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Abstract: A reasonable plant type is an essential factor for improving canopy structure, ensuring
a reasonable expansion of the leaf area index and obtaining a high-quality spatial distribution of
light. It is of great significance in promoting effective selection of the ecological breeding index and
production practices for maize. In this study, a method for calculating the phenotypic traits of the
maize canopy in three-dimensional (3D) space was proposed, focusing on the problems existing in
traditional measurement methods in maize morphological structure research, such as their complex
procedures and relatively large error margins. Specifically, the whole maize plant was first scanned
with a FastSCAN hand-held scanner to obtain 3D point cloud data for maize. Subsequently, the raw
point clouds were simplified by the grid method, and the effect of noise on the quality of the point
clouds in maize canopies was further denoised by bilateral filtering. In the last step, the 3D structure
of the maize canopy was reconstructed. In accordance with the 3D reconstruction of the maize canopy,
the phenotypic traits of the maize canopy, such as plant height, stem diameter and canopy breadth,
were calculated by means of a fitting sphere and a fitting cylinder. Thereafter, multiple regression
analysis was carried out, focusing on the calculated data and the actual measured data to verify the
accuracy of the calculation method proposed in this study. The corresponding results showed that the
calculated values of plant height, stem diameter and plant width based on 3D scanning were highly
correlated with the actual measured data, and the determinant coefficients R2 were 0.9807, 0.8907
and 0.9562, respectively. In summary, the method proposed in this study can accurately measure the
phenotypic traits of maize. Significantly, these research findings provide technical support for further
research on the phenotypic traits of other crops and on variety breeding.
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1. Introduction

The selection and breeding of excellent maize varieties has attracted extensive international
attention [1]. Many influential research centers, such as the International Maize and Wheat
Improvement Center (CIMMYT) [2] and the International Center for Agricultural Research in the Dry
Areas (ICARDA) [3] have been working on genetic diversity and cultivation of maize plants. Maize is
also one of the most important food crops in China, as well as one of the most important industrial
raw materials and economic crops. Deep processing of maize can be widely applied in food, medicine,
bioenergy and more than 20 other industries. The development of the Chinese maize industry is
inseparable from maize breeding. However, with the increases in drought, diseases and insect pests,
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the resistance of new maize varieties must be improved further [4]. Thus, maize breeding research
faces a series of challenges [5].

The crop phenotype refers to the physical, physiological and biochemical characteristics and
properties of crops that are determined or influenced by genetic and environmental factors during their
growth and development [6–8]. Accurate and rapid acquisition of plant phenotypic information will
provide theoretical and technical support for promoting the development of crop science, thus ensuring
world food security, ecological security and sustainable agricultural development.

Plant height is a vital phenotypic trait for characterizing plant growth and is one of the most
basic indicators in plant morphological investigations. Plant height is defined as the distance
from the base of the plant to the upper boundary of the main photosynthetic tissues (excluding
inflorescences) [9,10]. The maintenance of plant height at a relatively uniform horizontal height in
the field indicates a well-distributed nutrient supply of fertilizer in the field, which is conducive to
processes such as photosynthesis and pollination. Stem diameter is another important trait reflecting
plant phenotype [11,12]. In addition to its roles in water and nutrient transport, the stem can store
nutrients and can transport nutrients to grains in later stages. Furthermore, the stem is the organ
that produces and supports spikes, exhibiting phototropism and negative geotropism [13]. When the
plant lodges, it can bend upward to maintain growth, so that the plant can become erect again to
reduce losses. The thickness of the stem is positively correlated with lodging resistance [10], as well
as the ability to store and transport water and fertilizer, resulting in a greater amount of nutrients
being transported to the grain. Additionally, canopy breadth is the average width of the plant canopy,
which not only determines the distribution of light in the plant canopy but also serves as an index
for evaluating the efficiency and effectiveness of agricultural management in relation to fertilization,
irrigation, thinning and harvesting [14,15]. Therefore, monitoring the changes in plant height, stem
diameter and canopy breadth in different periods can enable agronomists and breeders to keep abreast
of plant health and growth in a timely manner.

With the development of agricultural mechanization, as well as modern farmland cultivation
and management technology, significant improvements in agricultural production technology have
been achieved [16]. Revolutionary changes in maize science research have been obtained during
the development of modern biotechnology [17]. However, traditional methods for the acquisition
of phenotypic traits, such as plant height, stem diameter and canopy width, are still carried out
through manual measurement with a ruler or measuring tape, which is labor-intensive, inefficient and
inaccurate and limits the development of modern maize science [18,19]. In view of the current status,
it is urgent to develop non-destructive and accurate means of detection of phenotypic traits to reduce
labor, improve efficiency and promote the rapid development of maize science [20,21]. In this context,
informatization has been widely applied to the study of maize phenotypic traits [22].

