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Abstract: Deep learning methods have been widely used in the field of intelligent fault diagnosis due
to their powerful feature learning and classification capabilities. However, it is easy to overfit depth
models because of the large number of parameters brought by the multilayer-structure. As a result,
the methods with excellent performance under experimental conditions may severely degrade under
noisy environment conditions, which are ubiquitous in practical industrial applications. In this paper,
a novel method combining a one-dimensional (1-D) denoising convolutional autoencoder (DCAE)
and a 1-D convolutional neural network (CNN) is proposed to address this problem, whereby the
former is used for noise reduction of raw vibration signals and the latter for fault diagnosis using the
de-noised signals. The DCAE model is trained with noisy input for denoising learning. In the CNN
model, a global average pooling layer, instead of fully-connected layers, is applied as a classifier
to reduce the number of parameters and the risk of overfitting. In addition, randomly corrupted
signals are adopted as training samples to improve the anti-noise diagnosis ability. The proposed
method is validated by bearing and gearbox datasets mixed with Gaussian noise. The experimental
result shows that the proposed DCAE model is effective in denoising and almost causes no loss of
input information, while the using of global average pooling and input-corrupt training improves
the anti-noise ability of the CNN model. As a result, the method combined the DCAE model and the
CNN model can realize high-accuracy diagnosis even under noisy environment.

Keywords: intelligent diagnosis; anti-noise diagnosis; convolutional neural network; convolutional
autoencoder; rotating machinery

1. Introduction

Reliability is one of the most significant aspects in evaluating mechatronic systems and rotating
machinery accounts for most of the reliability problems [1]. To eliminate safety risks, property and
customer satisfaction loss to the maximum extent, the intelligent maintenance of rotating machinery
is necessary. The superior maintenance method— Condition-Based Maintenance (CBM)—which
takes maintenance actions based on condition monitoring, has become the preferred choice instead
of the run-to-failure maintenance and the time-based preventive maintenance [2,3]. The core idea of
CBM is to assess the degradation of mechatronic systems through diagnosis and prognosis methods
using measured signals, and to take maintenance actions only when there is evidence of abnormal
operating states [4]. As one of the key components of CBM, intelligent fault diagnosis has captured
increasing attention. The typical intelligent diagnosis methods usually encapsulate two distinct blocks
of feature extraction and classification, in which feature extraction is realized by signal processing
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techniques (fast Fourier transform, wavelet transform, etc.) and classification by machine learning
methods (Artificial Neural Network, Support Vector Machine, etc.) [5,6]. However, the manual feature
extraction customized for specific issues relies heavily on expert knowledge and may not be suitable
for other cases, so lots of studies have turned to the end-to-end diagnosis, fusing the feature extraction
and classification into a single learning body.

Because of their multilayer-structure, deep learning methods are powerful in both feature
extraction and classification and are considered as the most effective end-to-end approaches. In
recent years, deep learning has not only made great breakthroughs in the field of computer vision [7],
natural language processing [8] and speech recognition [9], but some methods, such as deep brief
network (DBN) [10], CNN [11] and stacked autoencoder (SAE) [12], have also found their way into
CBM diagnosis applications. Among these methods, the CNNs hold the potential to be the end-to-end
approaches because of the powerful feature learning ability of the convolutional structure. Since CNN
was proposed by LeCun in 1998 and applied in handwriting recognition [13], lots of CNN models have
been presented, such as AlexNet [14], VGGnet [15], GoogleNet [16] and ResNet [17]. With the 1D-to-2D
conversion of vibration signals or 1-D convolutional structure, the CNN models have successfully
applied in fault diagnosis directly using raw signals. Long et al. presented a 2-D convolutional neural
network based on LeNet-5 through converting raw signals to 2-D images [18]. In 2016 [19], Turker et
al. proposed a 1-D convolutional neural network with three improved convolutional layers and two
fully-connected layers, which takes raw current signals as input and achieves 97.2% accuracy. In [20],
a 2-D convolutional neural network with single convolutional layer and two fully-connected layers is
proposed for fault diagnosis of gearbox.

Although lots of studies based on CNN have achieved high diagnosis accuracy, most of these
prior studies focus on proposing new CNN models to speed up processing [19] and improve diagnostic
accuracy [18,20], which demonstrate the effectiveness of the proposed models only using the noise-free
experimental data. However, the signals measured in real industrial environments are always mixed
with noise due to the complex operation conditions, and the CNN models with large numbers
of parameters brought by the multilayer-structure are easy to overfit. As a result, depth models
with excellent performance under experimental conditions may severely degrade in real industrial
applications. In recent years, some training tricks (e.g., convolutional kernel dropout and ensemble
learning [21]) and structure improvements (e.g., add AdaBN layers [22]) have been proposed to
improve the anti-noise diagnosis ability of the deep CNN models, however, it is not enough to improve
only the anti-noise ability of the model. On the one hand, the improvements proposed in the prior
studies are used for reducing the overfitting of CNN models, but may not be that effective in anti-noise
diagnosis. On the other hand, it is difficult to diagnose accurately only by improving the anti-noise
ability when the signal is mixed with a lot of noise. Therefore, in order to solve the problem, not only
the anti-noise ability should be improved, but also the noise mixed in raw signal should be removed as
much as possible. In the area of image denoising, deep learning methods are widespread. In 2018 [23],
a method based on deep CNN was proposed, which is trained by the image with non-fixed noise masks.
Mao et al. proposed a deep DCAE-based method aiming at image denoising and super-resolution [24].
However, these methods are only applied in denosing of 2-D or 3-D images, and to the best of our
knowledge, no research on similar methods aiming at the denoising of 1-D vibration signals has been
reported so far.

