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Abstract: In this paper, we present a novel vibration-based piezoelectric energy harvester, capable of
collecting power at multiple operating frequencies and autonomously adapting itself to the dominant
ambient frequencies. It consists of a compact dual-frequency resonator designed such that the first
two fundamental natural frequencies are in the range of [50, 100] Hz, which is a typical frequency
range for ambient vibrations in industrial environments. A magnetic frequency-tuning scheme is
incorporated into the structure, which enables the frequency agility of the system. In contrast to single
frequency harvesters, the presented approach combines multi-resonance and frequency tunability of
both modes enabling a larger operative bandwidth. We experimentally demonstrate independent
bi-directional tunability of our dual-frequency design. Furthermore, a control algorithm based on
maximum amplitude tracking has been implemented for self-adaption of the system. The latter
has been demonstrated in a system-level simulation model, which integrates the dual-frequency
resonator, the magnetic tuning, and the control algorithm.

Keywords: energy harvesting; vibration; piezoelectricity; nonlinear resonators; magnetic frequency
tuning; multimodal structures; bi-stability

1. Introduction

The increasing demand for smart condition monitoring systems in industrial or automotive
applications calls for deployment of wireless sensor networks in inaccessible or harsh environments, in
which battery use is not possible and where energy harvesting systems represent a better candidate to
act as a local sustainable power source. The ‘first generation’ vibration-based energy harvesting devices
consist mainly of spring-mass-damper systems, generating maximum power, only when their natural
frequencies coincide exactly with the dominant ambient frequency. Therefore, they can be applied only
if the vibration frequency is known beforehand. Realistic ambient vibration spectra exhibit multiple
frequencies, which also shift over time as the vibration source is aging or changing in temperature.
These resonant energy harvesting schemes fail in such environments. Hence, frequency-agile systems
(i.e., capable of adjusting their operation frequency) and multimodal-based harvesters have been
proposed to overcome this challenge.

In recent years, numerous multimodal resonator designs have been introduced. Shaofan et al. [1]
proposed a multi-resonant structure comprising a clamped–clamped piezoelectric fiber composite
generator with side mounted cantilevers, which are tuned by added masses to be resonant at
different frequencies, inducing a wider harvesting bandwidth. A novel piezoelectric vibration energy
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harvester, consisting of a stack of five resonators has been proposed in [2] for harvesting power at
multiple frequencies. The work presented in [3] investigates a compact piezoelectric energy harvester,
comprising one main cantilever beam and an inner secondary cantilever beam and efficiently harvests
power at two distinct frequencies. A novel trident (three-pronged spear) shaped piezoelectric energy
harvester has been proposed in [4] to collect power from wideband, low-frequency, and low-amplitude
ambient vibrations. Ramírez et al. [5] analyzed the effects of rotational motion on the performance
of a novel piezoelectric energy harvester, consisting of a two E-shape multiple beams system joined
with a rigid beam and operating at low frequencies. The drawback of this approach is the limited
operational bandwidth, achievable only by increasing the overall size of the harvester, which on the
contrary, needs to be minimized in most industrial applications.

Alternatively, various groups [6–10] demonstrated the usability of bi-stable resonators for
harvesting on a wider bandwidth, by integrating permanent magnets positioned with respect to
another permanent magnet on the resonator. In [11,12] a tuning mechanism has been developed,
allowing compensation of the hysteresis as well as maintaining the optimal working point. Other
research [13] adapts the magnetic field strength, acting on the resonator, by orienting a circular
permanent magnet. The mechanism allows the use of both coupling modes (attractive and repulsive),
which enables the harvester to adapt its operating frequency to the dominant vibration frequency of
the environment. The harvester itself ensures the provision of the required power for frequency tuning.
In [14] an enhanced novel design of a nonlinear magnetic levitation-based energy harvester has been
proposed, where the tuning effect is achieved by the magnetic and the oblique springs. A bi-stable
rotational energy harvester with wide bandwidth and operating at low frequencies has been proposed
in [15,16]. The energy conversion is achieved by magnetic plucking of a piezoelectric cantilever using
a driving magnet mounted on a rotating platform. In [17] a compact nonlinear multi-stable energy
harvester array has been presented for harvesting energy at low frequencies. In [18–20] we studied
the behavior of a dual-frequency piezoelectric energy harvester incorporating permanent magnets for
bi-directional frequency tuning. Other groups used different approaches for broadening the harvesting
bandwidth, for example, Ref. [21] analyzed a broadband energy harvester with an array of piezoelectric
bimorphs mechanically connected via springs. The operative bandwidth broadening can be achieved
by carefully selecting the masses and adjusting the spring stiffness. Adaptive power harvesters using
shunted piezoelectric control system have been proposed in [22,23], providing effective broadband
power generation for application in wireless sensor devices.