One important means of studying the calculation methods for maize canopy phenotypic
parameters is based on reconstruction of the three-dimensional (3D) structure of the maize canopy [23].
At present, the methods for 3D maize canopy acquisition mainly include the use of 3D digitizers,
hand-held sensors, binocular stereo vision technology, laser scanning technology and unmanned aerial
vehicle (UAV) remote-sensing technology [24]. It is time-consuming to manually measure a large
amount of geometric information from crop canopies when reconstructing 3D plant morphology
with a 3D digitizer [25]. Hand-held sensors use a contact method to measure geometric parameters,
which leads to deformation of the plant canopy [26]. Furthermore, visible light-based binocular stereo
vision technology possesses advantages in the non-contact and non-destructive acquisition of crop
canopy images without destroying crop growth patterns, resulting in significant improvement of the
efficiency of data acquisition [27], which is helpful for monitoring crop emergence rates, flowering
dynamics, canopy coverage and lodging during crop growth [28]. However, the quality of images
acquired by this technique is greatly affected by light conditions; hence, the accuracy of the calculation
of phenotypic parameters needs to be further improved. Laser [29] or light detection and ranging
(LIDAR) [15] sensors are active remote-sensing devices using laser as the emitting light source and
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photoelectric detection. These devices present the advantages of a high resolution, strong anti-jamming
ability and good detection performance at low altitudes, and can quickly obtain high-precision
horizontal and vertical structure parameters of plant canopies. However, due to their high cost and
the massive data processing involved, these devices are generally only applied in the analysis of
tree biomass [30] and are rarely used in crop phenotypic research. In addition, the analysis of crop
phenotypic traits based on UAV multi-sensor platforms presents obvious superiority, due to factors
such as a low cost, high efficiency, and high-resolution data acquisition, as well as synchronous
acquisition of multi-source images [31]. This strategy has been widely used in analyzing parameters
such as plant height, chlorophyll content, and nitrogen content [32]. However, it is difficult to measure
other important phenotypic traits of crops, such as the leaf inclination and stem diameter of maize,
with UAV remote-sensing technology. High-throughput phenotyping platforms in greenhouses
with controlled growth conditions are alternative approaches for automatically measuring geometric
dimensions of plants [33,34]. Hyperspectral imaging technology [35], two dimensional digital
camera [36] and Structure from Motion (SfM) method [37] contribute significantly to the automatic
phenotyping greenhouses in the aspects of morphological characteristics [38] and stress resistance [39].
Although these platforms can be operated automatically with good repeatability, they also show
limitations. The main shortcoming is that certain traits calculated from an individual plant can not
reflect the true cases in the natural environment due to the artificial laboratory conditions.

Although these excellent sensors have been widely used in the high-throughput acquisition of
plant phenotypic parameters, there are still some limitations in obtaining specific phenotypic traits.
In addition, advanced improvement is warranted concerning the accuracy of plant 3D reconstruction
and the calculation accuracy of phenotypic traits.

Hand-held laser scanning, which shows benefits in the high-precision acquisition of 3D point
clouds, plays a crucial role in plant 3D reconstruction and the calculation of plant phenotypic traits,
especially in acquiring more specific phenotypic traits of crops [40] (e.g., stem diameter, leaf inclination
angle, blade angle). The hand-held scanner can digitize the surface of any object rapidly and
conveniently and displays the morphological structure of the target object in 3D space, providing
an effective data source for further calculation of phenotypic traits.

In this context, to compensate for the shortcomings of the research results above and improve
the calculation accuracy for phenotypic traits, a 3D structural model of maize plants was established
through FastSCAN hand-held laser scanning (Cobra™, Aranz Scanning Ltd., New Zealand,
Christchurch). On this basis, the calculation method for maize phenotypic traits was subsequently
studied. The main aims of this study were as follows: (1) to simplify raw point clouds using the grid
method; (2) to progressively remove the effect of noise on point cloud quality in the maize canopy with
a bilateral filtering algorithm; and (3) to calculate phenotypic traits of the maize canopy, including plant
height, stem diameter and canopy breadth by fitting spheres and cylinders based on 3D reconstruction
of the maize canopy. The results of this research may provide technical support for further exploration
of the phenotypic traits of other crops and the breeding of crop varieties.

2. Materials and Methods

2.1. Experimental Treatments and Measurement of Phenotypic Traits

From May to September 2018, maize planting and data acquisition were carried out in the
Innovation and Entrepreneurship Training Park for Excellent Agricultural Talents of the Agronomy
College of Heilongjiang Bayi Agricultural University (46◦62′ N, 125◦20′ E), which is located in the north
temperate zone, with a continental monsoon climate. The average temperature is 4.2 ◦C, the annual
average frost-free period is 143 days, annual rainfall is 427.5 mm, and annual evaporation is 1635 mm.
The effective accumulated temperature is 2600 ◦C, and there are 1147.8 sunshine hours.

The pot cultivation method was adopted in the experiment. Each pot (Polyvinyl chloridematerial,
32 cm in diameter and 26 cm in height) was filled with 10 kg of soil (dried soil). Natural dried
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and full maize seeds with a consistent size were selected. The two varieties of maize seeds were
soaked and disinfected with 1% NaClO for 5 min and then rinsed with distilled water 3 times. Finally,
the sterilized seeds were placed in a germination box lined with two layers of wet filter paper and then
placed in a 25 ◦C constant temperature box for one day. The soil tested was meadow soil, and maize
was planted at 10-day intervals in three batches. Each variety was repeated five times and placed
randomly. Each pot was sown evenly, and the seedlings were transplanted individually at the trefoil
stage after emergence. The plants were watered to 70 percent of the soil moisture content each time;
other aspects were in accordance with regular management practices. The study of phenotypic traits
from the trefoil stage to the jointing stage is particularly important among the total growth stages of
maize. Accordingly, phenotypic traits including plant height, stem diameter and canopy breadth were
measured with rulers and measuring tapes from the trefoil stage to the jointing stage, to verify the
validity of the method for calculating phenotypic traits.