In this paper, a novel method combining a 1-D denoising convolutional autoencoder (DCAE-1D)
and a 1-D convolutional neural network with anti-noise improvement (AICNN-1D) is proposed to
address the above problem. The former is used for noise reduction of raw vibration signals and
the latter for fault diagnosis using the de-noised signals output by DCAE-1D. In summary, the
contributions of this paper can be listed as follows:

(1) This paper proposes an effective denoising model based on 1-D convolutional autoencoder
named DCAE-1D, which works pretty well directly on raw vibration signals with simple training.
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(2) This paper proposes an improved 1-D convolutional neural network named AICNN-1D for fault
diagnosis, which applies global average pooling and is trained with randomly corrupted signals
to improve the anti-noise ability of the model.

(3) Both DCAE-1D and AICNN-1D model can work directly on vibration signals due to the use of
1-D convolution and 1-D pooling. Consequently, the method combining the two models can
realize the end-to-end diagnosis.

The rest of this paper is organized as follows: a brief introduction of DCAE and CNN is provided
in Section 2. In Section 3, the intelligent models based on 1-D convolutional structure are proposed:
DCAE-1D for denoising and AICNN-1D for feature learning and classification. Bearing and gearbox
experiments carried out to validate the proposed methods are detailed in Section 4. Finally, the
conclusions are drawn in Section 5.

2. Denoising Convolutional Autoencoder and Convolutional Neural Network

The architecture of DCAE and CNN are briefly introduced in this section. Just as their names
imply, the convolutional layer is the key component of both DCAE and CNN, and the introduction
will start with the convolutional operation.

2.1. Convolutional Operation

Convolutional operation processes the input data using convolution kernel and output the
processed feature, which is called feature map. A convolutional layer usually contains multiple kernels
for extracting rich features. The universal convolutional operation is described as Equation (1):

yl+1
i (j) = Kl

i ∗ xl(j) + bl
i , (1)

where Kl
i and bl

i denote the weights and bias of the i-th kernel in the l-th layer, xl(j) presents the j-th
local region of layer l. The * denotes the dot product of the kernel and the local regions, yl+1

i (j) is
output value of convolutional operation.

Convolutional operation is usually followed by a nonlinear transformation through activation
function. The ReLU, as a commonly used activation function, is expressed as Equation (2):

al+1
i (j) = f

(
yl+1

i (j)
)
= max

{
0, yl+1

i (j)
}

, (2)

where al+1
i (j) presents the activation of yl+1

i (j).

2.2. Denoising Convolutional Autoencoder

An autoencoder is a model that tries to minimize reconstruct error between the input data and
the output data. It contains two key parts, the encoder and the decoder. The encoder maps input data
into low-dimensional space while the decoder reconstructs the compressed data into the same space as
the input data. Training with some constraints, sparsity constraint for example, the extracted features
of the hidden layer are useful for further processing.

2.2.1. Traditional Denoising Autoencoder

As shown in Figure 1, the traditional autoencoder is a neural network with three fully-connected
layers, the first two layers make up the coder and the last two layers make up the decoder. The number
of input neural units is the same with the output. The denoising autoencoder (DAE) is an autoencoder
that receives a corrupted (e.g., by some form of noise) data sample as input and is trained to predict the
original, uncorrupted data sample as its output. As a result, the autoencoder undoes this corruption
rather than simply copies their input, which can be regarded as denoising.
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Figure 1. Structure of traditional denoising autoencoder: the learning target is minimizing the error
between the reconstructed output and the original input.

Giving the input training samples X = {xm}M
m=1 (xm ∈ Rn×1) and the corresponding corrupted

samples
∼
X =

{∼
x

m}M

m=1
, where M presents the number of samples, the encoder maps the corrupted

input vector
∼
X into low-dimensional representation H = {hm}M

m=1(hm ∈ Rq×1) through encoder
function, which is given by Equation (3): scale to text size and align

H = f (X) = s f (WX + b), (3)

where W and b are the encoder weights matrix and biases, s f presents the activation function of the
encoder. The decoder then reconstructs the hidden representation through the decoder function, which
is expressed as Equation (4):

X̂ = g(H) = sg(W′H + b′), (4)

where X̂ = {x̂m}M
m=1 (x̂m ∈ Rn×1) presents the reconstructed output of the decoder, W′ and b′ present

the decoder weights matrix and biases, sg is the activation function of the decoder.
The training target of the autoencoder is to minimize the reconstruct error between the output X̂

and original input X through optimizing the network parameters θ =
{

W, b, W′, b′
}

. The reconstruct
error is described by the loss function, and the mean square error (MSE) function is usually adopted:
bold font is for vectors only

L(θ) =
M

∑
i=1

∥∥X− X̂
∥∥2

=
M

∑
i=1

∥∥∥∥X− g
(

f (
∼
X)

)∥∥∥∥2
, (5)

2.2.2. Denoising Convolutional Autoencoder

Compared with traditional DAE, DCAE has the same basic structure of encoder and decoder but
replaces the fully-connected layers with convolutional layers. Because the CNN with deep structure is
easy to train, DCAE, as a kind of CNN, can improve the reconstruct ability by using deep structure. As
shown in Figure 2, the encoder and the decoder of DCAE are both with three 1-D convolutional layers.

In encoder part, the convolutional operation reduces the dimension of input vectors and therefore
is not possible to employ the conventional convolutional operation to reconstruct a volume with the
same dimension as its input. As a solution, transposed convolutional operation [25], which often
applies input padding, is used in the decoder.



Sensors 2019, 19, 972 5 of 20
Sensors 2019, 19 x FOR PEER REVIEW  5 of 20 

 

 
Figure 2. Structure of a 1-D denoising convolutional autoencoder. 