Despite the considerable amount of research and the numerous attempts which have been
made using various approaches, achieving multiple resonant peaks in a specified frequency range
to facilitate broadband energy harvesting remains a challenging task. In this paper, we characterize
the dual-frequency piezoelectric energy harvester. The geometry consists of a so-called folded beam
resonator (fabricated from a single steel sheet), integrating permanent magnets at the free ends of
the cantilevers. The design has been developed such that two fundamental modes, corresponding
respectively to the outer and inner beam, exist at distinct frequencies (Figure 1) in the frequency domain
[50, 100] Hz. In contrast to [3], a bi-directional frequency tuning was achieved by symmetrically
arranging external magnets and adjusting their positions. It is a unique feature of our approach that
both modes can be tuned independently. The dual frequency feature of the structure, together with
the independent bidirectional frequency tuning of each mode, provide superior frequency agility and
increase the operational bandwidth of the system compared to existing approaches. A control scheme,
which uses an energy efficient maximum-amplitude-tracking algorithm, is simulated together with a
lumped model of a frequency tunable single- and dual frequency resonator. The position-dependent
magnetic force has been obtained from magnetostatic simulations. The system is able to autonomously
choose and tune the closest mode to the dominant vibration frequency to maintain maximum
possible oscillation amplitude. Furthermore, we propose a unique reluctance-based tuning scheme,
incorporating a single diametrically polarized magnet and two permalloy yokes with very high
permeability. The angular positioning of the magnet will replace the linear actuation of the two pairs
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of magnets in the actual tuning mechanism, which will enhance the power budget of the whole system.
The simulations demonstrated that a better tuning efficiency can be achieved compared to the standard
tuning mechanisms, requiring linear magnets actuation.

2. Dual Frequency Piezoelectric Energy Harvester

In order to simulate the behavior and estimate the power output of the proposed energy harvester,
we implemented the geometry in the finite element-based simulation tool ANSYS Multiphysics, as
depicted in Figure 1. The mechanical resonator consists of a folded beam structure, mainly two
identical 80 mm long arms (referred to as outer beams), stretching from the base and mechanically
connected via a common end to a 60 mm long inner beam, which extends towards the base. We
considered the mechanical resonator with two identical masses m = 7.6 g. The modal analysis yielded
the mode shapes at two natural frequencies. The first two resonance frequencies obtained from the
simulation, which are f 1,sim = 63.182 Hz and f 2,sim = 77.457 Hz, respectively have been compared to
the corresponding experimental values and show a very good agreement. In particular, we measured
f 1,exp = 62.630 Hz and f 2,exp = 76.072 Hz. The model has been validated through further comparisons
between the harmonic analysis and the experimental results [19].
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Figure 1. Geometry description (dimensions in mm) of the dual-frequency piezoelectric energy
harvester (left), first two fundamental mode shapes (right) appearing at two close frequencies.