2.2. Data Acquisition Device

To reconstruct the precise 3D structure of the maize canopy and improve the accuracy of point
cloud data in the maize canopy, emphasis should be placed on the improvement of data acquisition
technology for the maize canopy. In this study, a FastSCAN Cobra™ hand-held 3D laser scanner was
used to acquire 3D point cloud data for the maize canopy. The FastSCAN device can scan non-metallic
and opaque objects. Based on the operational principle, the scanner records data on a contour section
of an object surface by projecting a laser beam. The embedded motion tracking technology is applied
to the position and orientation of the detection handle and to reconstruct the object in three dimensions
jointly. During the process, the resolution of the device is 0.178 mm in the range of 200 mm from the
scanned object, and the scanning speed is 50 lines per second. The distance between lines depends
on the moving speed of the laser head, and the resolution is 1 mm at the moving speed of 50 mm per
second. The speed at which the wand is moved over the surface of the object is the major determinate
of the resolution of the sweeps. The number of raw 3D cloud points increased with the growth of
maize from over 10,000 points in the 3-leaves period to over 40,000 points in the 8-leaves period.

Figure 1 is a schematic diagram of the data acquisition process. The scanning effect can be viewed
in real time with FastSCAN software installed in a laptop. To ensure both a high resolution and high
accuracy, the wand should be held close to the maize plant’s surface during scanning, but no closer
than 80 mm to remain within the camera’s field of view. Parts of the surface closer to receiver will be
scanned more accurately. The transmitter should be kept close to the wand and receiver, as accuracy
deteriorates with distance, but no closer than 100 mm to avoid signal overload. The maximum
separation of any two components is approximately 750 mm, but they should be kept as close as
possible for best results.
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2.3. Overall Process Flow for Calculating Phenotypic Traits

In this study, a method based on the use of a FastSCAN hand-held laser scanner was proposed to
obtain a point cloud for a maize canopy and accurately reconstruct the 3D structure of maize plants.
On this basis, the phenotypic traits of maize plants were calculated through the steps listed below.

First, the original 3D point clouds of maize plants from the trefoil stage to the jointing stage
were obtained with a FastSCAN hand-held laser scanner. Then, to avoid the interference of the
large amount of data redundancy generated by the 3D scanner and subsequent space occupation,
and to further improve the speed of data processing, a simplification approach for the 3D point cloud
with adaptive density based on the grid method was used to simplify the raw 3D data of the maize
plants. On this basis, bilateral filtering was applied to progressively denoise the maize canopy to
reduce the impact of noise on the accuracy of the 3D reconstruction of the maize canopy. In addition,
phenotypic traits including plant height, stem diameter and canopy breadth were calculated on the
basis of accurate reconstruction of the 3D structure of maize plants. In the last step, the validity of
the algorithm proposed here was verified through linear regression analysis of the calculated and
measured phenotypic traits. Figure 2 shows the flow chart for calculating the phenotypic traits of
maize plants.
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2.4. Pre-Processing of the Raw 3D Point Cloud

Due to the influence of the device itself and the external environment, the scanner may produce
redundant data and noise in the process of obtaining the 3D point cloud of maize plants. Consequently,
to obtain an accurate 3D structure of a plant, it is necessary to simplify the raw 3D point cloud and
remove noise in advance, to improve the data processing speed and model accuracy. In this study,
based on the characteristics of the point cloud data collected from the maize canopy, a simplification
approach for 3D point clouds with adaptive density based on the grid method and a bilateral filtering
algorithm for maize plants were proposed, which laid a foundation for accurately reconstructing the
3D structure of the maize canopy and calculating related phenotypic traits.
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2.4.1. Simplification Algorithm for Raw Data

The simplification of a point cloud is indispensable in 3D point cloud preprocessing. Data
redundancies are not conducive to subsequent accurate 3D reconstruction, making the calculation
time-consuming and directly affecting the speed and accuracy of storage and data processing. In this
regard, it is necessary to simplify the raw 3D point cloud data.

To preserve the feature information of the point cloud, an adaptive density reduction method
for 3D point clouds based on the grid method was proposed to simplify the original point cloud of
the maize plants. In the first step, after reading all points in the original point cloud model, a spatial
data index was established based on 3D grid method for the 3D point cloud. Thereafter, a cuboid box
was established with the three sides paralleling the three axes of the coordinate system. The grid was
therefore constructed with the coordinate of any point in the original 3D point cloud as pi(xi, yi, zi),
and the side length was expressed as follows:

Xbox = Xmax − Xmin
Ybox = Ymax −Ymin
Zbox = Zmax − Zmin

(1)

where, Xbox, Ybox and Zbox represents the maximum range of the point cloud pi(xi, yi, zi) along the x, y
and z axes, respectively. The effect of point cloud simplification is affected by the size of the bounding
box, and the side length of the bounding box has to be increased accordingly if the raw point cloud
data are simplified. On the contrary, the average density of the point cloud increases with a decrease
in the side length of the bounding box. The side length of the grid is as follows:

D = 3
√

γ/(XboxYboxZbox/N) (2)

where γ is the coefficient of proportionality and N is the number of original 3D point clouds.
The adjustable side length of the grid is defined as follows:

D′ = βD (3)

where β refers to the factor of proportionality that may be available for the adjustment of the side
length of the grid. By integrating Formulas (2) and (3), the following formula can be obtained:

D′ = β 3
√

γXboxYboxZbox/N (4)

Analysis of the differences in the curvature and density of the 3D point clouds in different parts of
the maize plant organs revealed that the density of the 3D point clouds of maize stems was relatively
uniform, with relatively smaller deviation in the curvature of point clouds. Compared with the stems,
the 3D point cloud density of maize leaves was greater, which was associated with relatively greater
curvature deviation of point clouds. Furthermore, the proportionality factor β was utilized to adjust
the side length of the grille, where the latter factor directly affected the efficiency of reduction. Hence,
it was necessary to determine the curvature of the point cloud in space to select the appropriate
proportionality factor β.