2.3. Convolutional Neural Network 

CNN is a special structure of Artificial Neural Network (ANN) with several convolutional and 
pooling layers, and then followed by one or more fully-connected layers. The pooling layer is usually 
used for down sampling of input feature maps and the fully-connected layers for classification. The 
max-pooling and average-pooling are most commonly used in pooling layers, which performs local 
max and average operations over the input features respectively. The max-pooling and average-pooling 
are expressed as follows: 

{ }+1

( -1)W +1< < W
= max ( ) = 1, 2,..., Ql l

i ij t j
p q t , j ,  

 

(6)

{ }+1

( -1)W+1< < W
= avg ( ) =1,2,...,Ql l

i i
j t j

p q t , j , (7)

where ( )l
iq t is the value of t-th neuron in the i-th feature map of the l-th layer, W is the width of 

pooling filter, j denotes the j-th moving step of the filter, and +1l
ip  presents the corresponding value 

in layer l + 1 output by the pooling operation. 
Because of the sparse connectivity and weights sharing, convolutional layer usually has much 

less parameters than fully-connected layer, which reduces the risk of overfitting. However, due to 
the influence of classic CNNs, the currently proposed CNN models applied in fault diagnosis all 
adopt 2~3 fully-connected layers as classifier [18–22]. Although the fully-connected layers can classify 
effectively, it brings a lot of parameters (e.g., account for more than 90% parameters in LeNet-5 and 
AlexNet), which leads to the risk of overfitting. In recent years, the global average pooling is used as 
classifier instead of the fully-connected layers in some deep CNNs, such as GoogleNet [16], 
MobileNet [26] and ShuffleNet [27]. It greatly reduces model parameters and is proved to be a good 
classifier. However, this improvement has not been studied and validated in the field of mechanical 
fault diagnosis. 

3. Proposed Intelligent Diagnosis Method 

The proposed intelligent method consists of two key stages as denoising and diagnosis, which 
are related to two convolutional models, namely DCAE-1D and AICNN-1D. DCAE-1D is used for 
noise reduction of raw vibration signals and AICNN-1D for fault diagnosis using the de-noised 
signals output by DCAE-1D. 

3.1. DCAE-1D 

Since vibration signals are one-dimensional time series, DCAE-1D employs a denoising 
autoencoder with 1-D convolutional layers to process the noisy input. As a result, the model can 
directly take raw signals as input without any extra preprocessing. DCAE-1D consists of three 

Figure 2. Structure of a 1-D denoising convolutional autoencoder.

2.3. Convolutional Neural Network

CNN is a special structure of Artificial Neural Network (ANN) with several convolutional and
pooling layers, and then followed by one or more fully-connected layers. The pooling layer is usually
used for down sampling of input feature maps and the fully-connected layers for classification. The
max-pooling and average-pooling are most commonly used in pooling layers, which performs local
max and average operations over the input features respectively. The max-pooling and average-pooling
are expressed as follows:

pl+1
i = max

(j−1)W+1<t<jW

{
ql

i(t)
}

, j = 1, 2, . . . , Q, (6)

pl+1
i = avg

(j−1)W+1<t<jW

{
ql

i(t)
}

, j = 1, 2, . . . , Q, (7)

where ql
i(t) is the value of t-th neuron in the i-th feature map of the l-th layer, W is the width of pooling

filter, j denotes the j-th moving step of the filter, and pl+1
i presents the corresponding value in layer l +

1 output by the pooling operation.
Because of the sparse connectivity and weights sharing, convolutional layer usually has much

less parameters than fully-connected layer, which reduces the risk of overfitting. However, due to the
influence of classic CNNs, the currently proposed CNN models applied in fault diagnosis all adopt 2~3
fully-connected layers as classifier [18–22]. Although the fully-connected layers can classify effectively,
it brings a lot of parameters (e.g., account for more than 90% parameters in LeNet-5 and AlexNet),
which leads to the risk of overfitting. In recent years, the global average pooling is used as classifier
instead of the fully-connected layers in some deep CNNs, such as GoogleNet [16], MobileNet [26] and
ShuffleNet [27]. It greatly reduces model parameters and is proved to be a good classifier. However,
this improvement has not been studied and validated in the field of mechanical fault diagnosis.

3. Proposed Intelligent Diagnosis Method

The proposed intelligent method consists of two key stages as denoising and diagnosis, which
are related to two convolutional models, namely DCAE-1D and AICNN-1D. DCAE-1D is used for
noise reduction of raw vibration signals and AICNN-1D for fault diagnosis using the de-noised signals
output by DCAE-1D.

3.1. DCAE-1D

Since vibration signals are one-dimensional time series, DCAE-1D employs a denoising
autoencoder with 1-D convolutional layers to process the noisy input. As a result, the model can directly
take raw signals as input without any extra preprocessing. DCAE-1D consists of three convolutional
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layers as coder and three transposed convolutional layers as decoder. The model architecture is shown
in Figure 2 and the details are outlined in Table 1.

Table 1. Details of DCAE-1D.

Layer Kernel Size Kernel Number Stride Activation Function Output Size Padding

Conv_1 15 16 2 LeakyReLU 1000 × 16 Yes
Conv_2 10 32 2 LeakyReLU 500 × 32 Yes
Conv_3 5 64 2 LeakyReLU 250 × 64 Yes

Trans_conv_1 5 32 2 LeakyReLU 500 × 32 Yes
Trans_conv_2 10 16 2 LeakyReLU 1000 × 16 Yes
Trans_conv_3 15 1 2 None 2000 Yes

The training and testing of DCAE-1D utilize the noisy signals mixed by raw signal and Gaussian
noise. Considering the continuous change of the noise in industrial environment, the noisy signals
feed into the model should be with different SNR, which is defined as the ratio of signal power to the
noise power as Equation (8):

SNRdB = 10 log10

(Psignal

Pnoise

)
, (8)

To compose the noisy signals with different SNR, the noise with different power are superposed
to the same original signal respectively in whole area. The noise power is calculated according to
the power of the original signal and the specified SNR value. Then each composited noisy signal is
divided into multi-segments, which compose an original dataset with the specified SNR. Each original
dataset is divided into two parts in a certain proportion, namely the training set and the testing set.
Then all the training sets are gathered and shuffled to form the training dataset for training DACE-1D,
while all the testing sets are respectively used for model testing.

