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Abstract: The effective fault diagnosis in the prognostic and health management of reciprocating
compressors has been a research hotspot for a long time. The vibration signal of reciprocating
compressors is nonlinear and non-stationary. However, the traditional methods applied to processing
such signals have three issues, including separating the useful frequency bands from overlapped
signals, extracting fault features with strong subjectivity, and processing the massive data with limited
learning abilities. To address the above issues, this paper, which is based on the idea of deep learning,
proposed an intelligent fault diagnosis method combining Local Mean Decomposition (LMD) and
the Stack Denoising Autoencoder (SDAE). The vibration signal is firstly decomposed by LMD and
reconstructed based on the cross-correlation criterion. The virtual noise channel is constructed to
reduce the noise of the vibration signal. Then, the de-noised signal is input into the trained SDAE
model to learn the fault features adaptively. Finally, the conditions of the reciprocating compressor
valve are classified by the proposed method. The results show that classification accuracy is 92.72%
under the condition of a low signal-noise ratio, which is 5 percentage points higher than that of the
traditional methods. This shows the effectiveness and robustness of the proposed method.

Keywords: reciprocating compressor; deep learning; stack denoising autoencoder; local mean
decomposition; fault diagnosis

1. Introduction

Reciprocating compressor units are widely used in the petroleum and chemical industries for
gas pressurization and transportation. As a key piece of equipment, the running state directly affects
the normal operation of the whole production system. Due to the complex structure and so many
vulnerable parts of reciprocating compressor, the failure rate is always high, and the valve is the
component with the highest failure rate in reciprocating compressor. Once a fault occurs, it will cause
dangerous gas to leak, thus resulting in economic losses, disastrous accidents, and even possibly pose a
threat to the personal safety of employees [1]. The technology of Prognostics and Health Management
(PHM) can not only avoid the fatal failure of the machine but also improve the safety and the reliability
of the system. PHM generally includes the ability of fault diagnosis, fault prognostics and health
management; fault diagnosis is one of the most important applications in PHM. Therefore, research on
the fault diagnosis of reciprocating compressors has important theoretical and practical values.

Many fault diagnosis methods have been widely studied in recent years, and some achievements
have been made [2–5]. Chen et al. [2] proposed a novel method to design adaptive undecimated
lifting scheme packet (AULSP), and this method was applied to identify successfully weak-signal
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fault features of a certain reciprocating compressor. Tang et al. [3] established a time-frequency
distribution algorithm based on the concept of local frequency (LF), and applied it to the fault feature
extraction of a reciprocating compressor gas valve vibration signal. Kocyigit et al. [4] removed the gap
between the information required to apply a general theory of diagnosis and the limited information
on the p-h diagram, which can interpret more failures of the vapor compression refrigeration cycle.
Cui et al. [5] proposed a method of compressor valve fault diagnosis using information entropy and
SVM and this method shows good performance in compressor valve fault diagnosis. However,
there are still three obvious problems. (1) Signal processing methods are widely used; wavelet
analysis [6–8] and Empirical Mode Decomposition (EMD) [9,10], have achieved good results. However,
due to the non-stationary and nonlinear characteristics of reciprocating compressors’ vibration signals,
the phenomenon that the system signals and noise signals overlap each other in the frequency band
are often unavoidable, which makes the traditional method to have great limitations when dealing
with the vibration signals, and the effects are often not ideal. (2) The traditional feature extraction
methods [11–14] extract features artificially from the time domain or frequency domain signals with
complex signal processing and subjective selection of multiple variables. Therefore, these methods
usually have subjective impacts on the diagnosis results for prior knowledge and heavy dependence
on signal processing technologies. (3) The traditional machine learning-based classification algorithms
face the problems of dimensional disaster and overfitting [15,16] since these methods usually learn the
low-dimensional shallow features and lack the necessary generalization abilities [17].

