strain and pressure sensor for human motion
detection [179–181]. The insets figures source from [185–192]. Copyright 2015, Wiley; Copyright 2017,
Nature Publishing Group; Copyright 2018, American Chemical Society. (a) A graphene-based strain
sensor applied to detect throat movement on human skin. (b) A graphene-based strain sensor applied
to detect cheek movement on human skin. (c) A graphene-based strain sensor applied to detect wrist
pulse on human skin. (d) A graphene-based pressure sensor applied to detect chest pulse on human
skin. (e) A graphene-based pressure sensor applied to detect foot pressure on human skin. (f) A
graphene-based strain sensor applied to distinguish six different hand positions.

4.2. From Smart Sensors to Potential Artificial Intelligence Sensors

In 1950, Alan Turing put forward the famous Turing test in “Can the machine think?” and
“Computers and Intelligence”. Since then, the academic community has started to discuss the issue
of machine thinking. The Dartmouth meeting in 1956 marked the birth of the concept of “artificial
intelligence”. At present, artificial intelligence is gradually entering the commercial application stage
and the critical point of the outbreak is being ushered in. Artificial intelligence is fully entering and
reshaping human production and living space. From intelligent robots, smart homes to unmanned
vehicles and unmanned factories, artificial intelligence technology is being widely used in various
fields of social life and production, changing or even subverting our traditional cognition to the
future of agriculture, manufacturing, and law enforcement [193]. The rapid development of artificial
intelligence has had a great impact on working forms such as journalism, transportation, medicine, and
sports [78]. With the integration of informationalization and industrialization, the boom of intelligence
industries represented by robotics, mechatronics, automation, and human-machine interaction has
become an important symbol of contemporary technological innovation [75,194]. In this section, we
intend to use the studies of smart devices and artificial intelligence to point out that flexible sensors
have great potential applications of artificial intelligence in the future.

Wang et al. presented a skin-inspired highly stretchable and conformable matrix network (SCMN)
which expanded the application of wearable devices in the field of artificial intelligence [195]. The
SCMN has multiple functions including detecting strain, pressure, temperature, light, humidity,
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magnetic field, and proximity. Figure 9a shows the real-time detection of pressure distribution and
temperature distribution in the array. Figure 9a demonstrates its use in real-time spatial pressure
mapping and temperature estimation. The spatial pressure mapping is implemented before and after
the 300% expansion, which indicates that the SCMN is used to identify the location of the pressure
load and estimate the size of the loaded object even when the network is stretched and expanded.
In addition, this feature can be applied not only to determine the detection range, but also to define
the detection area of other external stimuli. By adjusting the sensory nodes of the SCMN, it can be
used for multi-function detection, which can be applied to human skin wearable devices in various
test environments. Combined with artificial intelligence, the SCMN has a wider range of applications
in human-machine interfaces, health monitoring technology, and biomimetic devices.
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Figure 9. (a) A smart electronic skin on a hand, showing robotics [195]. Copyright 2018, Nature
Publishing Group. (b) Mechatronics in artificial intelligence [196]. Copyright 2018, American Chemical
Society. (c) Interaction demonstration of smart recognition of the Braille diagram. The Braille diagram is
shown on the left corner. Pressure distribution of braille ‘E’ ‘C’ ‘N’ ‘U’ of the Gr-GO heterostructure film
pressure sensor array is shown on the right. The pressure array wirelessly communicates with external
devices via Bluetooth. (d) A smart electronic prosthetic hand, which can be used in human-machine
interaction [197]. Copyright 2014, Nature Publishing Group.

Wan et al. purposed a two-dimensional electrical double-layer transistor that successfully
simulates basic neuromorphic behaviors such as excitatory postsynaptic currents and paired-pulse
boosting [196]. The artificial vision neural network system was experimentally verified in these devices,
which has great application potential in artificial intelligence and neuronal morphology. Figure 9b
shows a simplified schematic of a vision system showing a clear three-layer abstract feedforward
mode. The retina is the first layer and is responsible for receiving input. The thalamus is the
second layer, a place where there is a one-to-one mapping between the retina and thalamic LGN
cells. The visual cortex is the third layer, which is a place to create a many-to-one mapping from the
second layer of cells to the third layer of cells. In general, this study indicates the future development
of biomimetic nanotechnology.

