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Abstract: The automated modal analysis (AMA) technique has attracted significant interest over the
last few years, because it can track variations in modal parameters and has the potential to detect
structural changes. In this paper, an improved density-based spatial clustering of applications with
noise (DBSCAN) is introduced to clean the abnormal poles in a stabilization diagram. Moreover,
the optimal system model order is also discussed to obtain more stable poles. A numerical simulation
and a full-scale experiment of an arch bridge are carried out to validate the effectiveness of the
proposed algorithm. Subsequently, the continuous dynamic monitoring system of the bridge and
the proposed algorithm are implemented to track the structural changes during the construction
phase. Finally, the artificial neural network (ANN) is used to remove the temperature effect on modal
frequencies so that a health index can be constructed under operational conditions.

Keywords: automated modal analysis (AMA); system model order; density-based spatial clustering
of applications with noise (DBSCAN); continuous dynamic monitoring; temperature effect

1. Introduction

Recently, the status monitoring of full-scale structures by applying operational modal analysis
(OMA) has become more attractive because it can characterize the structural behavior under operational
conditions [1]. Peeters investigated the environmental effect on modal parameters of the Z24 bridge
based on the OMA [2]. Filipe proposed the online automatic OMA and applied it to a long-span
arch bridge [3]. Hu presented an automated OMA method to study the behavior of a stress-ribbon
footbridge under operational conditions [4]. William applied the OMA technique to achieve a near
real-time damage detection [5]. Furthermore, OMA is widely applied to identify the modal parameters
of wind turbines [6,7]. The modal parameters of stadiums during a football game were also reported [8]
and tracked to detect the structural changes [9].

Though the key algorithm of the OMA technique, such as the subspace stochastic identification
(SSI) method [3], can be automated in order to track the evolution of modal parameters and detect
structural changes under operational conditions [10–13], some obstacles still exist for a fully automated
modal analysis (AMA) procedure. They are summarized as follows:

Regarding the SSI method, the modal parameters are identified by interpreting the stabilization
diagram. This was constructed by identifying the state-space model with different orders. By comparing
the poles corresponding to a certain model order with the poles of a one-order-low model, the stable
poles are found and a stabilization diagram is efficiently constructed. An obvious obstacle of AMA is
the interference of spurious modes in a stabilization diagram. Unlike mathematical poles, the physical
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poles stay around the consistent modal parameters with increasing model orders. Meanwhile, the
mode shape components of a physical mode should lie on a straight line in the complex plane. Taking
these characteristics into account, different modal validation criteria, such as modal assurance criteria
(MAC) [14], modal energy level [15], mean phase deviation [16] and the modal phase collinearity
(MPC) criteria [17] are introduced to clean the spurious poles. However, the spurious poles cannot be
totally eliminated by only applying these cleaning criteria. Thus, the clustering algorithm, including
hierarchical clustering [4], k-means clustering [16] and combination of both methods [3], are further
used to clean the stabilization diagram. However, initial values and multi-iteration are necessary in
both k-means clustering and hierarchical clustering, which leads to a relatively longer computation time.
To overcome this difficulty, a density-based spatial clustering of applications with noise (DBSCAN) has
been reported to be less time-consuming and more potent in the detection and removal of noise data
in the field of mathematics [18]. Additionally, the determination of the radius and minimum points in
DBSCAN has a significant impact on the clustering analysis of massive data [18,19].

In this paper, the DBSCAN algorithm is introduced to remove the spurious poles in a stabilization
diagram, and an efficient parameter optimization method based on the Euclidean distance is developed
to realize a full AMA procedure for civil engineering structures.

Besides, the system model order, namely, the size of the Toeplitz matrix in covariance-driven
subspace stochastic identification (SSI-COV) [20] has a considerable impact on the accuracy and
precision of modal parameter estimation [21]. Generally, the model order needs to be overestimated so
that all the physical modes are identified. However, with an increasing model order, more mathematical
poles will be produced in the stabilization diagram. The traditional way to choose the model order is
to determine fixed parameters, artificially based on experience or a number of trials [22,23]. In the field
of mathematics, Markovsky introduced the minimum norm of the given order to determine the model
order [24]. Hu obtained the optimal order by the iterative Cadzow’s algorithm, which was verified by
the measured impulse response function [25].