3.2. AICNN-1D

AICNN-1D also employs 1-D convolution and pooling layers to adapt to the processing of
vibration signals. Feature learning is realized by alternating convolutional and max-pooling layers,
while classification by global average pooling layer. Compared with the existing CNN diagnosis
models, improvements made in AICNN-1D are as follows:

(1) In order to reduce the number of parameters and the risk of overfitting, AICNN-1D adopts global
average pooling as classifier instead of the fully-connected layers. The global average pooling
layer does not bring any parameters and is faster in forward and backward propagation.

(2) AICNN-1D is trained with randomly corrupted signals for improving the anti-noise diagnosis
ability. The “corrupt” refers to the random selection of some data points of a sample in a
certain proportion and the zeroization of the points, which is very similar to the “dropout”. The
proportion is called “corruption rate”. Vincent et al. point out that the random-corruption can
create noise for the input signals, which makes the trained model performs better even when the
training set and testing set have different distributions [28].

AICNN-1D consists of three convolutional layers, two max-pooling layers and a global average
pooling layer. The model architecture is shown in Figure 3 and the details are outlined in Table 2.
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Table 2. Details of AICNN-1D.

Layer Kernel Size Kernel Number Stride Activation Function Output Size Padding

Conv_1 15 16 7 ReLU 286 × 16 Yes
Max-pooling 1 2 16 2 None 143 × 16 Yes

Conv_2 10 32 5 ReLU 29 × 32 Yes
Max-pooling 2 2 32 2 None 15 × 32 Yes

Conv_3 5 H1 2 ReLU 8 × H Yes
Global average pooling 8 H 1 None H No

1 H represents the number of classification labels.

3.3. Construction of the Proposed Method

As shown in Figure 4, construction of the proposed method can be divided into three stages: (1)
Training of DCAE-1D with datasets that mixed with Gaussian noise, (2) training of AICNN-1D using
randomly corrupted datasets and (3) diagnosis test of the combination of the trained DCAE-1D and
AICNN-1D using noisy datasets.

The samples used to train DCAE-1D vary in SNR from −2 dB to 12 dB. Training parameters and
hyper-parameters are set as follows: the initial network weights are set by Xavier initialization [29],
the biases initial values are set to 0. The learning rate uses exponential decay with 0.0035 base learning
rate and 0.99 decay rate, the maximum training step N is set to 5000. The signals fed to the model
in each step are randomly chosen from training dataset and the batch size is set to 100. Training is
stopped after reaching the maximum step.

Training of AICNN-1D employs corrupted signals and the corruption rate is randomly set between
0 and 0.8. Training parameters and hyper-parameters are set as follows: the network weights and
biases use the same initialization as DCAE-1D, the learning rate uses exponential decay with 0.005
base learning rate and 0.99 decay rate. The maximum training step and the batch size are set the same
as DCAE-1D.

After training, diagnosis test is done by the combination of the trained DCAE-1D and AICNN-1D.
DCAE-1D is used for denoising while AICNN-1D for diagnosis with the de-noised signals output
by DCAE-1D. The reconstruct error is taken to evaluate the denoising effect of DCAE-1D and the
diagnosis accuracy is considered as the test result of the method combination. The test is carried for
several times using test sets with different SNR ranging from −2 dB to 12 dB and the SNR in the same
test is kept constant. The hardware configuration of training and testing is Intel i7-5820k + NVidia
1080ti while the software environment is Windows10 + Python + TensorFlow.
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Figure 4. Flowchart of the proposed method.

4. Validation of the Proposed Method

The proposed method is validated by two experiments: bearing and gearbox diagnosis
experiments. Experiments are conducted on the testbed shown in Figure 5, which consists of a
motor, a gearbox, three bearings and a magnetic powder brake from left to right. The three bearings
are both single row roller bearings with the same type (N205) and the gearbox is a two-stage spur
gear reducer. Radial load is added on the second bearing by screw mechanism and the axial load by
magnetic powder brake. The parameters of the bearings and the gearbox are detailed in Table 3.
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Table 3. Parameters of bearing and gearbox.

Parameters Value

Bearing: Pitch diameter 38.5 (mm)
Roller diameter 6.5 (mm)
Roller number 13

Gearbox: Gear module 2 (mm)
Face width 20 (mm)
Pressure angle 20◦

Driving/driven gear teeth number 55/75
Gear clearance 0.5 (mm)
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4.1. Case 1: Bearing Diagnosis Experiment

The monitoring object of bearing diagnosis experiment is the third bearing. During the experiment,
radial load is set to 0 N and axial load is set to 0 N·m, and motor speed is set to 1500 rpm.

A monoaxial piezoelectric acceleration sensor is used to acquire vibration signals, and the
sensitivity of the sensor is 99.8 mv/g. Considering that the sensor should be close to the vibration
source and in the direction of maximum vibration, it is installed on the bearing seat in the vertical
direction as shown in Figure 5. Sampling frequency is set to 20,480 Hz through data acquisition unit
(UT3408FRS-ICP). The bearing contains four health states: (1) normal condition (N), (2) inner race
fault (IF), (3) outer race fault (OF) and (4) roller fault (RF). Wire cutting is used to process the normal
bearing to simulate different faults. As shown in Figure 6, each fault has three different fault widths
of 0.18 mm, 0.36 mm and 0.54 mm and has the same fault depth of 0.3 mm. As a result, the bearing
contains 10 health conditions in total.
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Figure 6. Bearing with different fault types and fault sizes: (a) IF, 0.18 mm, (b) IF, 0.36 mm, (c) IF,
0.54 mm, (d) OF, 0.18 mm, (e) OF, 0.36 mm, (f) OF, 0.54 mm, (g) RF, 0.18 mm, (h) RF, 0.36 mm, (i) RF,
0.54 mm.