We furthermore implemented piezoelectric films, (60 × 10 × 0.2 mm3 on the outer beam and
48 × 18 × 0.2 mm3 for the inner beam), into our ANSYS model. Patch 1.1 and 1.2 are electrically
connected in parallel, whereas patch 2 is operated independently since it operates at a different
frequency and thus requires a different optimum load. Through a harmonic analysis, we estimated the
voltage output. The power output is then given by the following expression [24]:

Pij =
1
4

V2
0j2π f jCi (1)

where: V0j is the open-circuit output voltage amplitude at mode j, fj is the mode frequency, and Ci is
the capacitance of the piezoelectric patch i. The total power output represented in Figure 2, is then
the sum of all power contributions delivered by each patch at every mode. The material properties of
the piezoelectric ceramic correspond to the material PIC-255, supplied by PI Ceramic and are given in
Table A1 in the Appendix A.

The previous results (Figure 2) show that the considered resonator amplifies the displacement at
the first and the second mode significantly, leading to a distribution of the mechanical strain over the
flexible structure. Consequently, the corresponding piezoelectric film polarizes and generates surface
charges (voltage).
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Figure 2. Simulated power output of the proposed energy harvester, illustrating the dual frequency
operation of the structure with comparable power output levels.

3. Frequency Tuning

In this paper, we propose magnetic frequency tuning. The approach consists of integrating
permanent magnets with the resonating structure together with fixed magnets. They can be
incorporated in different configurations, for instance in an axial configuration, such that the generated
force reactions will be coplanar with the structure axis, or alternatively, vertical to the structure’s
surface, which will be considered in this paper and referred to as a vertical configuration (Figure 3).
The interactions between the magnets create an effective spring constant. The latter will sum-up the
mechanical stiffness of the structure and lead to hardening or softening, depending on the ‘repelling’
or ‘attractive’ orientation of the magnets. This leads to a frequency up or down tuning, respectively.
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Figure 3. Geometry description of the nonlinear simple cantilever resonator (left) and the dual
frequency design (right).

3.1. Bi-Directional Frequency Tuning Simulation

The simulation of the bi-directional frequency tuning effect in different configurations and
orientations requires the implementation of the magnetic forces. Therefore, we considered a
parametrized magnetostatic simulation of a configuration of neodymium permanent magnets with
N42 magnetization as shown in Figure 4.
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The dimensions of the outer magnets are 10 × 10 × 5 mm3, whereas the inner magnet has an
identical cross-section and a thickness of 10 mm. For simplification purposes, we neglect the rotation
of the magnet as the beam undergoes deflection and consider only vertical displacements. Here, we
consider attracting magnets in the vertical configuration. The simulation has been performed for
different gap values (reported as the distance between the fixed and the movable magnet at the rest
position) in the range 10 to 25 mm and for different vertical displacements of the movable magnet in the
interval −6 to 6 mm. In order to include the effect of the magnetic tuning, we consider spring elements
with displacement-dependent, hence nonlinear, stiffness. Therefore, we derived a two-variable fitting
function (Equation (2)).

F =
7

∑
i = 0

j = 7− i

aijxizj (2)

where x and z are the gap and the vertical displacement, respectively. The constants aij, are given in
Table A2 in the Appendix A. The fitting function shows an excellent match with the simulation results
(Figure 4). As a first step, the defined functions have been implemented into a two-dimensional ANSYS
model of the simple cantilever resonator in Figure 3 (left). The magnetostatic forces are represented by
the nonlinear spring element COMBIN39.

The untuned natural frequency of the resonator is f 0 = 56.296 Hz. By considering attractive forces,
the overall stiffness of the structure will decrease. We run a transient simulation with a harmonic base
excitation and a stepwise decreasing excitation frequency (sweep down ‘s.d.’) as shown in Figure 5.
Each frequency step needs to run for 10 s, in order to make sure that the system reaches the steady-state
regime at which oscillation amplitude is obtained.