However, the above-mentioned methods are computationally expensive. In this paper, the
minimum reduction rate of the Frobenius norm is proposed to determine the model order of the civil
engineering structures.

Finally, modal frequency is inevitably influenced by temperature under operational conditions,
which may explain the variation caused by structural changes in the early stages [5]. Principal
component analysis [5] and polynomial regression (PR) [10] are applied to establish the nonlinear
relationship between them. In this paper, the nonlinear relationship models, constructed by both
artificial neural network (ANN) and PR, are compared. The optimal model is applied to eliminate the
temperature effect, and the remaining error matrix is used as an index to detect the structural changes
under operational conditions.

The main contributions of the current paper may be summarized in three parts: First, the full
AMA algorithm is proposed. The minimum reduction rate of the Frobenius norm is used to determine
the optimal model order. Then, the improved DBSCAN algorithm, with parameter optimization,
is introduced to eliminate the spurious poles in the stabilization diagram. Subsequently, the AMA
algorithm is validated by the modal experiment of an arch bridge, and furthermore, it is applied to
track the variation of modal frequency, based on a continuous dynamic monitoring of an arch bridge.
Finally, the temperature effect on frequency is removed by the ANN method. The remaining residuals
are used to construct the damage sensitive indices.

2. Automated Modal Analysis Based on DBSCAN

2.1. Covariance Driven Stochastic Subspace Identification Algorithm

On the assumption that the structure is a linear and time-invariant system, SSI identification
techniques are formulated using a discrete time stochastic state-space model, according to:

xk+1 = Axk + wk (1)



Sensors 2019, 19, 927 3 of 23

yk = Cxk + vk (2)

where xk is the discrete-time state vector with system order n; yk represents the output vector; and wk
and vk (k = 1, ..., N, N is the number of sampling points) are the process noise and measurement noise
vectors, respectively. Matrix A is the discrete state matrix, and C is the observation matrix.

The discrete state matrix and observation matrix are estimated by the Toeplitz matrix T that is
constructed by covariance matrices in SSI-COV. Singular value decomposition (SVD) is applied to the
Toeplitz matrix to remove the noise component by low-rank approximation.

T = USVT (3)

S =

[
Sd×d 0

0 0

]
j×j

(4)

where S is the diagonal matrix of the same dimension as T, while U and V are the unitary matrices.
d in Equation (4) represents the target model order, and j is the size of the Toeplitz matrix.

The natural frequencies ωi and damping ratios ξi are estimated by the eigenvalue of the
estimated state matrix, while the mode shapes M are identified from the observation matrix and
the eigenvectors Ψ:

ωi = |λi|
|λi|
2π

(5)

ξi =
−Re(λi)

ωi
(6)

M = CΨ (7)

More details of the covariance driven stochastic subspace identification method are further
illustrated in Ref. [20].

For the SSI method, the modal parameters are identified by interpreting the stabilization diagram.
This was constructed by identifying the state-space model with different orders. By comparing the
poles corresponding to a certain model order with the poles of a one-order-low model, the stable poles
are found, and a stabilization diagram is efficiently constructed.

2.2. Determination of the Optimal Model Order

In practice, because there is not a clear drop in the decreasing singular values, the model order is
usually over-estimated so that all eigenvalues of the state matrix are identified. However, a redundant
model order will lead to more spurious poles in the stabilization diagram. Meanwhile, the identified
modal parameters will be unstable when the model order is too large. The optimal model order should
not only guarantee that all physical modes are identified, but also minimize the effect of noise.

In general, the error matrix between the original Toeplitz matrix T and the estimated one T̃e

(Equation (8)) can be evaluated by the Frobenius norm ‖T− T̃e‖2. Theoretically, the physical modes
contribute more to the Toeplitz matrix than noise, thus, the Frobenius norm decreases as the model
order grows larger. The variation tendency of the Frobenius norm is similar to the singular value, and
it is difficult to define the accurate model order directly. In this paper, the logarithm of the reduction
rate of the Frobenius norm (Equation (9)) is proposed to identify the model order, since it first decreases
and then increases with an increasing model order. This means that the contribution of the physical
modes dominates in the estimated Toeplitz matrix T̃e, when the reduction rate of the Frobenius norm
decreases at a relatively faster rate with the rising model order. After reaching the minimum value, the
reduction rate of the Frobenius norm begins to increase gradually, reflecting that the contribution of the
physical mode is covered by spurious poles and the identified modal parameters tend to be discrete
because of the noise effect. Therefore, the accurate model order can be determined by the location of
the minimum value of the logarithm of the reduction rate of the Frobenius norm (Equation (10)):
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T̃e = Uj×eSe×eVe×j (8)

f (e) = log10(
‖T− T̃e−1‖2 − ‖T− T̃e‖2

‖T− T̃e−1‖2
) (e= 1, 2, . . . , n) (9)

e = argmin( f (e)) (10)