In recent years, signal adaptive decomposition methods have become a new research hotspot in
the field of fault feature extraction. They are especially suitable for extracting features from signals
with non-stationary and nonlinear characteristics and have achieved considerable research results
in engineering applications. Among them, LMD is a signal adaptive decomposition method [18].
This method decomposes a complex non-stationary signal into the sum of several Product Function
(PF) components. The complete time and frequency distribution of the original signals are obtained
by superimposing the instantaneous frequency and instantaneous amplitude of all PF components.
Further analysis of the original signal can better understand the state of the device, and it has been
successfully applied to the time-frequency analysis of electroencephalography signals. As an ideal
non-stationary signal processing method, LMD now plays a powerful role in the fault diagnosis
of rotating machinery [19–21], with the advantages of reducing the endpoint effect, reducing the
inaccuracy of enveloping, and preserving information. Some researchers have introduced the concept
of LMD to the fault diagnosis of reciprocating compressors [22–24]. Although this method reduces the
endpoint effect and inaccuracy of the envelope, the follow-up studies are still based on conventional
methods for vibration signal analysis and feature extraction.

Auto-encoder neural networks based on deep learning are a hot topic in data dimensionality
reduction and feature extraction. As an efficient pattern recognition network system, deep learning has
potential advantages in current intelligent fault diagnosis [25]. Several Deep Learning methods, such
as the Convolutional Neural Network (CNN) [26–29], the Deep Belief Network (DBN) [30–33] and
the Auto-encoder (AE) and its derivative algorithm [34–36], have been applied in fault detection and
diagnosis. Deep learning is characterized by stacking multiple levels of a deep network structure
in the network to fully explore the collected signal information. Massive data can be used to learn
effective features through multiple linear and nonlinear transformations for machine health condition
classification [37]. Therefore, deep learning is more effective than the traditional classification
algorithms, such as the Support Vector Machine (SVM) and the Clustering algorithm, which can
only identify shallow structures.

In view of the three problems of the existing methods mentioned above, this paper, based on
the idea of LMD and deep learning, proposes an intelligent fault diagnosis method that combines
Local Mean Decomposition (LMD) and the Stack Denoising Autoencoder (SDAE) for reciprocating
compressor diagnosis. The proposed method consists of three consecutive stages. First, the vibration
signals are decomposed by LMD and the cross-correlation between the PF components and the
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reference signal is calculated based on the cross-correlation criterion to reconstruct the signal. Then,
the model of the SDAE is trained to learn the data hierarchically and automatically learn the fault
information of the input signal. Finally, the automatic feature extraction and fault classification
of mechanical equipment are realized by the proposed method. To verify the effectiveness and
the robustness, the proposed method is compared with the traditional methods for the feature
extraction and accuracy of fault classification. The main contributions of this article are as follows.
(1) The vibration signal is decomposed adaptively by LMD, and the cross-correlation is calculated
based on the cross-correlation criterion to reconstruct the signal to solve the problem with the
overlapping of the system signal and the noise. (2) The denoised signal is input into the trained
SDAE model, and the features are extracted automatically, which solve the subjectivity problem of
manual feature extraction. (3) Aiming at the problem of the dimension disaster and over-fitting in
traditional machine learning-based classification algorithms, an intelligent fault diagnosis method
combining LMD and SDAE is proposed.

The remainder of this paper is organized as follows. Section 2 briefly introduces the theoretical
background for LMD and SDAE. Section 3 describes the intelligent fault diagnosis method of
reciprocating compressor based on LMD and SDAE. Section 4 presents the experimental results
and analysis demonstration using the proposed method. In addition, the effectiveness and robustness
of the proposed method are verified by compared with the traditional methods. Finally, Section 5 gives
the conclusions.

2. Theoretical Background

2.1. Local Mean Decomposition

The LMD method essentially separates the pure frequency modulation signal and the envelope
signal from the original signal. By multiplying the pure frequency modulation signal and the envelope
signal, a PF component with the instantaneous physical frequency is obtained. The time and frequency
distribution of the original signal can be obtained by the separation of all PF components. For an
arbitrary signal x(t), the decomposition process is as follows [18].

Determine all the local extreme points ni of the original signal x(t) and calculate the average value
mi of the two extreme points ni and ni+1. That is:

mi =
ni + ni+1

2
(1)

Use local extreme point ni to calculate envelope estimate ai:

ai =
|ni − ni+1|

2
(2)

Separate the local mean function m11(t) from the original signal x(t). That is:

h11(t) = x(t)−m11(t) (3)

h11(t) is divided by the envelope estimation function a11(t) to obtain s11(t):

s11(t) = h11(t)/a11(t) (4)