Covariance analysis is a common principal component analysis method for estimating normal
vector and curvature selection. The covariance matrix of the point set is as follows:

C =


pik−p
pil−p

...


T

·


pik−p
pil−p

...

 (5)
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where p = ∑ pik/k is the centroid of Nk(pi), pik ∈ Nk(pi). The value λ(i = 0, 1, 2) of matrix
Cproper is a non-negative intrinsic value, and the corresponding three eigenvectors vi(i = 0, 1, 2)
form an orthogonal basis. Plane (x− p)·v0 = 0 that minimizes the distance from the surrounding
point of p to the plane is referred to a tangent plane; vo is the normal vector of the local surface at point
pi; and eigenvalue λo is the variation of local surfaces along normal vectors. The calculation showed
that the curvature of σk(pi) was close to that of pi, which could therefore be used as the curvature
value at this point.

σi
k = σk(pi) = λo/λo + λ1 + λ2 (6)

With the leaf point cloud set as Ω = {Pi(xi,yi, zi)|1 ≤ i ≤ n}, and sampling point set as Q =

{ qi(xi,yi, zi)|1 ≤ i ≤ n}, for any point qi(x, y, z) in the set of sampling points, the curvature threshold
can be expressed as follows:

D =
∑N

i=1 σi

N
(7)

With the number of point clouds in the bounding box set as K, and point set as W =

{Pi(xi,yi, zi)|1 ≤ i ≤ K}, for any point pi(x, y, z), if the curvature σi of the point is calculated, then the
mean curvature of the point cloud is obtained as follows:

Di =
∑N

i=1 σi

K
(8)

If Di ≤ D, the grid is a non-detail bounding box with a relatively low curvature requirement and
low density. By contrast, if Di > D, then the grid is a detail bounding box with a high requirement of
curvature and high density. Therefore, the proportionality factor is adjusted to screen the grid size,
and the redundant 3D point cloud is simplified from the maize point cloud data.

2.4.2. Denoising Algorithm for Raw Data

For better removal of noise in the 3D reconstruction of the maize canopy, it was necessary to
divide the feature region of the maize canopy. The average curvature of the 3D point cloud was used
to divide the maize plant area, where the single area had less feature information, and the rich area
possessed more feature information.

The average curvature of any point pi(x, y, z) in the 3D point cloud is as follows:

D =
∑N

i=1 σi

N
(9)

To denoise different feature regions, the local eigenvalues at any point pi(x, y, z) in the 3D point
cloud were compared with the threshold values. If the threshold was greater than the local eigenvalue,
the point was marked as a single region (or conversely as a rich region). Additionally, different regions
were divided for denoising, and the results of region division are shown in Figure 3. The maize plants
were colorized with a gradient ramp of blue. The red parts of the plant represented the 3D cloud points
with a single region, while the other parts, accounting for the majority of the maize plant, were used as
rich regions, which had to be denoised further.
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and p′ refers to the point cloud data obtained after filtering. The calculation formula of α can be
expressed as follows:

α =
∑k

i=1 w1(‖p− pi‖)w1(〈p− pi, n〉〈p− pi, n〉)
∑k

i=1 w1(‖p− pi‖)w2(〈p− pi, n〉)
(11)

where w1 and w2 represent the weights in the spatial and frequency domains of the bilateral filtering
function, respectively, both of which control the smoothness and feature-preservation of bilateral
filtering. Additionally, k is the sampling point in the nearest neighborhood of the sampling point.
The concrete forms of w1 and w2 are shown with Formulas (12) and (13):

w1(x) = e
− x2

2σ2
1 (12)

w2(y) = e
− x2

2σ2
2 (13)

In the formulas, parameter σ1 is the influence factor of the distance from point cloud data p to
neighboring points on point p. The value of σ1 is positively correlated with the number of neighborhood
points, which is in positive proportion to the filtering effect, but inversely proportional to the ability of
point cloud feature preservation. Furthermore, parameter σ2 is the influence factor of the projection of
the distance vector from data point p to the adjacent point on the normal n of the point in the point
cloud data p. Parameter σ2 regulates the degree of feature preservation of the point cloud data in
the filtering process, which is proportional to the effect of feature preservation. Normally, σ1 is the
neighborhood radius of the point, and σ2 is the standard deviation of the neighborhood point.

σ1 = max‖p− pi‖, i ∈ [1, k] (14)

σ2 =

√√√√ 1
k− 1

k

∑
i=1

(ξi − ξ)
2
, x = 〈p− pi, n〉 (15)
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The specific steps are as follows:
(1) Calculate the adjacent point k of each data point pi in the region of the 3D model rich in

feature information;
(2) For each adjacent point k, calculate the value of x = ‖p− pi‖ in parameter w1(x) and the value

of y = 〈p− pi, n〉 in parameter w2(y);
(3) On the basis of σ1 and σ2, calculate the value of w1(x) and w2(y) according to Formulas (12) and (13);
(4) Calculate the bilateral filtering factor, α, and then obtain the new point cloud data after filtering

by moving the points in the feature-rich region in the normal direction using Formula (9);
(5) Traverse all the original point clouds to obtain the filtered new point cloud data.