Corresponding to 10 bearing health conditions, each contains 3000 samples and the bearing
dataset has 30,000 samples in total. The division of dataset is shown in Table 4: two-thirds of the
dataset are used for training and the left for testing. Every data sample contains 2000 data points, so
the input dimensions of DCAE-1D and AICNN-1D are both 2000 and the output dimensions are 2000
and 10, respectively. The samples used to train DCAE-1D are mixed with Gaussian noise and vary in
SNR ranging from −2 dB to 12 dB, the samples used to train AICNN-1D are corrupted (dropout) with
the corrupt rate randomly set between 0 and 0.8. After training, first test the denoising effect of the
trained DCAE-1D using several test sets with different SNR from −2 dB to 12 dB, and then test the
diagnosis effect of AICNN-1D using the corresponding de-noised test sets output by DCAE-1D.
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Table 4. Description of bearing dataset.

Health Conditions Train Samples Test Samples Classification Label

N 2000 1000 0
IF (0.18/0.36/0.54) 2000/2000/2000 1000/1000/1000 1/2/3
OF (0.18/0.36/0.54) 2000/2000/2000 1000/1000/1000 4/5/6
RF (0.18/0.36/0.54) 2000/2000/2000 1000/1000/1000 7/8/9

4.1.1. Validation of the Denoising and Diagnostic Effects of the Proposed Method

The experimental results can be divided into two parts: the reconstruct error of DCAE-1D
and the diagnosis accuracy of AICNN-1D, in which the former is used to validate the denoising
effect of DCAE-1D and the latter to validate the diagnostic effect of the method combination under
noisy environment.

The traditional DAE is used to compare with the proposed DACE-1D in denoising effect under
conditions of different SNR. The input, hidden and output dimensions of the DAE are set to 2000,
1000 and 2000, respectively, and ReLU is used as the activation function. As shown in Figure 7 and
Table 5, the reconstruction error of DCAE-1D is much less than that of DAE under all SNR conditions.
In particular, the reconstruct error of DCAE-1D is less than 0.025 but that of DAE is greater than 0.055
when SNR = −2 dB. The result proves that (delete “the proposed”) DCAE-1D is much more effective in
noise reduction than DAE, especially under low SNR conditions. The reasons are analyzed as follows.
Firstly, DCAE-1D is superior to DAE in reconstruction ability owning to the deeper structure. Secondly,
DCAE-1D has much less parameters (2 × (15 × 16 + 10 × 32 × 16 + 5 × 32 × 64) = 31,200) than that
of DAE (2000 × 1000 × 2 = 4,000,000), which makes it not easy to over fit under noisy conditions. In
addition, under the SNR greater than 7 dB, the reconstruct errors of DCAE-1D are close to 0.001 while
that of DAE are greater than 0.012, which indicates that the former almost causes no loss of input
information in comparison with the latter.
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Table 5. Reconstruction errors of DCAE-1D and DAE under different SNR.

Method Combination
SNR(dB)

−2 0 2 4 6 8 10 12

DCAE-1D 0.0243 0.0148 0.0080 0.0044 0.0023 0.0015 0.0011 0.0009
DAE 0.0559 0.0344 0.0220 0.0161 0.0139 0.0132 0.0127 0.0125

Figure 8 shows the original signal, the noisy signal, the de-noised signal of DCAE-1D and the
de-noised signal of DAE under the condition of SNR = −1 dB and roller fault (0.54 mm). It can be
seen that the fault characteristics in original signal are masked by the added Gaussian noise. After the
denoising by DCAE-1D or DAE, the noise mixed in the original signal is obviously reduced. However,
the noise cannot be eliminated completely, and the result shows that the de-noised signal of DCAE-1D
leaves much less noise than that of DAE.
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Figure 8. Figures of signals: (a) original signal, (b) original signal mixed with Gaussian noise, (c)
de-noised signal of DACE-1D and (d) de-noised signal of DAE under the condition of SNR = −1 dB
and roller fault (0.54 mm).

The diagnostic results of the method combination of AICNN-1D and DCAE-1D under conditions
of different SNR are shown in Figure 9 and Table 6. It can be seen that the accuracy is up to 96.65%
even when SNR= −2 dB and greater than 99% when SNR > −1 dB, which proves that the proposed
method combination can achieve high-accuracy diagnosis even under low SNR conditions.

Besides, the “AICNN-1D + DAE” combination and the AICNN-1D without denoising are
compared with the proposed “AICNN-1D + DCAE-1D” combination as follows. The diagnosis
accuracy of the “AICNN-1D + DAE” combination and AICNN-1D without denoising drops to 94.23%
and 91.64% respectively when SNR = −2 dB. The result shows that the denoising step is significant
to the accuracy improvement under low SNR conditions and DCAE is much more effective in noise
reduction than DAE. In addition, other two points of the results are worth to be noticed: Firstly, under
the conditions of SNR > 2 dB, the diagnosis accuracy of the “AICNN-1D + DAE” combination is
even lower than AICNN-1D without denoising. The reason for this phenomenon is that DAE causes
information loss, which outweighs the gain of the denoising. Secondly, when SNR = −2 dB, even
though the diagnosis accuracy of AICNN-1D without denoising is less than the other two method
combinations, but considering that there is no denoising, the accuracy of 91.64% is pretty well. It
indicates that AICNN-1D has the capability of anti-noise diagnosis to some extent.
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Table 6. Diagnosis accuracy of AICNN-1D with different denoising processes.