The conditions for the termination of the iteration are as follows:

lim
n→∞

a1n(t) = 1 (5)
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The envelope signal can be obtained by taking advantage of all envelope estimation functions
generated in the following iteration process:

a1(t) = a11(t)a12(t) · · · a1n(t) =
n

∏
q=1

a1q(t) (6)

By multiplying the envelope signal a1(t) and the pure FM signal s1n(t), the first PF component of
the original signal can be obtained as follows:

PF1(t) = a1(t)s1n(t) (7)

The first PF component contains the highest frequency component in the original signal.
Its instantaneous amplitude is the envelope signal a1(t), and its instantaneous frequency f 1(t) can be
calculated by the pure FM signal s1n(t). That is:

f1(t) =
1

2π

d[arc cos(s1n(t))]
dt

(8)

The first PF component PF1(t) is separated from the original signal x(t), and a new signal
u1(t) is obtained. Repeat the above steps with u1(t) as raw data and cycle k times until uk is a
monotonic function: 

u1(t) = x(t)− PF1(t)
u2(t) = u1(t)− PF2(t)
· · ·
uk(t) = uk−1(t)− PFk(t)

(9)

At this point, the original x(t) is decomposed into the sum of k PF components and a monotone
function uk. That is:

x(t) =
k

∑
p=1

PFp(t) + uk(t) (10)

By combining the instantaneous amplitude and instantaneous frequency of all PF components,
the complete time-frequency distribution of the original signal x(t) can be obtained. The flow chart of
the whole LMD algorithm is shown in Figure 1.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 19 

 

By multiplying the envelope signal a1(t) and the pure FM signal s1n(t), the first PF component of 
the original signal can be obtained as follows: 

1 1 1( ) ( ) ( )nPF t a t s t=  (7) 

The first PF component contains the highest frequency component in the original signal. Its 
instantaneous amplitude is the envelope signal a1(t), and its instantaneous frequency f1(t) can be 
calculated by the pure FM signal s1n(t). That is: 

1
1

[ cos( ( ))]1( )
2

nd arc s t
f t

π dt
=  (8) 

The first PF component PF1(t) is separated from the original signal x(t), and a new signal u1(t) is 
obtained. Repeat the above steps with u1(t) as raw data and cycle k times until uk is a monotonic 
function: 

1 1

2 1 2

1

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )k k k

u t x t PF t
u t u t PF t

u t u t PF t−

= −
 = −
 ⋅ ⋅ ⋅
 = −

 (9) 

At this point, the original x(t) is decomposed into the sum of k PF components and a monotone 
function uk. That is: 

1
( ) ( ) ( )

k

p k
p

x t PF t u t
=

= +  (10) 

By combining the instantaneous amplitude and instantaneous frequency of all PF components, 
the complete time-frequency distribution of the original signal x(t) can be obtained. The flow chart of 
the whole LMD algorithm is shown in Figure 1. 

 
Figure 1. The flowchart of LMD algorithm. 

 

Arbitrary signal x(t)

u(t)=x(t), i=1, k=1

Envelope function ai(t)=1

Determine all the local extreme points ni of u(t)

ai(t)=ai(t)*aik(t);
hik(t)=u(t)-mik(t);
sik(t)=hik(t)/aik(t);

sik(t)=1？

PFi(t)=ai(t)*sik(t);
ui(t)=u(t)-PFi(t);

ui(t) is a monotonic function?

End

No

Calculate the local mean function mik(t) and the 
envelope estimation function aik(t)

No

k=k+1;
u(t)=sik(t);

i=i+1;
u(t)=ui(t);

Yes

Yes

Figure 1. The flowchart of LMD algorithm.



Sensors 2019, 19, 1041 5 of 19

2.2. Stack Denoising Autoencoder

On the basis of the Autoencoder (AE), the Denoising Autoencoder (DAE) adds noise to the input
data in a certain probability distribution, which allows AE learning to remove the noise and reconstruct
the signal as much as possible to obtain the input without being disturbed. Therefore, the features
learned from noisy inputs are more robust, which improves the generalization ability of the AE model
to input data [38]. The DAE structure is shown in Figure 2a.