2.5. Calculation Method for Phenotypic Traits

In view of current methods for 3D reconstruction of maize plants, the mathematical method was
included in this study to describe plant organs, with the aim of reducing data processing and providing
objective descriptions of the repeatability and parameterization of growth processes. In this study,
the phenotypic traits of plant height, stem diameter and canopy breadth were calculated, which play
an important role in evaluating the growth of maize.

2.5.1. Calculation Method for Plant Height

Plant height refers to the height difference from the ground to the highest natural extension of
leaves. Plant height is an important trait in maize variety cultivation that directly affects the lodging
resistance and harvest potential of maize varieties. Therefore, it is of great significance for maize
breeding to measure plant height rapidly and accurately. In this study, the y coordinate was taken
as the axis, the highest point of the maize canopy in different periods as the vertex, the vertex as the
center of the circle, and the lowest point in the vertical direction of the vertex as the base point to form
the fitting sphere [43]. The radius of the fitting sphere was the plant height of maize (Figure 4).
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To calculate the radius of the fitting sphere and obtain the plant height, the least squares method
was used to calculate the plant height of maize. The distance function from any point Pi of the fitting
sphere to the center of the sphere is as follows:

d(s, Pi) = ||c− Pi|| (16)

where c = (S1, S2, S3)
T represents the spherical coordinates.
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According to the above calculation method for plant height, the distance from any point on the
sphere surface to the spherical center was calculated (i.e., the radius of the fitting sphere) as the plant
height of maize from the trefoil stage to the jointing stage.

2.5.2. Calculation Method for Stem Diameter

Stem growth can indirectly reflect crop growth, vigor, lodging resistance, and so on. Domestic and
foreign research has also focused on the measurement of crop stems. For example, the research team at
Osnabrück University in Germany designed the high-throughput phenotypic measurement robots
Breed Vision [44] and BoniRob [45,46] to measure crop stems and other phenotypic traits by using
various optical sensors, such as light curtain imaging, 3D time-of-flight cameras and laser sensors,
not only for individual plant phenotyping but also for non-destructive field-based phenotyping in
plant breeding. Additionally, Paulus et al. [47–49] scanned cereal plants with a hand-held laser scanner
and reconstructed 3D models to obtain the stem parameters of crops. Although the above study
demonstrated the feasibility of the calculation method for stem parameters involving a hand-held
laser scanner, this result was not for stem diameter but for stem height in barley. Stem diameter is
a key trait in maize breeding. Thus, to calculate stem diameter accurately, the fitting cylinder was
constructed based on a method of coordinate transformation [50]. The diameter of the cylinder was the
stem diameter of the maize stem, which consists of nodes and internodes. The diameter of the third
internode counted from the bottom to the top was used to indicate the growth status of stems (Figure 5).
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The distance equation from any point Pi on the surface of the cylinder to the center of the circle is
as follows:

d(s, Pi) =

√
||q0 − pi||2 − (a0(q0 − pi))

2 (17)

where q0 = (S1, S2, S3)
T refers to the center coordinate and a0 = (S1, S2, S3) represents the unit

direction vector of the cylindrical axis.

2.5.3. Calculation Method for Canopy Breadth

Canopy breadth is one of the important reference standards for measuring plant growth. In this
study, based on the x-coordinate axis, the left-most point of the maize canopy in different periods
was selected as the center of the circle [43]. At the same height as the center, the fitting sphere was
generated based on the radius of the distance from the center to the right-most point, and its radius
was the plant width of maize (Figure 6). Then, the canopy breadth was obtained with Formula (16).
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3. Results

3.1. Acquisition of Raw Data

When using the FastSCAN 3D scanner to reconstruct the 3D model of the whole maize plant,
it was necessary to ensure that the electromagnetic reference body (consisting of a transmitter and
a receiver) and the maize plant were in a relatively static state and that neither side could move during
the scanning process. To improve scanning quality, the hand-held device (Wand) and the part of maize
plant to be scanned were kept perpendicular during the scanning process.

Representative maize plants are shown in Figure 7. The raw 3D point clouds of maize plants from
the trefoil stage to the jointing stage were obtained with the FastSCAN 3D scanner, which are shown
in Figure 8.
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Figure 8. Raw 3D data of maize from the trefoil stage to the jointing stage. (a) A maize plant at the
trefoil stage; maize plants at the jointing stage, including (b) a maize plant with 4 leaves, (c) a maize
plant with 5 leaves, (d) a maize plant with 6 leaves, (e) a maize plant with 7 leaves, and (f) a maize
plant with 8 leaves.

3.2. Simplification Effect of Raw Data

To verify the effectiveness of the simplification method, the raw 3D point cloud data of maize
plants from the trefoil stage to the jointing stage were simplified. Point cloud simplification was realized
on the premise of retaining the details of the 3D model of the maize canopy, and the simplification rate
was regarded as the evaluation index, which shown as follows:

rate =
P− Pi

Pi
× 100% (18)

where P represents the total number of original 3D point clouds; Pi indicates the total number of
reduced point clouds; and rate represents the percentage of the total number of simplified 3D point
clouds within the raw total.

Furthermore, the proposed adaptive curvature was applied to simplify the number of points
in a flat area, but with the feature details of point clouds being retained in high-curvature areas.
According to the height, the raw point clouds were progressively reduced from high to low. Taking
randomly selected maize plants as an example, the details of the raw point cloud simplification effect
of leaves and stems are illustrated in Figure 9.
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Figure 9. Example of the point cloud simplification effect in maize plants.

