Supplementary Materials: Classification of Sonar Targets in Air – A Neural Network Approach

Patrick K. Kroh^D, Ralph Simon and Stefan J. Rupitsch

1. Target Strength Calculations

1.1. Total Target Strength

Mathematical derivations are shown here for the target strength estimates in the manuscript.

Figure S1. Acoustic intensities along transmission path; *SL* source level, I_{TX} transmitter intensity, *TL* transmission loss, I_{in} target input intensity, *TS* target strength, I_{refl} reflected target intensity, $I_{RX,T}$ input intensity from target and *IL* input level.

In analogy to the sonar equation as well as from Figure S1, sonar signal levels are given as

$$IL = SL + TS - 2TL \quad \text{in dB} \quad , \tag{1}$$

$$TS = 10 \log_{10} \left(\frac{I_{\text{refl}}}{I_{\text{in}}} \right) \quad , \tag{2}$$

$$IL = 10 \log_{10} \left(\frac{I_{\text{RX,T}}}{I_0} \right) \quad , \tag{3}$$

$$SL = 10 \log_{10} \left(\frac{I_{\text{TX}}}{I_0} \right) \tag{4}$$

and
$$TL = 10 \log_{10} \left(\frac{I_{\text{in}}}{I_{\text{TX}}} \right) = 10 \log_{10} \left(\frac{I_{\text{RX}}}{I_{\text{refl}}} \right)$$
, (5)

with

IL: input level at receiver,

SL: source level at 1 m from transmitter,

TS: target strength,

TL: transmission loss,

 I_{refl} : acoustic intensity after reflection from target at 1 m distance from target, $[I_{\text{refl}}] = 1 \text{ W m}^{-2}$, I_{in} : acoustic intensity at target position, $[I_{\text{in}}] = 1 \text{ W m}^{-2}$,

 $I_{\text{RX,T}}$: acoustic intensity at receiver due to target echo, $[I_{\text{RX}}] = 1 \text{ W m}^{-2}$,

 I_0 : reference acoustic intensity, $I_0 = 1 \times 10^{-12} \text{ W m}^{-2}$,

 I_{TX} : acoustic intensity at 1 m from transmitter, $[I_{\text{TX}}] = 1 \text{ W m}^{-2}$,

All acoustic intensities are RMS values.

Since only geometric spreading is considered for TL, there is no dependency of frequency

$$TL = 20 \log_{10} \left(\frac{R}{1 \text{ m}}\right) = 20 \log_{10} \left(\frac{t_{\text{T}} c}{2 \cdot 1 \text{ m}}\right) \quad , \tag{6}$$

with

R: sound propagation distance (between speaker/microphone and target),

 $t_{\rm T}$: time delay for echo from target in s,

c: speed of sound, 343 m s^{-1} in air.

The relation between acoustic intensity and a pressure signal's auto-correlation function is based on a plane wave assumption (due to small echo wave surface curvature across microphone area) and is given as

$$I = \frac{1}{Z_0} r_{aa}^{\rm T}(0) \quad , \tag{7}$$

with

I: acoustic intensity RMS in $W m^{-2}$,

 Z_0 : characteristic specific acoustic impedance in Pa s m⁻¹, $r^{T}(0)$, control a set of short time ACE of processing signal in Pa

 $r_{aa}^{T}(0)$: central peak of short time ACF of pressure signal in Pa².

We used the following definition for a short time XCF $r_{ab}(\tau)$ of two arbitrary pressure signals p_a and p_b

$$r_{\rm ab}^{\rm T}(\tau) = \frac{1}{2 T_{\rm ref}} \int_{-\infty}^{+\infty} p_{\rm a}(t+\tau) \, p_{\rm b}(t) \, {\rm d}t \quad , \tag{8}$$

with

 T_{ref} : reference time, e.g., excitation signal duration, in s, t, τ : time variables in s.

Based on correlation, factors from the sonar equation can be expressed as

$$TS = 10 \log_{10} \left(\frac{r_{\rm xx,refl}^{\rm T}(0)}{r_{\rm xx,in}^{\rm T}(0)} \right) \quad , \tag{9}$$

$$IL = 10 \log_{10} \left(\frac{r_{\rm xx,RX,T}^{\rm T}(0)}{r_0} \right)$$
(10)

and
$$SL = 10 \log_{10} \left(\frac{r_{xx,TX}^{T}(0)}{r_0} \right)$$
, (11)

with

 $r_{\text{xx,refl}}^{\text{T}}(\tau)$: short time ACF of acoustic pressure $p_{\text{refl}}(t)$ at 1 m distance from target, in Pa²,

 $r_{xx,in}^{T}(\tau)$: short time ACF of acoustic pressure $p_{in}(t)$ at target position, in Pa²,

 $r_{xx,RX,T}^{T}(\tau)$: short time ACF of acoustic pressure $p_{RX,T}(t)$ at receiver due to echo from target, in Pa²,

 r_0 : reference value for correlation functions of acoustic pressure, $r_0 = I_0 Z_0 = p_0^2$, in Pa²,

 $r_{xx,TX}^{T}(\tau)$: short time ACF of acoustic pressure $p_{TX}(t)$ at 1 m from transmitter, in Pa².