The Denoising Autoencoder contains two processes.
The encoding process of raw data X from the input layer to the hidden layer:

h = gθ1(x) = σ(W1x + b1) (11)

The decoding process from the hidden layer to the output layer:

x̂ = gθ2(h) = σ(W2h + b2) (12)

Among them, the mapping parameters are as follows:

θ1, θ2 = argmin
1
m

m

∑
i=1

∥∥∥x(i) − x̂(i)
∥∥∥2

(13)

The cost function of DAE is defined as follows:

JDAE(W, b) =
1
m

m

∑
i=1

(
1
2

∥∥∥x(i) − x̂(i)
∥∥∥2
)

(14)

In order to get the parameters (W, b) of the DAE neural network, pre-training is carried out.
The first hidden layer of the network is trained by using a set of training samples without class labels,
and its parameters (W1, b1) are obtained. At this point, the first hidden layer of the network converts
the original input signal into a vector consisting of hidden unit activation values. Then, the vector is
used as the input of the second hidden layer and the second layer parameters (W2, b2) are obtained by
continued training. Repetitive execution is used to train the output of the front layer as the next input.
When training one parameter, the other parameters remain unchanged. After the pre-training process
is completed, the parameters of all layers are adjusted simultaneously through the back-propagation
algorithm to improve the results. This process is called "fine tuning" to further adjust the features
extracted from hidden units [39].

The deep neural network model, stacked by multiple DAEs, is called the Stack Denoising
Autoencoder (SDAE). The training of deep network will lead to the disappearance of gradient.
Therefore, the principle of greed layer by layer should be adopted. Each layer of the DAE should be
trained individually, and the reconstruction error can be minimized. Assuming that each layer of the
DAE coding can achieve a better reconstruction effect, the SDAE can achieve high-dimensional feature
extraction and dimensionality reduction [40]. The input and output of each layer of the DAE is known
to satisfy the normalization requirement, and so a hidden layer encoding vector of the DAE can be
used as another DAE input for further coding and dimension reduction, as shown in Figure 2b.

The SDAE is an unsupervised network. Therefore, in order to apply its powerful data processing
capability to sample classification, a supervised network is added to the last layer of the SDAE network,
and the Soft-max classifier is used to classify the feature vectors, as shown in Figure 2c. The gradient
descent method is used to find the optimal parameters in training so that the cost function of Soft-max
is minimal to complete the network training [41].
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3. The Proposed Method

The traditional methods of vibration signal denoising usually use filters to set different
transmission bands to achieve the suppression or elimination of a particular wave band signal [8,10].
The traditional feature extraction method extracts feature vectors from the original signal by analyzing
the time-domain information or frequency domain information and then identifies the state of the
machine [11,13]. However, the reciprocating compressor has a complex structure, many internal
excitation sources and various forms of movement. Consequently, the vibration signal response
presents strong non-stationary and nonlinear characteristics. The traditional method based on classical
signal processing technology has some limitations in the fault diagnosis of reciprocating compressors,
such as the system signal and vibration signal being difficult to separate, the subjectivity of the artificial
feature extraction is stronger, the dimension of the traditional machine learning algorithm is higher,
and it faces the problem of the dimensional disaster.

In order to solve the above limitations, a method combining LMD and SDAE is proposed for
the intelligent noise reduction and fault diagnosis of reciprocating compressors. The purpose of this
method is to de-noise and conduct feature extraction for the signals of a reciprocating compressor valve
adaptively and obtain higher classification accuracy. The detailed steps of this method are summarized
as follows.

Step 1: Data Acquisition and Noise Reduction Processing. Collect the vibration signal of the
reciprocating compressor valve. The collected reference signal is used as the label data of the model,
and the training samples of the model are selected. The Gauss white noise signals with different SNRs
are added to the collected reference signal, and the vibration signals with different noises are obtained.
The single channel vibration signal is decomposed by LMD to get the multiple components. Then,
the cross-correlation between the PF components and the reference signal is calculated based on the
cross-correlation criterion, and the signal is reconstructed. The virtual noise channel is constructed
to reduce the noise of the vibration signal, and the test samples of the model are selected in the
reconstructed signal without labels. The Fast Fourier transform (FFT) is applied to the selected training
samples and test samples, and the frequency domain signals of the training samples and test samples
are obtained. Each sample contains N data points. After FFT, each sample will be converted to half
of the number of original data points, which is the number of N/2+1 points. This will be used as the
input of the model in Step 2 and will be fed into the neural network.