Method Combination
SNR (dB)

−2 0 2 4 6 8 10 12

DCAE-1D + AICNN-1D 96.65 99.23 99.42 99.58 99.63 99.72 99.75 99.78
DAE + AICNN-1D 94.23 97.48 98.25 98.54 98.7 98.79 98.92 99.05

AICNN-1D without denoising 91.64 95.95 98.28 99.04 99.03 99.15 99.23 99.5
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Figure 10 presents the confusion matrix of the diagnosis result under the condition of SNR =
−2 dB and the overall accuracy is 96.65%. It shows that the accuracy of normal condition is the
lowest one, which is 94.5%. Besides, the IF-0.018, OF-0.018 and RF-0.018, regarded as slight fault
conditions, are 94.8%, 95.4% and 95.7% in accuracy respectively, which are lower than the rest health
conditions. The results demonstrate that the normal and slight fault conditions are more likely to be
misclassified under low SNR conditions. Furthermore, it can be found from Figure 10 that the normal
condition is likely to be misclassified into the slight fault conditions and vice versa. As an instance, the
misclassification rates of normal to IF-0.018, normal to OF-0.018 and normal to RF-0.018 are 1.7%, 1.8%
and 1.3% respectively and that of normal to other conditions are lower obviously.
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4.1.2. Validation of Input-Corrupt Training and Global Average Pooling

In order to test the effects of the input-corrupt training and the global average pooling applied in
AICNN-1D, the model with “input-corrupt training + global average pooling” (model A), “clean-input
training + global average pooling” (model B) and “input-corrupt + fully-connected layers” (model
C) are compared in Figure 11 and Table 7. When SNR < 8 dB, the proposed model A is superior to
model B and C in accuracy. Especially, compared with model A, the accuracy of model B and C drops
to 93.54% and 94.26% from 96.65% under the condition of SNR= −2 dB. The results prove that the
input-corrupt training and the global average pooling are both effective in improving the anti-noise
ability of the model. On the one hand, the input-corrupt training is a regularization method, on the
other hand, the application of global average pooling dramatically reduces the number of model
parameters. Both of them prevent the model from overfitting, which improves the performance in
the diagnosis of noisy signals. However, the accuracies of the three models are very close under high
SNR conditions (SNR > 9 dB). For example, the accuracies of the three models are 99.78%, 99.75% and
99.78% when SNR = 12 dB. The reason is that all the three models are not easy to over fit in processing
the signals with little noise.
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Figure 11. Diagnosis accuracy of AICNN-1D with input-corrupt training and global average pooling,
with clean-input training and with fully-connected layers.

Table 7. Diagnosis accuracy of AICNN-1D with input-corrupt training and global average pooling,
with clean-input training and with fully-connected layers.

Method
SNR (dB)

−2 0 2 4 6 8 10 12

DCAE-1D + AICNN-1D (model A) 96.65 99.23 99.42 99.58 99.63 99.72 99.75 99.78
DCAE-1D + AICNN-1D (model B) 93.54 97.32 98.89 99.19 99.25 99.30 99.60 99.75
DCAE-1D + AICNN-1D (model C) 94.26 97.89 99.15 99.26 99.37 99.58 99.68 99.78

4.1.3. Optimization of the DACE-1D and AICNN-1D

When fine turning the proposed models, some configurations and parameters have significant
influence on their performance. Among these factors, two of them influence the performance obviously,
namely the depth of DCAE-1D and the kernel width of the first convolution layer of AICNN-1D. As
outlined in Table 8, the reconstruction errors of DCAE-1D show a trend of ascending after descending
with the increase of the depth. For example, when SNR = −2 dB, the reconstruction errors with the
depth of 2, 4, 6 and 8 are 0.0364, 0.0256, 0.0243 and 0.0249, respectively. The result demonstrates that
the selection of the model depth is significant to the denoising effect, and in this case, the optimum
depth is 6.

Table 8. Reconstruction errors of DCAE-1D with different depth.

Depth of DCAE-1D SNR (dB)

−2 0 2 4 6 8 10 12

2: 1 Conv + 1 Trans_conv 0.0364 0.0198 0.0095 0.0054 0.0038 0.0032 0.0029 0.0028
4: 2 Conv + 2 Trans_conv 0.0256 0.0153 0.0080 0.0044 0.0025 0.0017 0.0014 0.0011
6: 3 Conv + 3 Trans_conv 0.0243 0.0148 0.0080 0.0044 0.0023 0.0015 0.0011 0.0009
8: 4 Conv + 4 Trans_conv 0.0249 0.0151 0.0083 0.0047 0.0028 0.0020 0.0017 0.0016

The diagnosis accuracies of AICNN-1D with different kernel width of the first convolutional layer
are outlined in Table 9. The result shows that the diagnosis accuracy rises with the increase of kernel
width before reaching 15, but when greater than 15, the increase of kernel width almost has no effect
on the model performance. Considering the increase of the kernel width brings more parameters and
higher computing cost, the width of 15 is the optimal choice.
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Table 9. Diagnosis accuracy (%) of AICNN-1D with different kernel width of the first convolution layer.

Kernel Width
SNR (dB)

−2 0 2 4 6 8 10 12

5 96.48 99.16 99.28 99.35 99.50 99.62 99.60 99.60
10 96.50 99.22 99.36 99.52 99.58 99.68 99.72 99.74
15 96.65 99.23 99.42 99.58 99.63 99.72 99.75 99.78
20 96.66 99.22 99.40 99.60 99.63 99.70 99.76 99.78
25 96.65 99.23 99.41 99.62 99.62 99.70 99.78 99.78

4.1.4. Comparisons with the Existing Models

Two baseline models are compared with the proposed method. The first one, proposed by
Chen et al. in 2017 [30], is based on the stacked denoising autoencoder (SDAE). The SDAE-based
model establishes the deep hierarchical structure with unsupervised layer-by-layer pre-training and
supervised fine turning. The dropout and sparsity representation are used to improve the anti-noised
ability of the model. In the original paper, the input neurons of each layer are 200, 100, 50, 25 and 10.
However, in order to compare with the method proposed in this paper, the input neurons of each layer
are set to 2000, 1000, 500, 100 and 10, and other parameters and configurations are kept unchanged.
The second one is named WDCNN proposed by Zhang et al. in 2017 [22]. WDCNN adopts five 1-D
convolutional layers, five max-pooling layers and two fully-connected layers. In order to improve the
anti-noise ability, AdaBN layers and wide first-layer kernels are employed. The experimental results
are shown in Figure 12.