The graph shown in Figure 5 represents transient analysis results. They demonstrate the frequency
tuning effect of the initial resonance of the resonator, showing that the magnetic forces implemented
into our model lead to softening and the results match with the experimental ones. Due to the
considerable solution time of a full transient simulation, we considered an equivalent nonlinear
compact model, consisting of a lumped spring-mass-damper resonator in ANSYS Twin Builder
(see Figure 6). We parametrized the excitation frequency such that it sweeps in both directions. The
magnetic force has been implemented as a two-variable-force function denoted as function 1. While
function 2, needed to calculate the variable damping coefficient, is the overall stiffness of the system.
It includes the spring constant and the magnetic stiffness (derivative of the force expression with
respect to the vertical displacement) arising from the magnetic interaction between the moving and
the fixed magnets as described in Equation (8).
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The equation of motion of a standard linear single degree of freedom system (SDOF), undergoing
a harmonic base excitation u0(t) can be expressed in Equation (3).

m
..
z + c

.
z + kz = c

.
u0 + ku0 (3)

where m, c, and k are the equivalent mass, the damping coefficient and the spring constant, respectively.
According to [25], the equivalent mass of tip-loaded uniform cantilever can be calculated using
Equation (4).

m = mt +
33
140

mb (4)

where mt is the tip mass, which represents in our case the moveable magnet’s weight and mb is the
beam mass. If E, I and l are the Young’s modulus, the moment of inertia and the length of the simple
cantilever resonator, the beam’s stiffness k is given by Equation (5).

k =
3EI
l3 (5)

In the following, we consider a constant damping ratio of ξ = 0.015, which enables us to define
the damping constant c, which can be calculated then using Equation (6).

c = 2ξ
√

mk (6)

However, for the nonlinear SDOF resonators, the stiffness will depend on displacement as
described in Equation (7).

m
..
z + c

.
z + kt(z)z = c

.
u0 + ktu0 (7)

where kt denotes the overall stiffness of the system, which is the superposition of the stiffness generated
by the permanent magnets and the equivalent stiffness of cantilever. The first partial derivative
of the force expression (Equation (2)) with respect to the displacement z will define an effective
magnetic stiffness.

kt(z) = k± km(z)

km(z) =
∂F
∂z

dz
(8)

The frequency down-tuning results of the equivalent compact model represented in Figure 7
show a good match in terms of the frequency with the full model.
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3.2. Experimental Work

In order to experimentally investigate the magnetic frequency tuning capabilities, we first
considered a simple cantilever resonator (stainless steel, 80 × 10 × 1 mm3, see Figure 3). The structure
is excited with a harmonic base acceleration of a = 0.2 g generated by test equipment (Figure 8).
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Figure 8. Experimental test bench used for the frequency tuning investigations of a simple cantilever
resonator (left) and the folded beam structure (right).

The tuning mechanism can incorporate permanent Neodymium (NdFeB) magnets in attractive
and repulsive orientations, assembled in a vertical configuration. The positions of the magnets are
adjusted using computer-controlled motorized linear stages.

The results in Figure 9 illustrate the bidirectional tuning of the simple cantilever resonator’s
frequency by up to 35% out of a center frequency. Nevertheless, the system becomes highly unstable,
while tuning at smaller gap values, which translates into the hysteresis effect depicted in Figure 9 and
illustrated by the resonance shift between the frequency sweep up (s-up) and sweep down (s-down).

The experimental results validate the compact model and demonstrate the reliability of the
magnetic forces implementation. The comparison shows a minor deviation between the simulation
and the experimental data, with an estimated error below 1%, as illustrated in Figure 10.

The experiments have been extended to consider the dual-frequency stainless steel resonator. This
time, the second pair of NdFeB magnets has been integrated to act on the inner beam.

The results in Figure 11 show the effect of the gap variation on both modes’ frequencies of
the dual-frequency resonator and illustrate a maximum bidirectional frequency shift of up to 18%.
However, the decrease in the displacement amplitudes, observed while up tuning, constitutes a
limitation of such a strategy. The independence of tuning both frequencies shown in Figure 12, opens
up the opportunity to reduce the frequency gap between the two modes and enables the possibility for
a frequency overlap.
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Figure 9. Experimental results showing the bidirectional frequency tuning of a simple cantilever
resonator, by up to 35% (left) and illustrating the hysteresis effect observed while tuning at a gap value
of 10 mm (right) and caused by the strong nonlinearity of the magnetic forces.
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respectively mode 2 (right).