The maize canopy, especially the maize leaves and stems, was gradually simplified from the
trefoil stage to the jointing stage. The number of point clouds and the reduction rate after the reduction
are presented in Table 1.

Table 1. Simplification rate of maize from the 3-leaves stage to the jointing stage.

3-Leaves 4-Leaves 5-Leaves 6-Leaves 7-Leaves 8-Leaves

Raw data 10,256 19,587 26,120 30,015 39,542 43,957
After simplification 7401 14,521 19,854 23,025 29,525 32,019

rate (%) 27.8 25.9 24.0 23.3 25.3 27.1

The simplification rate of the raw point cloud in the maize canopy was approximately 25%, which
ensured the validity of the simplified point cloud and reduced the processing time of the raw point
cloud data. Figure 10 presents the overall simplification effect of the 3D point cloud of maize from
the trefoil stage to the jointing stage. Maize plants were simplified via adaptive curvature reduction,
and the point cloud model could still retain the morphological characteristics of maize plants. Point
cloud simplification was achieved here based on the curvature of the point cloud. The curvature value
was positively correlated with the density of the point cloud. Additionally, the degree of point cloud
retention was higher in dense areas than in sparse areas.
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3.3. Denoising Effect of Raw Data 

Aiming at an objective evaluation of the denoising algorithm proposed herein, the denoising of 
the reduced point cloud data of maize plants was processed from the trefoil stage to the jointing stage, 
followed by comparison of the denoising effect with that of the classical Laplace denoising algorithm. 
Two objective evaluation indexes, the maximum error and average error, were selected for 
quantitative analysis of the denoising effect. The comparison results are shown in Table 2. The 
maximum error was included to measure the maximum distance of point cloud data movement, 
which was negatively correlated with the quality of the point cloud data. Taking randomly selected 
maize plants as an example, the denoising effects of some leaves were compared, as shown in Figure 
11. The surface of leaves are much smoother using the bilateral filtering algorithm than the effect 
using the Laplace algorithm, and the edge details of leaves are also preserved well. 

Figure 10. Overall effect after simplification in maize from the trefoil stage to the jointing stage.
(a-1,a-2) A maize plant at the trefoil stage (the number of 3D cloud points was simplified from 10,256
to 7401); maize plants at the jointing stage, including (b-1,b-2) a maize plant with 4 leaves (the number
of 3D cloud points was simplified from 19,587 to 14,521); (c-1,c-2) a maize plant with 5 leaves (the
number of 3D cloud points was simplified from 26,120 to 19,854); (d-1,d-2) a maize plant with 6 leaves
(the number of 3D cloud points was simplified from 30,015 to 23,025); (e-1,e-2) a maize plant with
7 leaves (the number of 3D cloud points was simplified from 39,542 to 29,525); (f-1,f-2) a maize plant
with 8 leaves (the number of 3D cloud points was simplified from 43,957 to 32,019).

3.3. Denoising Effect of Raw Data

Aiming at an objective evaluation of the denoising algorithm proposed herein, the denoising of
the reduced point cloud data of maize plants was processed from the trefoil stage to the jointing stage,
followed by comparison of the denoising effect with that of the classical Laplace denoising algorithm.
Two objective evaluation indexes, the maximum error and average error, were selected for quantitative
analysis of the denoising effect. The comparison results are shown in Table 2. The maximum
error was included to measure the maximum distance of point cloud data movement, which was
negatively correlated with the quality of the point cloud data. Taking randomly selected maize plants
as an example, the denoising effects of some leaves were compared, as shown in Figure 11. The surface
of leaves are much smoother using the bilateral filtering algorithm than the effect using the Laplace
algorithm, and the edge details of leaves are also preserved well.
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Table 2. Comparison of algorithm performance.

Maximum Error/mm Average Error/mm

Laplace filtering 19.74 2.54
Bilateral filtering algorithm 15.57 1.57

The maximum error of the proposed algorithm was 21.1% lower than that of the traditional
Laplace filtering algorithm. Additionally, the average error measured the average distance of point
cloud data movement, which was positively correlated with the denoising effect of the point cloud.
The average error of this algorithm was 38.2% lower than that of the Laplace filtering algorithm.
Figure 12 indicates the overall denoising effect of the 3D point cloud of maize from the trefoil stage to
the jointing stage. The noise existing in the raw 3D point cloud was labeled with red.
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Figure 12. Overall effect of the denoising effect in maize from the trefoil stage to the jointing stage. (a-
1,a-2) A maize plant at the trefoil stage; maize plants at the jointing stage, including (b-1,b-2) a maize 
plant with 4 leaves, (c-1,c-2) a maize plant with 5 leaves, (d-1,d-2) a maize plant with 6 leaves, (e-1,e-
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3.4. Effectiveness of the Calculation Method for Phenotypic Traits 

Figure 12. Overall effect of the denoising effect in maize from the trefoil stage to the jointing stage.
(a-1,a-2) A maize plant at the trefoil stage; maize plants at the jointing stage, including (b-1,b-2) a maize
plant with 4 leaves, (c-1,c-2) a maize plant with 5 leaves, (d-1,d-2) a maize plant with 6 leaves, (e-1,e-2)
a maize plant with 7 leaves, and (f-1,f-2) a maize plant with 8 leaves. Red points in the images before
denoising indicate the noise points.
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3.4. Effectiveness of the Calculation Method for Phenotypic Traits

Ten representative potted maize plants were selected, and phenotypic traits including plant height,
stem diameter and canopy breadth were calculated from the trefoil stage to the jointing stage by using
the calculation method indicated in Section 2.5, which included 6 periods (3-leaves, 4-leaves, 5-leaves,
6-leaves, 7-leaves and 8-leaves). We calculated and measured the phenotypic traits of 10 potted
plants according to each period. Thus, there were a total of 6 periods and 10 samples for each period.
The calculated values were compared with the actual measured values.