Step 2: Model Training. Store the data obtained in step 1, and then train the SDAE neural network
model. In order to train the model, the neural network model and its parameters are first initialized.
Then, the super parameters in the network model are optimized through loop optimization. Finally,
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training the neural network through the SDAE using the training samples selected in Step 1 after
determining the super parameters of the neural network. If the result of network training does not meet
the requirement of the correct rate, the network super parameters will be optimized again. Otherwise,
if the result of network training meets the requirement of the correct rate, finish the training and
complete the neural network model.

Step 3: Fault Diagnosis. Input the test samples selected without labels in Step 1 into the trained
SDAE model in Step 2. And the fault classification and fault diagnosis results of the reciprocating
compressor equipment are obtained. The noise data obtained by adding different SNRs to Gauss white
noise are processed and diagnosed according to the above steps. Finally, make a comparison of the
effectiveness and robustness between the proposed method and the traditional methods.

The flowchart of the proposed reciprocating compressor fault diagnosis method is shown in Figure 3.
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4. Experimental Studies

4.1. Data Description

The research object of this paper is derived from a natural gas reciprocating compressor model
WH64 in a petrochemical plant in northwest China. The gas flow of the compressor is 116*104 Nm3/d,
and the working pressure is 6.18~6.39 MPa. This compressor has four cylinders and is driven by an
electric motor with a rated power of 1,305 kW, as shown in Figure 4a,b. The crankshaft operates at a
rotating speed of 993 rpm, that is, the plungers are driven to strike 993 times per minute back and forth.
The volume of the cylinder changes with the motion of the plungers, which is the operation principle of
this equipment. The intake valve is opened by the increased volume of the cylinder when the plunger
moves back; simultaneously, the exhaust valve is closed. Inversely, the exhaust valve is opened,
and the intake valve is closed when the plunger moves forth. The mechanism of exhaust valve is as
shown in Figure 4c. The valve is susceptible to failure for the frequent movement of the components.
The MDES-5 data acquisition system, designed by the China University of Petroleum-Beijing, consists
of an accelerometer, a 16-bit data acquisition device, and a computer installed with collecting software.
The accelerometer, a piezoelectric acceleration sensor, with the sensitivity of 110 pC/g, is placed on the
lid of the exhaust valve in the 2nd cylinder, as shown in Figure 4a. The sampling frequency is set as
16 kHz in this study.
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4.2. Fault Diagnosis Using the Proposed Method

In this experiment, four conditions of reciprocating compressor valves are selected, including Spring
Failure (SF), Normal Condition (NL), Valve Fracture (VF) and Valve Wear (VW). The time-domain
waveforms of them are depicted in Figure 5.

Sensors 2019, 19, x FOR PEER REVIEW 9 of 19 

 

4.2. Fault Diagnosis Using the Proposed Method 

In this experiment, four conditions of reciprocating compressor valves are selected, including 

Spring Failure (SF), Normal Condition (NL), Valve Fracture (VF) and Valve Wear (VW). The time-

domain waveforms of them are depicted in Figure 5.  

Spring Failure Normal Condition

Valve Fracture Valve Wear

 

Figure 5. The time-domain waveforms of four datasets 

The number of samples selected for the training datasets and testing datasets and the length of 

samples are shown in Table 1. 

Table 1. Information of the training datasets and testing datasets. 

Datasets 

Training datasets Testing datasets 

Label Number of 

samples 

Length of 

samples 

Number of 

samples 

Length of 

samples 

SF 2400 2048 800 2048 1 

NL 2400 2048 800 2048 2 

VF 2400 2048 800 2048 3 

VW 2400 2048 800 2048 4 

The signal-to-noise ratio (SNR) is an important parameter that describes the proportional 

relationship between the active component and the noise component in the signal. The unit of SNR 

is dB. The SNR is defined as follows: 

2

Signal energy Pure signal
SNR=

Noise energy Noise signal - Pure signal

 
  
 

 (15) 

In order to prove the noise reduction ability of the proposed method, the signal collected in the 

field is taken as the reference signal, and Gaussian white noise with different SNRs is added to the 

reference signal. First, the reference signals of the four conditions of the valve faults of the 

reciprocating compressor are obtained. On adding the Gauss white noise with SNRs of 5, 0, -5, -8 and 

-10 to the reference signal, different noise signal types are obtained. Taking the normal sample data 

Figure 5. The time-domain waveforms of four datasets

The number of samples selected for the training datasets and testing datasets and the length of
samples are shown in Table 1.

Table 1. Information of the training datasets and testing datasets.