The strategy for the determination of the model order can be explained further by the following
case. Figure 1 shows the typical structural responses acquired from three accelerometers, installed on
the arch of a bridge. The signals are recorded over the course of 10 min, with a sampling frequency of
20 Hz (more details can be found in Section 3).
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Figure 1. Typical responses recorded by three accelerometers in an arch.

From Equations (3) and (4), the singular values of the Toeplitz matrix T are shown in Figure 2a.
The corresponding Frobenius norm of the error matrix ‖T− T̃e‖2 is plotted in Figure 2b. It can be
observed from Figure 2a,b that both indices generally decrease with the rising model order. When the
model order varies from 0 to 50, both indices drop significantly. However, when the model order falls
in the range of 50 to 300, both indices approach zero gradually. Thus, it is difficult to directly define
the model order from Figure 2a,b. Figure 2c displays the proposed reduction rate of the Frobenius
norm f (e), according to Equations (9) and (10). It is found that f (e) decreases quickly, when the
model order varies from 0 to 50, and then reaches the minimum gradually, at around model order
150. This suggests that the physical modes contribute more components than the noise in the Toeplitz
matrix. Subsequently, f (e) begins to increase until the model order reaches 300. Based on the minimum
value in the curve of f (e), the model order is selected as approximately 150 for the arch.

In order to validate the correctness of the proposed algorithm for model order selection,
the frequency and damping of a vibration mode (5.11 Hz) in an un-truncated order are shown in
Figure 2d,e, respectively. It can be seen that the identified modal frequency and damping ratio remain
stable, when the model order changes from 50 to 150. When the model order goes beyond 150, the
identification results spread gradually due to the effect of noise. Meanwhile, it is interesting to note
that the estimates of both frequency and the damping ratio have relatively low precision, when the
model order is below 50. This may partially result from the fact that some of the significant information
is filtered out by SVD, when the model order is too small [20].

Furthermore, the stabilization diagram in the un-truncated order 300 is shown in Figure 2f. It can
be seen that the spurious poles increase significantly, when the model order is higher than 150, which
partially evidences the noise effect in the Toeplitz matrix.
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Figure 2. Determination of the model order: (a) singular value; (b) the Frobenius norm between
the original and the estimated Toeplitz; (c) the reduction rate of the Frobenius norm; (d) identified
frequencies; (e) identified damping ratio; and (f) identified poles by selecting the maximum order.
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2.3. Cleaning of the Stabilization Diagram Using the DBSCAN Algorithm

As shown in Figure 3a, the stabilization diagram contains two parts: the power spectral density
(PSD) and the identified poles in a different order. The poles generally form a stable axis falling close
to the peak of the PSD. The scattered poles are more likely to be mathematical ones, as the physical
modes stay within the consistent modal parameters in the consecutive model orders.
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Figure 3. Original stabilization diagram, cleaned stabilization diagram, and stabilization diagram, after
the elimination of noise poles by DBSCAN: (a) original stabilization diagram; (b) cleaned stabilization
diagram; (c) stabilization diagram, after the removal of noise poles by applying the DBSCAN procedure
only to frequency; and (d) stabilization diagram, after removing noise poles by applying the DBSCAN
procedure to modal frequency, modal damping, and modal shape.
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Therefore, the poles are labeled as stable if the relative differences in the modal frequency (δ f ),
modal damping ratio (δε), and MAC value between the poles of models with consecutive orders are
below the following threshold values:

δ f = 1− fi
fi−1

< 2% (11)

δε = 1− εi
εi−1

< 5% (12)

δM = 1−MAC(i, i− 1) = 1−
∣∣φi

Tφi−1
∣∣2

φi
Tφiφi−1

Tφi−1
< 5% (13)

where i denotes to the current model order, and i−1 is the former model order. fi, εi, φi are the ith
modal frequency, modal damping ratio, and model shape, respectively.