Recently, our group proposed an ultrasensitive graphene heterostructure pressure sensor, which
has not been published yet. Beyond the sensitivity of human skin and muscle, this graphene
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heterostructure pressure sensor has a pressure sensitivity of 5.64 kPa−1 and a simultaneous response
frequency of at 10 kHz. We demonstrate that such multiple functional flexible arrays could be applied
to automation with advanced artificial perception. For the interaction demonstration, an artificial
recognition of the braille diagram is shown in Figure 9c. The spatial pressure distribution of braille ‘E’
‘C’ ‘N’ ‘U’ exhibits that the pressure sensor could assist the blind to communicate with normal people.
The pressure array wirelessly communicates with external portable devices via Bluetooth.

Kim et al. demonstrated a stretchable array of multi-kinetic smart prosthetic skin, which can
perform multi-function measurements such as strain, pressure, humidity, and temperature [197].
This range of retractable sensors and actuators can respond to external stimuli and promote highly
localized mechanical and thermal skin sensing, which provides a new direction for the artificial
perception of prosthetic skin. Figure 9d shows an image of an artificial skin with integrated electronics
laminated on a fake watch face. The artificial skin surface of the prosthesis is highly compliant and
mechanically coupled to the curved surface of the prosthesis. The resistance changes in response to
keyboard tapping and catching are monitored to explore the performance of the pressure response.
The pressure sensor shows a fast and reliable response to external stimuli in both cases, which can be
used in future artificial perception prosthetics.

In fact, there are still many challenges in implementing artificial intelligence applications
for graphene-based strain and pressure sensors. For instance, how to record a large amount of
measurement data and utilize them with artificial intelligence such as deep learning is a key to the
application of graphene-based strain and pressure sensors. How to choose the appropriate model
algorithm to calculate the parameters is also a difficult point. Furthermore, there are a handful of
applications of graphene-based strain and pressure sensors in use, and we need to consider how to
appropriately combine the graphene-based strain and pressure sensors with artificial intelligence.

5. Conclusions and Perspectives

Due to the magnificent properties including the mechanical, heat resisting, electrical conductivity,
and flexibility of graphene, there is currently enormous research into graphene-based mechanical
sensors. Graphene-based strain and pressure sensors are widely used in various emerging fields such
as device system integration, health monitoring, human motion detection, human-machine interaction,
and artificial perception. It is necessary to develop graphene-based strain and pressure sensors to
discover potential applications especially in the prevailing trend of artificial intelligence.

In this review, we comprehensively describe ultramodern progress in graphene-based strain and
pressure sensors including the sensing mechanism of diverse functional sensors, the main parameters
of graphene-based strain and pressure sensors, graphene-based strain and pressure sensors in different
dimensionality structures, as well as the potential applications of graphene-based strain and pressure
sensors. A mass of publications and reports on the subject of graphene-based strain and pressure
sensors demonstrate the urgent demands for various applications in the future.

Although tremendous progress has been achieved during the last decade in graphene-based strain
and pressure sensors, there are also enormous challenges such as the negligible but present hysteresis,
the balance between high sensitivity and large detection range, the high-frequency vibration test, and
biological degradability which remain to be overcome. The large-area device system integration is
also a challengeable project. Nowadays, sensor applications in emerging fields have become more
and more miniaturized, integrated, and arrayed. This is an inevitable trend in the development of
technology, which requires research to further combine sensors with integrated circuits. Additionally,
although abundant ultra-sensitive sensors have been reported, novel materials and new-type sensing
mechanisms still should be continuously optimized to meet the increasingly demanding application
requirements. Moreover, emerging medical technologies such as real-time human health monitoring,
prosthetic technology, and clinical medicine are urgently needed for artificial intelligence sensors for
health monitoring. With the further development of information transmission technology, future
mechanical sensors can be more intelligently controlled in different external environments, which
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are closer to real human skin functions. In the future, most of the mechanical sensors will have
to face harsh operating conditions, which require high stability, environmental interference, and
adaptive, self-compensating adjustment capabilities. At the same time, in order to ensure that electronic
components and modules can achieve large-scale production, the cost also needs to be reduced.
We need to improve performance in terms of both technology and cost. Overall, graphene-based strain
and pressure sensors have a bright research potential and wide applicability.
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