Datasets
Training Datasets Testing Datasets

LabelNumber of
Samples

Length of
Samples

Number of
Samples

Length of
Samples

SF 2400 2048 800 2048 1
NL 2400 2048 800 2048 2
VF 2400 2048 800 2048 3
VW 2400 2048 800 2048 4

The signal-to-noise ratio (SNR) is an important parameter that describes the proportional
relationship between the active component and the noise component in the signal. The unit of
SNR is dB. The SNR is defined as follows:

SNR =
Signal energy
Noise energy

=

(
Pure signal

Noise signal − Pure signal

)2
(15)

In order to prove the noise reduction ability of the proposed method, the signal collected in the
field is taken as the reference signal, and Gaussian white noise with different SNRs is added to the
reference signal. First, the reference signals of the four conditions of the valve faults of the reciprocating
compressor are obtained. On adding the Gauss white noise with SNRs of 5, 0, -5, -8 and -10 to the
reference signal, different noise signal types are obtained. Taking the normal sample data of the valve
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as an example, the time domain and frequency domain diagram of the reference signal and noise
signal with different SNRs are drawn, as shown in Figure 6.Sensors 2019, 19, x FOR PEER REVIEW 10 of 19 
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After the noise signal of different SNRs is obtained, the signal processing method of LMD is
used to decompose the single channel vibration signal and get multiple PF components, as shown in
Figure 7. Then, the cross-correlation between each PF component and the reference signal is calculated
based on the cross-correlation criterion. The cross-correlation coefficient of PF components and the
reference signal is shown in Table 2. The vibration signal is reconstructed according to the calculated
cross-correlation coefficient, and the virtual noise channel is constructed to reduce the noise of the
vibration signal. The SNRs before and after noise reduction are shown in Figure 8.
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Figure 7. PF components after the decomposition of different noise signals.
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Table 2. Cross-correlation coefficient between each component and the reference signal of the
normal condition.

Signal Type PF1 PF2 PF3 PF4 PF5 PF6 PF7

Reference signal 0.4022 0.2807 0.4055 0.4760 0.3716 0.2540 0.3551
SNR = 5 0.2652 0.2007 0.4591 0.4759 0.3117 0.4504 0.3816
SNR = 0 0.1364 0.1195 0.0635 0.3442 0.5348 0.4334 0.2269

SNR = −5 0.1416 0.0047 0.0905 0.2285 0.6616 0.4186 0.2204
SNR = −8 0.0900 0.1516 0.0950 0.3605 0.4939 0.1637 0.0423
SNR = −10 0.0962 0.1345 0.0871 0.1815 0.5480 0.4221 0.2025

The data of the four conditions of valves of the reciprocating compressor are processed by
noise reduction and stored. The 2400 training samples and 800 testing samples are selected from
each condition. The SDAE neural network model is established, the training samples are input into
the SDAE model, and the sample data are trained and iterated through Matlab 2013a. The neural
network model with the highest accuracy of sample classification is found in all training results. Then,
the optimal neural network super parameters of the SDAE network are determined. Finally, the neural
network super parameters determined by parameter optimization are shown in Table 3.

Table 3. Information of neural network super parameters.

Signal Type Network
Structure

Opts.
Numepochs

Opts.
Batchsize Learning Rate Feature

Dimension

Reference signal 1024-500-250-50 50 10 1 50
SNR = 5 1024-500-250-50 40 20 1 50
SNR = 0 1024-500-250-50 80 50 1 50

SNR = −5 1024-500-250-50 100 100 1 50
SNR = −8 1024-500-250-50 240 100 1 50
SNR = −10 1024-500-250-50 350 100 1 50

The optimal neural network structure chosen after training is 1024-500-250-50. That is, the neural
network has four layers, including one input layer, two middle hidden layers, and one output hidden
layer, to predict the classification. According to Section 2.2, the SDAE network is a stack of multiple
DAE networks, and so the structure of this neural network is made up of three DAEs, which are
1024-500-1024, 500-250-500 and 250-50-250. The unlabeled testing data is input into the trained model,
and the features of the testing samples are extracted, as shown in Figure 9.



Sensors 2019, 19, 1041 13 of 19

Sensors 2019, 19, x FOR PEER REVIEW 13 of 19 

 

- 500 - 1024, 500 - 250 - 500 and 250 - 50 - 250. The unlabeled testing data is input into the trained 
model, and the features of the testing samples are extracted, as shown in Figure 9. 