As indicated in Figure 13a, the calculated value was highly correlated with the measured value
based on the calculation method for maize plant height proposed in this study (R2 = 0.9807). According
to Figure 13b, the method of stem diameter measurement for maize had a better processing effect and
could measure the stem diameter more accurately. The determination coefficient, R2, of the calculated
and measured values was 0.8907. In Figure 13c, the calculated and measured values of canopy breadth
are still highly correlated, and the determination coefficient, R2, reached 0.9562., which corresponds to
the actual phenotypic traits and proves the validity of the proposed method.
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4. Discussion

4.1. Analysis andComparison of the Experimental Results

Manual measurement of the actual phenotypic traits was affected not only by subjective factors
related to the surveyor but also by the external environment (e.g., the motion of maize leaves with
the wind). Thus, to acquire traits more accurately, actual measurement and data acquisition should
be carried out indoors or in a windless environment. In addition, when calculating plant height,
stem diameter and canopy width via the method presented in this study, the selection of boundary
points [50] in the 3D model of the maize canopy, such as the highest point, lowest point, leftmost point
and rightmost point, is also an important factor affecting the calculation accuracy for phenotypic traits.

The calculation accuracy for stem diameter was lower than its counterparts for other traits.
In addition to the impact of the external environment and the selection of boundary points, some
measurement errors could result from the great interference of the point cloud data at the edge
of the maize stem with cylinder fitting. Accordingly, the interference of individual points with
cylindrical fitting could be reduced and the accuracy and stability of measurement could be promoted
by improving the cylinder fitting algorithm [51,52].

Besides the hand held laser scanner used here, other laser scanning devices, such as a terrestrial
laser scanner (Trimble TX8, Danderyd, Sweden) [53], and range cameras like the Kinect v2.0 sensor
(Kinect-v2, Microsoft, Redmond, WA, USA) [54] are good selections for phenotying analysis of plants
due to their high resolutions, which have been applied in fruit trees and soybean plants respectively in
our previous research.

Although data within 120 m can be acquired using a Trimble TX8 3D laser scanner, pre-processing
of huge data including lots of redundant data, and registration algorithms of point clouds restrict the
speed of 3D reconstruction for plants. Moreover, it takes more time than Trimble TX8 3D laser scanner
when acquiring 3D point clouds. For the Trimble TX8, data of at least three stations are needed for
reconstructing a maize plant, and it takes at least 5 min to get the data of each station. In order to
reconstruct 3D model of a maize plant using data of the three stations, although Trimble realworks
software (version: 11.1) [55] can be regarded as a good tool, it will take at least 10 min for reconstruction
due to the huge amount of 3D data involved in registration. Nevertheless, it only takes 15 min at most
to acquire a 3D model of a maize plant using FastSCAN hand held laser scanner. Thus, the Trimble
TX8 laser scanner was not adopted to acquire data of maize plants for comparison with the counterpart
of the laser scanner used in this study.
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As a new kind of range camera, the red-green-blue-depth (RGB-D) camera consisted of a RGB
(red, green, and blue) camera, a depth sensor and infrared emitters has been used extensively in
numerous applications [56,57] due to the advantages of low cost and fast speed. Kinect v2.0 sensor
is a representative of such cameras and is used extensively in phenotyping analysis of plants [58].
The Kinect v2.0 sensor, originally designed for natural interaction in computer gaming environments,
can not only acquire RGB images (1920 by 1080 pixels), but also depth images (512 by 484 pixels) as
well as infrared images (512 by 484 pixels) of maize canopies simultaneously with a field of view (FOV)
of 70 degrees (H) by 60 degrees (V) and 30 frame rate per second [59]. The Kinect v2.0 sensor was used
to acquire 3D point clouds of maize plants and calculate the same phenotypic traits due to its high
speed for comparing the accuracy with values calculated using the approach here.

Two shooting angles were used to acquire 3D point clouds of maize plant (Figure 14). 3D point
clouds under top view were prepared for calculation of plant height and canopy breadth, while those
under side view were used for calculation of stem diameter.
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The determination coefficients (R2) were found to be 0.9858, 0.6973 and 0.8854 for plant height,
stem diameter and canopy breadth respectively, based on 3D data of the Kinect v 2.0 sensor (Table 3).
Compared to the values of phenotypic traits calculated in this study, higher accuracy for plant height
was achieved using the Kinect v 2.0 sensor, while R2 values for stem diameter and canopy breadth
were relatively lower than the counterparts of FastSCAN. Resolution was the first factor impacting
on accuracy. With increasing distance, the accuracy of the 3D point cloud decreases from a standard
deviation (SD) of a few millimeters to approximately 40 mm, and the point-to-point distance decreases
from 2 mm to 4 mm under a FOV of 70 degrees (H) by 60 degrees (V) for the Kinect V2 sensor [59].
In addition, the loss of pixels at the edge of the leaves and stems was another important factor affecting
the accuracy, which was worse than that of FastSCAN. Thus, the FastSCAN hand held laser scanner
was an excellent device for acquiring the phenotypic traits of maize plants compared to the Kinect v
2.0 sensor in this study.