The pressure signal at the receiver is given as

$$p_{\rm RX}(t) = p_{\rm RX,T}(t) + p_{\rm uncorr}(t) \quad , \tag{12}$$

with

 $p_{\text{RX}}(t)$: acoustic pressure signal at the receiver, in Pa

 $p_{\text{RX,T}}(t)$: echo from target at the receiver, in Pa

 $p_{\text{uncorr}}(t)$: uncorrelated acoustic pressure, not from target echo, e.g., noise and other ultrasonic sound

sources, in Pa.

Multiple echoes *i* can occur at a target such as a hollow hemisphere:

$$p_{\text{RX,t}} = \sum_{i=1}^{N} a_i \, p_{\text{TX}}(t - t_i) \tag{13}$$

with
$$t_i = t_{\rm T} + \Delta t_i$$
, (14)

$$\Delta t_{i+1} > \Delta t_i \tag{15}$$

and
$$\Delta t_1 = 0$$
, (16)

with

i: echo number, starts at 1, *N*: number of reflections, *a_i*: relative magnitude of single echo, *t_i*: propagation delay for echo *i*, Δt_i : delay difference for echo *i*.

Cross-correlation between p_{RX} and p_{TX} leads to pulse-compression and thus removal of uncorrelated parts from the echo signal:

$$r_{\rm yx}^{\rm T}(\tau) = \sum_{i=1}^{N} a_i r_{\rm xx,TX}^{\rm T}(\tau - t_i)$$
(17)

with

 $r_{yx}^{T}(t_{T})$: pulse-compressed echo's value at t_{T} (see Appendix 2.1 for detailed calculations).

A relation between $r_{xx,RX,T}^{T}(\tau)$ and $r_{yx}^{T}(\tau)$ can be derived, too:

$$r_{xx,RX,T}^{T}(\tau) = \sum_{i=1}^{N} a_{i} r_{yx}^{T}(\tau + t_{i})$$
(18)

(see Appendix 2.2 for detailed calculations).

As a consequence, it can be inferred for a reflector with a single dominant echo (e.g., disc and cylinder) that

$$TS_{1} = 20 \log_{10} \left(\frac{r_{\rm yx}^{\rm T}(t_{\rm T})}{r_{\rm xx,TX}^{\rm T}(0)} \right) + 40 \log_{10} \left(\frac{t_{\rm T} c}{2 \cdot 1 \,\rm m} \right)$$
(19)

$$= 2\left(\Delta T S_1 + T S_{1,\text{const}}\right) \tag{20}$$

with

 TS_1 : total target strength estimate

 $t_{\rm T}$: target's main peak delay in pulse-compressed echo

 ΔTS_1 : relative total target strength estimate,

 $TS_{1,const}$: constant part of total target strength estimate with

$$\Delta TS_{1} = 10 \log_{10} \left(\frac{r_{\rm yx}^{\rm T}(t_{\rm T})}{r_{\rm 0}} \right) + 20 \log_{10} \left(\frac{t_{\rm T}}{t_{\rm 0}} \right)$$
(21)

and
$$TS_{1,\text{const}} = 20 \log_{10} \left(\frac{c t_0}{2 \cdot 1 \,\mathrm{m}} \right) - 10 \log_{10} \left(\frac{r_{\text{xx,TX}}^{\mathrm{T}}(0)}{r_0} \right)$$
 (22)

with

 r_0 : arbitrary constant in Pa², t_0 : arbitrary time constant in s.

1.2. Spectral Target Strength

Spectral target strength relations:

$$TS = 10 \log_{10} \left(\frac{\int_{-\infty}^{+\infty} S_{\text{xx,refl}}^{\text{T}}(f) \, \mathrm{d}f}{\int_{-\infty}^{+\infty} S_{\text{xx,in}}^{\text{T}}(f) \, \mathrm{d}f} \right) = 10 \log_{10} \left(\frac{\int_{-\infty}^{+\infty} S_{\text{xx,in}}^{\text{T}}(f) \, \widetilde{TS}_{lin}(f) \, \mathrm{d}f}{\int_{-\infty}^{+\infty} S_{\text{xx,in}}^{\text{T}}(f) \, \mathrm{d}f} \right) \quad , \quad (23)$$