 

Figure 9. Feature extraction of different noise signals. 

The features of the vibration signal, which contain six different SNRs, are extracted, and these 
features are reduced from 50 dimensions to 3 dimensions. From Figure 9, it can be seen that the effect 
of the feature extraction for the reference signal is the best. The four conditions of faults are far from 
each other, and there is no overlap. With the decrease in SNR, the extracted features are gradually 
overlapped. However, the four conditions of faults can still be distinguished from each other, and the 
overall effect is ideal. 

To evaluate the performance of the proposed method, the classification accuracy is defined as 
follows:  

'

acc Nuracy
N

=  (16) 

-20
0

20
40

-40
-20

0
20

40
-40

-20

0

20

40

 

Feature 1Feature 2
 

Fe
at

ur
e 

3

Spring Failure
Normal Condition
Valve Fracture
Valve Wear

-40
-20

0
20

40

-40
-20

0
20

40
-40

-20

0

20

40

 

Feature 1Feature 2
 

Fe
at

ur
e 

3

Spring Failure
Normal Condition
Valve Fracture
Valve Wear

-20
-10

0
10

20

-40
-20

0
20

40
-60

-40

-20

0

20

40

60

 

Feature 1Feature 2
 

Fe
at

ur
e 

3

Spring Failure
Normal Condition
Valve Fracture
Valve Wear

-60
-40

-20
0

20
40

-50

0

50
-60

-40

-20

0

20

40

 

Feature 1Feature 2
 

Fe
at

ur
e 

3

Spring Failure
Normal Condition
Valve Fracture
Valve Wear

-40
-20

0
20

40

-50

0

50
-20

-10

0

10

20

 

Feature 1Feature 2
 

Fe
at

ur
e 

3

Spring Failure
Normal Condition
Valve Fracture
Valve Wear

-40
-20

0
20

40
60

-100

-50

0

50
-40

-20

0

20

40

60

 

Feature 1Feature 2
 

Fe
at

ur
e 

3

Spring Failure
Normal Condition
Valve Fracture
Valve Wear

Figure 9. Feature extraction of different noise signals.

The features of the vibration signal, which contain six different SNRs, are extracted, and these
features are reduced from 50 dimensions to 3 dimensions. From Figure 9, it can be seen that the effect
of the feature extraction for the reference signal is the best. The four conditions of faults are far from
each other, and there is no overlap. With the decrease in SNR, the extracted features are gradually
overlapped. However, the four conditions of faults can still be distinguished from each other, and the
overall effect is ideal.

To evaluate the performance of the proposed method, the classification accuracy is defined
as follows:

accuracy =
N′

N
(16)

where N’ is the number of correctly classified samples and N is the total number of samples.
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Figure 10 illustrates the classification results. The abscissa is the classification result, and the
ordinate is the practical result. The classification results in the diagonal line are the classification
accuracy, and the remainder is the misclassification rate.
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Figure 10. Classification results.

From Figure 10, the accuracy rate of the four conditions of fault classification is 100% when there
is no noise. When the SNR is 5 dB, 0.125% of the samples of valve wear are misclassified as spring
failure, 0.5% of the samples are misclassified into the normal condition, and 99.375% of the samples are
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correctly classified. When the SNR is −5 dB, the samples of spring failure are all correctly classified.
A total of 3.25% of the samples of the normal condition are misclassified as spring failure, 5.125% of the
samples of valve fracture are misclassified as spring failure, and 0.375% of the samples are misclassified
into the normal condition. In addition, 0.125% of the samples of valve wear are misclassified as spring
failure. When the SNR is −10 dB, 95.625% of the samples of spring failure are correctly classified,
93.875% of the samples of the normal condition are correctly classified, 91.125% of the samples of value
fracture are correctly classified, and 90.25% of the samples of value wear are correctly classified. It can
be seen that, under the condition of large noise interference, the noise reduction and fault diagnosis
results of the proposed method are ideal.