Without denoising, both the SDAE-based model and WDCNN are inferior to the proposed method
under the conditions of low SNR. For instance, when SNR< 3 dB, the accuracies of the two models
are less than 95%, but that of the proposed method is greater than 96.65%, especially, when SNR=
−2 dB, the accuracies of the two models are 72.14% and 82.13% respectively. With the denoising
by DCAE-1D, the accuracies of the SDAE-based model and WDCNN are both obviously improved,
especially under the conditions of low SNR. As an example, the accuracy of the SDAE-based model
rises from 72.34% to 89.12%, and that of WDCNN rises from 82.13% to 92.24% when SNR= −2dB.
The results imply that in order to diagnosis accurately under low SNR conditions, the denoising is
indispensable. In addition, with the same denoising preprocessing, the proposed AICNN-1D still
performs better than the SDAE-based model and WDCNN obviously when SNR< 3 dB. It proves that
AICNN-1D is superior to the other two models in anti-noise ability, for the parameters of AICNN-1D
are much less than the other two models and the using of input-corrupt training.

The classic shallow models of the BP neural network [31] and the SVM [32] are also adopted
to compare with the proposed method. The input, hidden and output dimensions of the BP neural
network is 2000, 1000 and 10, and the sigmoid function is used as activation function. The SVM model
uses Gaussian kernel function. Various configurations for the BP neural network and the SVM are
explored the configurations that achieved the best performance are empirically selected. As shown in
Figure 12, even with the denoising by DCAE-1D, these two models both perform much worse than the
three models above under all SNR conditions. For example, the accuracies of the BP neural network
and the SVM are only 87.68% and 92% respectively even when SNR = 12 dB. The results indicate
that the shallow models cannot extract discriminative features from vibration signals and cannot be
regarded as effective end-to-end methods.
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The comparison results of computational time between the existing models and the proposed
models are shown in Table 10. It can be seen that the training of DCAE-1D and AICNN-1D costs 106.88
± 3.75 s and 53.25 ± 2.79 s respectively, and the testing costs 0.79 ± 0.05 s and 0.42 ± 0.06 s. Compared
with the existing deep method of the SDAE-based model and WDCNN, which costs 98.64 ± 2.58 s and
0.71 ± 0.12 s in training respectively and costs 0.71 ± 0.12 s and 0.84 ± 0.08 s in testing, the proposed
method combination consumes slightly more time in training and testing. In addition, the shallow
models of BP neural network and SVM are much less time-consuming in both training and testing.

Table 10. Computational time of the proposed models and the existing models.

Method Training Time (5000 × 100 Samples) Testing time (10000 Samples)

DCAE-1D + AICNN-1D (106.88 ± 3.75) s + (53.25 ± 2.79) s (0.79 ± 0.05) s + (0.42 ± 0.06) s
SDAE 98.64 ± 2.58 s 0.71 ± 0.12 s

WDCNN 126.27 ± 5.24 s 0.84 ± 0.08 s
BP 40.43 ± 0.93 s 0.36 ± 0.06 s

SVM 63.56 ± 0.78 s 0.57 ± 0.11 s

4.2. Case 2: Gearbox Diagnosis Experiment

The monitoring object of gearbox diagnosis experiment is the driven gear and the experiment
conditions are the same as the bearing diagnosis. During experiment, all the bearings are kept in
Normal states. The acceleration sensor and its sampling frequency are the same as the bearing
experiment configuration. Considering the up cover of the gearbox is smooth in surface and receives
the vibration of the gear directly, the sensor is installed on the center of the up cover of gearbox in
the vertical direction, as shown in Figure 5. The driven gear contains five health states as shown in
Figure 13: (1) normal condition (N), (2) tooth pitting fault (TPF), (3) tooth break fault (TBF), (4) tooth
crack fault (TCF) and (5) tooth wear fault (TWF). Five normal gears are used in the experiment named
as gears A~E, respectively. Electrical discharge machining is employed to process a single tooth on
gear B to simulate tooth pitting fault, while wire cutting is utilized to process a single tooth on gear C
and D to simulate tooth crack and tooth break fault. Besides, all the teeth on gear E are ground by gear
grinding machine to simulate tooth wear fault. Configurations of the models and division of datasets
are the same as bearing experiment except setting output dimension of AICNN-1D to 5.
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The denoising test result of DCAE-1D and DAE under different SNR is shown in Figure 14 and 
Table 11. Consistent with the bearing experiment result, the reconstruct error of DCAE-1D is also 
much less than that of DAE under the same SNR. In particular, the reconstruct error is close to 0 when 
SNR is greater than 8 dB. The experimental result demonstrates that DCAE-1D is effective in
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4.2.1. Validation of Denoising and Diagnostic Effects under Noisy Environment

The denoising test result of DCAE-1D and DAE under different SNR is shown in Figure 14 and
Table 11. Consistent with the bearing experiment result, the reconstruct error of DCAE-1D is also much
less than that of DAE under the same SNR. In particular, the reconstruct error is close to 0 when SNR
is greater than 8 dB. The experimental result demonstrates that DCAE-1D is effective in denoising of
gearbox vibration signals and it almost cause no loss of input information.
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Table 11. Reconstruction error of DCAE-1D and DAE under different SNR.

Method
SNR (dB)

−2 0 2 4 6 8 10 12

DCAE-1D 0.0109 0.0070 0.0040 0.0022 0.0012 0.0007 0.0006 0.0003
DAE 0.01824 0.0129 0.0106 0.0097 0.0094 0.0092 0.0092 0.0092

The diagnostic results of “AICNN-1D + DCAE-1D”, “AICNN-1D + DAE” and AICNN-1D
without denoising are shown in Figure 15 and Table 12. As illustrated by the figure and the table,
the “AICNN-1D + DCAE-1D” is superior to the other two in diagnosis accuracy under all SNR
conditions, which is consistent with the bearing experiment. Especially, the accuracy is up to 97.25%
even when SNR =−2 dB and greater than 99% when SNR >−1 dB. It proves that the proposed method
combination can achieve high-accuracy diagnosis of gear even under low SNR conditions. In addition,
the accuracy of “AICNN-1D + DAE” is even lower than AICNN-1D when SNR is higher than 6 dB,
which demonstrates that the information loss caused by DAE outweighs the gain of the denoising.
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Table 12. Diagnosis accuracy of AICNN-1D with different denoising process (delete something).