$$\widetilde{TS}(f) = 10 \log_{10} \left(\frac{S_{\text{xx,refl}}^{\text{r}}(f)}{S_{\text{xx,in}}^{\text{T}}(f)} \right) \quad ,$$
(24)

$$IL = 10\log_{10}\left(\frac{\int_{-\infty}^{+\infty} S_{\text{xx,RX,T}}^{\text{T}}(f) \, \mathrm{d}f}{r_0}\right) \tag{25}$$

and
$$SL = 10 \log_{10} \left(\frac{\int_{-\infty}^{+\infty} S_{xx,TX}^{T}(f) df}{r_0} \right)$$
 (26)

with

 $S_{xx,refl}^{T}(f)$: auto power spectral density for $p_{refl}(t)$, in Pa² Hz⁻¹, $S_{xx,in}^{T}(f)$: auto power spectral density for $p_{in}(t)$, in Pa² Hz⁻¹, $\widetilde{TS}(f)$: spectral target strength, $S_{xx,RX,T}^{T}(f)$: auto power spectral density for $p_{RX,T}(t)$, in Pa² Hz⁻¹, $S_{xx,TX}^{T}(f)$: auto power spectral density for $p_{TX}(t)$, in Pa² Hz⁻¹.

Relations between correlation functions and spectral properties are

$$S_{ab}^{\mathrm{T}}(f) = R_{ab}^{\mathrm{T}}(f) = \mathcal{F}\{r_{ab}^{\mathrm{T}}(t)\}$$

$$(27)$$

and
$$r_{ab}^{T}(t) = \int_{-\infty}^{+\infty} S_{ab}^{T}(f) e^{j2\pi ft} df$$
 (28)

with

 $S_{ab}^{T}(f)$: cross power spectral density for two arbitrary signals $p_{a}(t)$ and $p_{b}(t)$, here in Pa² Hz⁻¹, $R_{ab}^{T}(f)$: fourier transform of cross correlation of $p_{a}(t)$ and $p_{b}(t)$, here in Pa² s, $\mathcal{F}\{\cdots\}$: fourier transform.

From equations 17 and 18 as well as 28, it follows that

$$S_{yx}^{T}(f) = S_{xx,TX}^{T}(f) \sum_{i=1}^{N} a_{i} e^{-j2\pi f t_{i}}$$
(29)

and
$$S_{xx,RX,T}^{T}(f) = S_{yx}^{T}(f) \sum_{i=1}^{N} a_{i} e^{j2\pi f t_{i}}$$
 (30)

with $S_{vx}^{T}(f)$: cross-power-spectral density of echo signal with the excitation signal.

We can write

$$10 \log_{10}\left(\frac{I_{\rm in}}{I_0}\right) = SL - TL \tag{31}$$

and thus

$$S_{\rm xx,in}^{\rm T}(f) = S_{\rm xx,TX}^{\rm T}(f) \frac{R^2}{1\,{\rm m}^2} , \qquad (32)$$

$$TS = 10 \log_{10} \left(\frac{\int_{-\infty}^{+\infty} S_{\text{xx,TX}}^{\text{T}}(f) \, \overline{TS}_{\text{lin}}(f) \, \mathrm{d}f}{\int_{-\infty}^{+\infty} S_{\text{xx,TX}}^{\text{T}}(f) \, \mathrm{d}f} \right)$$
(33)

and
$$\widetilde{TS}(f) = 10 \log_{10} \left(\frac{S_{xx,RX,T}^{T}(f)}{S_{xx,TX}^{T}(f)} \right) + 2 TL$$
, (34)

(see Appendix 2.3 for detailed calculations) so as a consequence, we obtain

$$\widetilde{TS}(f) = 20 \log_{10} \left(\frac{S_{\text{yx}}^{\text{T}}(f)}{S_{\text{xx},\text{TX}}^{\text{T}}(f)} \right) + 2 TL$$
(35)

and
$$\widetilde{TS}(f) = 2\left(\Delta \widetilde{TS}(f) + \widetilde{TS}_{const}(f)\right)$$
 (36)

with

 $\Delta \widetilde{TS}$: relative spectral target strength estimate, \widetilde{TS}_{const} : constant part of spectral target strength, which are calculated by

$$\Delta \widetilde{TS}(f) = 10 \log_{10} \left(\frac{S_{yx}^{T}(f)}{S_0} \right) + 20 \log_{10} \left(\frac{t_T}{t_0} \right)$$
(37)

and
$$\widetilde{TS}_{\text{const}}(f) = 20 \log_{10}\left(\frac{c t_0}{2 \cdot 1 \,\mathrm{m}}\right) - 10 \log_{10}\left(\frac{S_{\text{xx,TX}}^{\mathrm{T}}(f)}{S_0}\right)$$
 (38)

with

 S_0 : power spectral density reference value, may be chosen arbitrarily, in Pa² Hz⁻¹.