4.3. Comparison and Analysis of Traditional Methods

In order to verify the effectiveness, the proposed method is compared with the other four methods,
including the SDAE, the combination of LMD and SVM, the combination of LMD and DBN, and the
combination of EMD and SDAE. All five methods are used to extract the features of the four conditions
of valve faults when the SNR is −10 dB; the feature extraction effects are as shown in Figure 11.
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Figure 11. Fault feature extraction chart of the valves in different methods.
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From Figure 11, when the SNR is −10 dB, the effect of feature extraction using SDAE is negative
because the four conditions of faults are scattered everywhere and the spring failure, valve fracture and
valve wear are partially overlapped and cannot be separated. The method combining LMD and SVM
can separate the spring failure, but the normal condition, valve fracture and valve wear are partially
overlapped, and the effect of separation is not ideal. The method combining LMD and DBN can
separate the normal condition and valve wear, but only the clustering result of the valve wear features
is preferable, and the spring failure and valve fracture are partially overlapped. The method combining
EMD and SDAE can separate the spring failure and value fracture, but the normal valve and valve
wear are scattered and partially overlapped. The proposed method in this paper can separate the four
conditions of faults well, and the distances of the features that are extracted are far away from each
other. Although the result of clustering does not reach the ideal state, the effect of feature extraction
has been significantly improved by comparing it with the other four methods.

In this study, the ratios of the correct sample number to the total sample number are used for
the classification accuracy, as described in Equation (16). The classification results of several cases
are obtained by the above five methods to prove that the proposed method is robust and effective for
different SNR noise signals, and the correct rate average of 3200 testing samples for four fault types is
considered as the overall classification accuracy, as shown in Table 4.

Table 4. Classification accuracy results by different methods.

SNR
(dB) SDAE LMD+SVM LMD+DBN EMD+SDAE The Proposed

Method

∞ 100% 100% 100% 100% 100%
5 100% 98.63% 100% 99.66% 99.84%
0 98.28% 92.44% 96.47% 98.44% 99.09%
−5 68.91% 85.47% 94.84% 95.59% 97.75%
−8 48.47% 80.06% 93.72% 92.44% 97.22%
−10 42.56% 73.97% 87.69% 84.97% 92.72%

From the diagnosis results, all methods show good results when the SNR is positive infinity.
With the continuous reduction of the SNR, there are different downward trends in various methods,
as shown in Figure 12.
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results of SDAE, LMD+SVM, LMD+DBN, EMD+SDAE and the proposed method are 42.56%, 73.97%,
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87.69%, 84.97%, and 92.72%, respectively. In the case of an extremely low SNR, the proposed method
improves the classification accuracy by 5 percentage points compared with the traditional methods,
and the robustness and effectiveness of the proposed method are proved.

5. Conclusions

In view of the fact that the SNR of the vibration signal is too low in industrial production, and the
traditional machine learning methods have some limitations, such as the system signal and vibration
signal are difficult to be separated, the subjectivity of the artificial feature extraction is stronger, and the
traditional machine learning algorithm is faced with the problem of the dimensional disaster, this paper
proposed an intelligent diagnosis method combining LMD and SDAE to solve the above problems.
The main conclusions can be drawn as follows.

(1) The proposed method reduces the overlapping of the system signal and the noise signal by
decomposition and reconstruction. Therefore, the proposed method has strong noise reduction
effect and the obtained de-noised signal has a high SNR.

(2) The proposed method utilizes the massive data to fully explore the information of vibration
signals, and learn the high-dimensional deep features. Therefore, the proposed method has good
learning ability and the necessary generalization abilities.

(3) The features of the de-noised signal are automatically extracted by the proposed method,
which reduced the subjectivity of artificial features extraction. Therefore, the proposed method
has a better feature extraction effect and higher diagnosis accuracy, which proves the effectiveness
of the proposed method in adaptive feature learning.

(4) The proposed method has great application prospects in the fault diagnosis of industrial
reciprocating compressors based on the experimental results of this study. Especially, this method
has good effect of adaptive feature extraction under low SNR, and the accuracy of the classification
diagnosis is higher than that of traditional fault diagnosis methods, which proves the robustness
of the proposed method.

This paper focuses on the intelligent method of noise reduction and fault diagnosis. A neural
network structure with a relatively good training effect is used for data processing and interpretation.
In future studies, optimization of the network structure can be further carried out and better network
super parameters can be searched to fully explore the potential of the proposed method. Moreover,
this paper focuses on the failure patterns of the valve; the failure problems of other reciprocating
compressor components (such as piston, rod, bearing and rotor) will be further studied in the future.
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