3.3. Frequency Tuning Control Scheme

Based on the tuning results, a control scheme, which uses an energy efficient
maximum-amplitude-tracking algorithm, has been developed and simulated for a frequency tunable
simple resonator. The algorithm is able to self-adapt the gap step size to maintain maximum possible
oscillation amplitude. In order to check the performances of the algorithm, we excited the simple
cantilever resonator with a step-wise frequency-varying harmonic base acceleration with an amplitude
of 0.2 g as depicted in Figure 13.
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Figure 13. Simulation results of the implemented frequency tuning control scheme, tracking the
maximum amplitude through multiple frequency states.

The results illustrate the self-adaption of the resonator’s natural frequency according to the most
dominant excitation frequency. The adaptive gap step size enables getting as close as possible to the
resonance to ensure the maximum possible amplitude and increases the power efficiency of the system
by reaching the desired frequency with a minimum number of steps.

Additionally, the implemented algorithm has been extended to consider the dual frequency
resonator and improved in such a way that it enables the system to autonomously choose and tune the
closest mode to the dominant vibration frequency, as illustrated in Figure 14, by triggering one of the
tuning mechanisms and maintaining the second one in a sleep mode.
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tracking-based algorithm, which identifies the dominant frequency and tunes the closest mode.

The response of the resonator under a frequency varying excitation represented in Figure 14
demonstrates the smart self-adaption of the resonator to the closest excitation frequency.

3.4. Novel Tuning Approach

The tuning mechanism based on a rotational disc magnet proposed in [13] shows a low power
consumption compared to the linear positioning-based tuning mechanisms. In order to ensure the
efficiency of our harvesting device, we propose a reluctance-based tuning scheme incorporating a
single diametrically polarized magnet with rotational actuation. Tuning is achieved by changing the
angular position of the magnet, which replaces the linear positioning of the external magnets in the
actual mechanism. A magnetic yoke fabricated from high permeability material (mu-metal) guides the
magnetic flux towards another mu-metal component attached to the free end of the cantilever as a tip
mass, which will be moving as a plunger, while the resonator starts to oscillate (Figure 15).

The tunability has been numerically demonstrated by changing the angular position of the magnet
in a magnetostatic simulation. In order to compare the efficiency of the reluctance-based tuning scheme,
with the previous tuning scheme based on the linear positioning of the permanent magnets, we used
a similar N42 NdFeB magnet, but diametrically polarized, providing a magnetic flux density of
B = 1.32 T. The material properties of ASTM A 753 provided by ‘Magnetic Shields®’
(80%Ni15%Fe%5Mo, µr = 470.000, saturation of 0.6 T) has been implemented in the model. The
reluctance force (represented in Figure 15) has been implemented in the same equivalent compact
model of the simple cantilever resonator as shown in Figure 16.
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Figure 15. Reluctance-based tuning scheme with low power requirements, where the tuning is achieved
by the rotation of the permanent magnet, enabling structure softening. The resonator carries high
permeability material as a magnetic plunger (left), together with the simulation results of the magnetic
forces acting on the resonator (right).
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Figure 16. Simulation results of the equivalent compact model, illustrating the frequency shift (up to
45%) and the amplitude variation while down tuning using the reluctance-based tuning scheme.

These results demonstrate that by using the proposed scheme, the frequency tuning efficiency can
be improved compared to the magnets-linear-positioning-based tuning scheme. Subsequently, they
illustrate that the optimum tuning efficiency can be achieved for angular positions of the magnet in
the range between 70◦ and 25◦. For lower angular values, the system becomes bi-stable.