Table 3. Comparison of accuracy for the two devices.

Sensors Plant Height Stem Diameter Canopy Breadth

FastSCAN R2 = 0.9807 R2 = 0.8907 R2 = 0.9562
Kinect v2.0 R2 = 0.9858 R2 = 0.6973 R2 = 0.8854
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4.2. Advantages and Limitations of the Acquisition System

The present study verified the ability to use a FastSCAN Cobra™ hand-held 3D laser scanner and
proposed algorithms for calculating the plant height, stem diameter and canopy breadth of maize plants
in an accurate fashion. However, three factors restricted the performance of the proposed approach.
First, the FastSCAN Cobra™ hand-held 3D laser scanner is sensitive to strong light, which limits the
operation environment of the device. Thus, use of the scanner indoors or under shade outside, without
wind, will ensure its effective application. Second, the acquired raw 3D data lack true color information,
which is not conducive to research on the color characteristics of a plant canopy. This limitation can
be addressed using multi-sensor fusion methods [60,61], such as the combination of 3D point clouds
with color information through the registration of a coordinate system between depth sensors and the
visible light imaging sensor [62]. Third, the quality of the point cloud and the 3D reconstruction effect
is affected by manual scanning operations; redundant points and noise points will increase as the same
area is scanned repeatedly, which will occur if the scanning effect of a certain area of a maize plant is
not ideal. Although repeated scanning is an unavoidable operation, much improved simplification
and denoising methods [63] can be developed to remove the noise of 3D cloud points and improve 3D
reconstruction accuracy.

It is important to choose a suitable device for specific phenotyping analysis. Thus, researchers
must have an in-depth knowledge of the advantages and limitations of each type of imaging system
to accomplish the calculation of phenotypic traits with good accuracy, and efficiency at an affordable
cost. The advantages and limitations of common sensors for acquiring geometric traits are shown
in Table 4. We finally selected the FastSCAN hand held laser scanner for calculating plant height,
stem diameter and canopy breadth according to accuracy and the highest cost performance through
comparing their strengths and weaknesses. Although its short measurement range and handheld use
have been challenges for the application of FastSCAN in the context of high-throughput phenotype
using UAV and other mobile devices such as robotic arms or a vehicle platform, its high resolution
and almost perfect 3D modeling effect contributes to its outstanding advantage for calculating fine
phenotypic traits, such as stem diameter and leaf inclination angle (LIA) [64].

Table 4. Advantages and limitations of common sensors implemented in acquiring of geometric traits.

Sensors Distance of
Point-to-Point Advantages Limitations

Stereo vision system Various resolutions
Low cost

Suitable for unmanned aerial
vehicles (UAV)

Heavy computation
Sensitive to strong light

Lidar/laser sensor
(e.g., Trimble TX8) 7.5 mm at 30 m Long measurement range

High resolution

High cost
Limited information on
occlusions and shadows

Range camera
(e.g., Kinect v 2.0)

>4.0 mm
at more than 4 m

Low cost
High frame rate

Sensitive to strong light
Low resolution

Hand held laser scanner
(e.g., FastSCAN)

0.178 mm in the range of
200 mm

High resolution
High accuracy for 3D model

Short measurement range
Hand held

4.3. Future Work

The plant height, stem diameter and canopy breadth of two varieties of maize plants were
calculated in this study. From a breeding perspective, a promising approach that should be considered
further in future work is the acquisition of other phenotypic traits, such as the leaf inclination angle
(LIA) [64], leaf area index (LAI) [65], leaf area (LA) and color indices (CI) [66], to the greatest extent
possible. LIA indicates the water stress of plants and impacts on the measurement of LAI [67]. LA refers
to an individual leaf, the estimation of LA is important to biometrical observation for a single plant [68].
LAI is not only a ratio of the total area of plant leaves to the land area, but also a comprehensive index
of the utilization of light energy within the canopy structure [69]. CI reflects the nutritional status
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of crops [70]. Additionally, parameters related to the photosynthetic capacity and nutritional status,
such as the chlorophyll content and nitrogen content, will be measured during the entire growth stage
of maize plants, and the relationship between LIA and LAI [71], CI and nutrition contents will be
studied [70].

5. Conclusions

In this study, we proposed a method for calculating phenotypic traits based on the 3D
reconstruction of maize canopies. The major conclusions are as follows:

(1) An adaptive curvature simplification method of 3D point clouds based on the grid method was
proposed. First, the curvature of the marked point cloud was calculated. Second, the size of the outer
bounding box was controlled to reduce the 3D point cloud data of maize leaves. The experimental
results showed that the whole point cloud was reduced by approximately 25% on the premise of
guaranteeing the morphological characteristics of the maize canopy.

(2) Bilateral filtering was used to denoise the feature-rich regions of maize. The maximum error
and average error of the proposed algorithm were 21.1% and 38.2% lower, respectively, than those of
the traditional Laplace filtering algorithm, providing morphological information for the 3D modeling
of maize in a more nuanced manner.

(3) Fitting spheres and cylinders were used to obtain plant height, stem diameter and canopy
breadth. The determination coefficients R2 were found to be 0.9807, 0.8907 and 0.9562, respectively.
The above experimental results suggested that the proposed method for 3D reconstruction of the maize
canopy and the approach for calculating phenotypic traits exhibited high accuracy, providing technical
support for further study of the phenotypic traits and breeding of other crops.
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