2. Detailed Proof of Relations Between Signal Correlation Functions

2.1. Proof for equation 17

The XCF of p_{RX} and p_{TX} can be calculated by

$$r_{\rm yx}^{\rm T}(\tau) = \frac{1}{2 T_{\rm ref}} \int_{-\infty}^{+\infty} p_{\rm RX}(t+\tau) \, p_{\rm TX}(t) \, {\rm d}t \quad , \tag{39}$$

$$= \frac{1}{2T_{\rm ref}} \int_{-\infty}^{+\infty} \left[\sum_{i=1}^{N} a_i \, p_{\rm TX}(t-t_i+\tau) + p_{\rm uncorr}(t+\tau) \right] \, p_{\rm TX}(t) \, \mathrm{d}t \quad , \tag{40}$$

$$= \frac{1}{2T_{\text{ref}}} \sum_{i=1}^{N} a_i \int_{-\infty}^{+\infty} p_{\text{TX}}(t - t_i + \tau) p_{\text{TX}}(t) dt \quad , \tag{41}$$

$$=\sum_{i=1}^{N} a_{i} r_{xx,TX}^{T}(\tau - t_{i}) \quad .$$
(42)

 p_{uncorr} is assumed to be orthogonal to p_{TX} and, therefore, does not have an influence on $r_{\text{yx}}^{\text{T}}(\tau)$.

2.2. Proof for equation 18

The relation between the target echo ACF $r_{xx,RX,T}^{T}(\tau)$ and $r_{yx}^{T}(\tau + t_i)$ is derived by

$$r_{\rm xx,RX,T}^{\rm T}(\tau) = \frac{1}{2T_{\rm ref}} \int_{-\infty}^{+\infty} p_{\rm RX,T}(t+\tau) \, p_{\rm RX,T} \, \mathrm{d}t \quad , \tag{43}$$

$$= \frac{1}{2 T_{\text{ref}}} \int_{-\infty}^{+\infty} \sum_{i=1}^{N} a_i \, p_{\text{TX}}(t - t_i + \tau) \sum_{k=1}^{N} a_k \, p_{\text{TX}}(t - t_k) \, \mathrm{d}t \quad , \tag{44}$$

$$= \sum_{i=1}^{N} a_i \sum_{k=1}^{N} a_k \frac{1}{2T_{\text{ref}}} \int_{-\infty}^{+\infty} p_{\text{TX}}(t - t_i + \tau) p_{\text{TX}}(t - t_k) \, \mathrm{d}t \quad , \tag{45}$$

$$=\sum_{i=1}^{N}a_{i}\sum_{k=1}^{N}a_{k}\frac{1}{2T_{\text{ref}}}\int_{-\infty}^{+\infty}p_{\text{TX}}(t-t_{i}+t_{k}+\tau)p_{\text{TX}}(t)\,\mathrm{d}t\quad,\tag{46}$$

$$= \sum_{i=1}^{N} a_i \sum_{k=1}^{N} a_k r_{\text{xx,TX}}^{\text{T}} (\tau - t_i + t_k) \quad ,$$
(47)

$$=\sum_{i=1}^{N} a_{i} r_{yx}^{T}(\tau + t_{i}) \quad .$$
(48)

Equation 17 is used in the last step.

2.3. Proof for equation 32

From equation 31 follows

$$10 \log_{10} \left(\frac{I_{\rm in}}{I_{\rm TX}} \right) = TL \tag{49}$$

and
$$10 \log_{10} \left(\frac{\int_{-\infty}^{+\infty} S_{\text{xx,in}}^{\text{T}}(f) \, dt}{\int_{-\infty}^{+\infty} S_{\text{xx,TX}}^{\text{T}}(f) \, dt} \right) = 10 \log_{10} \left(\frac{R^2}{1 \, \text{m}^2} \right),$$
 (50)

where *TL* does not depend on frequency and the relation must be true for any arbitrary $S_{xx,in}^{T}(f)$. Hence, the relation

$$10 \log_{10} \left(\frac{S_{\text{xx,in}}^{\text{T}}(f)}{S_{\text{xx,TX}}^{\text{T}}(f)} \right) = 10 \log_{10} \left(\frac{R^2}{1 \, \text{m}^2} \right)$$
(51)

must be true.

Abbreviations

The following abbreviations are used in this manuscript:

- TS Target Strength
- RMS Root Mean Square
- ACF Auto-Correlation Function
- XCF Cross-Correlation Function