4. Conclusions and Outlooks

In this work, we presented a novel self-tunable dual-frequency piezoelectric energy harvester. The
dual frequency feature has been demonstrated through simulations, which showed that the resonator
magnifies the amplitudes at two close resonances, enabling harvesting power at both modes. The
frequency tunability of the system has been demonstrated experimentally by integrating permanent
magnets in different orientations, which causes a structure hardening or softening and leads to a
frequency up and down tuning, respectively. It has been shown that the frequency can be tuned by up
to 18% in both directions and for both modes independently, which increases the frequency agility of
our system, compared to other designs. Nevertheless, an amplitude decrease has been observed, while
up-tuning the frequency, which limits the use of this approach.

Moreover, in order to simulate the bi-directional frequency tuning of the resonator and
define the force interactions between the permanent magnets, a magnetostatic simulation has been
performed. The results of this simulation enabled us to define force functions giving a general
force-gap-displacement relationship, which has been implemented into a 2D simple resonator model.
The simulation results demonstrated that the implemented forces trigger a structure softening
leading to a decrease of the natural frequency. Due to the considerable solution time of a full
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F.E. model, an equivalent compact model of the nonlinear resonator has been developed and
validated by experimental work. Beyond establishing and simulating the behavior of the nonlinear
resonator, a control scheme, based on an energy efficient maximum-amplitude-tracking algorithm,
has been developed. It integrates the possibility to autonomously choose and tune the closest
mode to the dominant vibration frequency, with a self-adaptive step size to maintain maximum
oscillation amplitude.

Finally, in order to ensure the efficiency of the harvesting device, we propose to improve the tuning
scheme used to demonstrate the frequency agility of the resonator. We propose a reluctance-based
tuning scheme incorporating a single actuated diametrically polarized magnet. The mechanism has a
lower power budget compared to the linear magnets positioning, due to the lower number of actuation
needed for the tuning. Through a simulation investigation, we demonstrated that the frequency tuning
range can be improved compared to the magnets linear positioning scheme. An extensive experimental
investigation to validate the simulation outcomes is planned.
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Appendix A

Table A1. Material properties and dimensions of the piezoelectric film PIC-255.

Mechanical Properties Dimensions (length × width × thickness [mm3])

Density [kg/m3] 7800 Patch 1.1/1.2 60 × 10 × 0.2
Poisson’s ratio 0.36 Patch 2 48 × 18 × 0.2

Elasticity Coefficients [×1010 N/m2] Piezoelectric Constants [N/Vm]

C11E 12.30 e31 −7.150
C33E 9.711 e33 13.75
C44E 2.226 e15 11.91

C66E 2.315 Dielectric Coefficients

C12E 7.670 ε11 930
C13E 7.025 ε33 857

Table A2. Coefficients of the two-variable fit function expressing the magnetic force as a function of
the gap and the vertical displacement.

a00 1.376 × 101 a03 1.839 × 10−1 a23 2.853 × 10−3 a06 2.071 × 10−6

a10 −6.894 × 100 a40 1.033 × 10−2 a14 1.291 × 10−4 a70 −6.909 × 10−8

a01 1.651 × 101 a31 −3.492 × 10−2 a05 3.570 × 10−4 a61 2.117 × 10−7

a20 1.428 × 100 a22 3.846 × 10−3 a60 8.039 × 10−6 a52 −7.301 × 10−8

a11 −4.414 × 100 a13 −3.739 × 10−2 a51 −2.595 × 10−5 a43 1.198 × 10−6

a02 1.139 × 10−1 a04 −8.264 × 10−4 a42 6.434 × 10−6 a34 1.148 × 10−7

a30 −1.591 × 10−1 a50 −3.916 × 10−4 a33 −9.604 × 10−5 a25 7.225 × 10−7

a21 5.290 × 10−1 a41 1.307 × 10−3 a24 −6.801 × 10−6 a16 −6.097 × 10−8

a12 −3.301 × 10−2 a32 −2.234 × 10−4 a15 −3.120 × 10−5 a07 −3.415 × 10−7
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