Method Combination
SNR (dB)

−2 0 2 4 6 8 10 12

DCAE-1D + AICNN-1D 97.25 99.25 99.48 99.67 99.72 99.8 99.85 99.89
DAE + AICNN-1D 95.11 96.47 98.26 98.78 98.85 98.83 99.1 99.12

AICNN-1D without denoising 92.58 95.67 97.54 98.42 98.89 99.21 99.52 99.83

4.2.2. Validation of Partial Varying SNR Situation

In the previous experiments, the denoising of DCAE-1D and the diagnosis of AICNN-1D are
tested by several datasets with different SNR. Although the SNR varies between the different datasets,
it remains constant in the same dataset. Furthermore, in order to simulate the real noise that continuous
changing in industrial environment as exactly as possible, the dataset with partially varying SNR is
used to test the denoising of DCAE-1D and the diagnosis of AICNN-1D. To be specific, the dataset
is obtained through the following steps: Firstly, divide each sample of the noise-free test set into 10
segments in sequence, and then assign each segment a random SNR value between −2 dB to 12 dB.
Secondly, the Gaussian noise of specific power is superposed to each segment according to the power
and the assigned SNR value of the signal segment. Finally, recombine every 10 noisy segments into
one sample in the original order.

The dataset is generated 20 times through the steps above. Correspondingly, each generated
dataset is used to test the denoising of DCAE-1D and the diagnosis of AICNN-1D independently.
The statistical results of the 20 test are as follows: the reconstruction error of DCAE-1D is 0.0063 ±
0.0005 and the accuracy of AICNN-1D is 99.34% ± 0.17%. The results demonstrate that the method
combination of DACE-1D and AICNN-1D is also effective under the situation of partial varying SNR.

4.2.3. Feature Learning Visualization

In order to validate the adaptive feature learning ability of the proposed AICNN-1D under noisy
environment conditions, the t-distributed stochastic neighbor embedding (t-SNE) is used to visualize
the learned features of the input layer and the three convolution layers under the condition of SNR
= 0 dB. As the experimental results shown in Figure 16, the features of the input layer and the first
convolutional layer are of poor discrimination. Nonetheless, as the depth increases, the features learnt
by the convolutional layers become more and more discriminative. The learned features of the last
convolutional layer are almost with no overlap between different fault types, which proves the model
can adaptively learn effective features for accurate fault diagnosis even under the condition of SNR =
0 dB. It is noteworthy that, the learned features of a few TCF and TWF samples in the last convolutional
layer overlap with the set of normal features, which indicates that the TCF and TWF samples may be
misclassified into the label of normal under the low SNR conditions.
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5. Conclusions

This paper proposes a combined method of 1-D denoising convolutional autoencoder named
DCAE-1D and 1-D convolutional neural network named AICNN-1D, which aims at addressing the
fault diagnosis problem under noisy environment. Compared with the existing method that only
improves the anti-noise ability [21,22,30], the extra noise reduction by DACE-1D is introduced in the
combined method. With the denoising of raw signals, AICNN-1D with anti-noise improvements is
then used for diagnosis. The method combination is validated by the bearing and gearbox datasets
mixed with Gaussian noise. Through the analysis of the experimental results in Section 4, conclusions
are drawn as follows:

The proposed DCAE-1D with deep structure of three convolutional and three transposed
convolutional layers is much more effective in denoising than the traditional DAE. The reconstruct
errors of DCAE-1D in bearing and gearbox datasets are only 0.24 and 0.0109 even when the SNR=
−2 dB, while that of DAE are 0.0559 and 0.01824 respectively. Besides, under the high SNR (> 4dB)
conditions, the reconstruct errors are close to 0, which indicates that DACE-1D almost causes no loss
of input information.

With the denoising of DCAE-1D, the diagnosis accuracies of AICNN-1D are 96.65% and 97.25%
respectively in bearing and gearbox experiments even when SNR = −2 dB. When SNR> −1 dB, the
diagnosis accuracies are greater than 99% in the two experiments. The result indicates that the proposed
method combination realizes high diagnosis accuracy under low SNR conditions. In the bearing
experiment, the AICNN-1D with “clean-input training + global average pooling” and “input-corrupt +
fully-connected layers” drops to 93.54% and 94.26% in accuracy when SNR = −2 dB, compared with
the proposed AICNN-1D. The results demonstrate that the using of input-corrupt training and global
average pooling is effective in improving the anti-noise ability. Compared with the existing methods
of the SDAE-based model and WDCNN presented in 2017, the proposed method shows its superiority
under low SNR conditions. For instance, the diagnosis accuracies of the SDAE-based model and
WDCNN are 72.34% and 82.13% when SNR = −2 dB in the bearing experiment. With the denoising by
DCAE-1D, the diagnosis accuracies of the two models rise to 89.12% and 92.24% respectively, proving
that both the denoisng of input signals and the anti-noise ability of the model are indispensable in
accurate diagnosis under low SNR conditions.

In this paper, the load and rotating speed are kept constant during experiment, which is a
simplification of the actual conditions in industrial applications. It will be more valuable to extend
the proposed method to the cases with more complex conditions (e.g., variable speed and load) in the
future. Besides, this paper focus on the diagnosis problem of industrial applications and validate the
method with massive experimental data. However, the faulty sets in industrial systems are generally
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not readily to acquire. As the possible solutions, two kinds of methods are worth noticing: data
augmentation and data fusion. The former focus on generating more samples on the basis of existing
samples, such as data overlapping [21] and Generative Adversarial Network (GAN) methods [33].
The latter studies fusing the data of multiple kinds of sensors, which can be grouped into three main
approaches: data-level fusion [34], feature-level fusion [35] and decision-level fusion [36].
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