The MPC is an index that is used to describe the modal phase collinearity of the poles [17]. If the
structure is proportionally damped, the mode shape vector should lie on a straight line in the complex
plane, and the identified mathematical poles would have a low MPC value:

MPC(φi) =
Re(φi)

T Re(φi) +
1
ς Re(φi)

T Im(φi)
T((2ς2 + 2)sin2(θ)− 1)

Re(φi)
T Re(φi) + Im(φi)

T Im(φi)
(14)

ς =
Im(φi)

T Im(φi)− Re(φi)
T Re(φi)

2Re(φi)
T Im(φi)

(15)

θ = arctan(|ς|+ sign(ς)
√

1 + ς2) (16)

where φi is the ith model shape, and Re() and Im() represent the real and imaginary parts, respectively.
First, the poles with identified modal parameters that do not satisfy Equations (11)–(13) are

labeled as spurious ones and are cleaned. Subsequently, the poles with unrealistic damping ratios
(ε > 10%) and mode shape (MPC < 97%) are deleted. Compared with Figure 3a, some local abnormal
poles are partially cleaned in Figure 3b. However, unstable poles are still noted, fox example, the poles
whose frequencies are below 0.90 Hz in the range from 2.6 Hz to 3.8 Hz and in the scope from 5.3 Hz
to 6.3 Hz, etc. Therefore, the designed DBSCAN algorithm is introduced to solve this issue.

Compared with k-means clustering and hierarchical clustering methods, the DBSCAN algorithm
has a better performance in removing the interference of noise and clustering, without setting the
initial value [18]. In this paper, DBSCAN is introduced to cluster the poles, based on modal frequency,
damping ratio, and mode shape. In particular, an efficient parameter optimization method, based on
the Euclidean distance, is developed to determine a radius r and a threshold value minpts to clean the
spurious poles.

In a stabilization diagram, regarding a given pole p with a specified radius r, if the number of
neighboring poles within the radius r is less than the threshold value minpts, such a pole will be
defined as a spurious one. Otherwise, it would be labeled as a stable pole:

Nε(P) =
{

q
∣∣q ∈ P, Ep,q ≤ r

}
≥ minpts (17)

where P represents the set of poles around the given pole p within the range of the specified radius
r, and q is one of them. Ep,q is the Euclidean distance of the modal parameters between pole p and
the neighboring poles q within the scope of P, and Nε(P) denotes the number of poles satisfying
this equation.

In order to optimize the threshold value minpts and the radius r, the matrix of the Euclidean
distance Ed is calculated. It is formed by the Euclidean distance between a certain pole p and all other
poles in the stabilization diagram (Equation (18)), which reflects the global distances between different



Sensors 2019, 19, 927 8 of 23

poles. Secondly, the column vector of the matrix Ed is sorted in ascending order to obtain the matrix Sd
(Equation (19)). Each column vector of matrix Sd characterizes the distribution of the distance between
a given pole and the other poles in the stabilization diagram. Finally, the minptsth row of matrix Sd is
sorted in increasing order, and the vector SSminpts is defined as Equation (20).

Ed =


0 e1,2 . . . e1,n
e2,1 0 . . . e2,n

. . .
en,1 en,2 . . . 0

 (18)

Sd =


0 0 . . . 0

s2,1 s2,2 . . . s2,n
. . .

sn,1 sn,2 . . . sn,n

 (19)

SSminpts = Sort
[
Sminpts,1, Sminpts,2, . . . , Sminpts,n

]
(20)

where n is the number of all poles in the stabilization diagram, the element ei,j in the ith row and the
jth column of the matrix Ed represent the Euclidean distance between the ith pole and the jth pole,
and the element si,j in the ith row and jth column of the matrix Sd is the Euclidean distance between
the ith pole and its jth nearest pole.

The elements of vector SSminpts are sorted in increasing order, and each element represents the
Euclidean distance between every pole and its minptsth nearest pole. Compared with the stable poles,
the distribution of spurious poles is more isolated. This means that the distance between the spurious
pole and the other pole is relatively larger than that with the stable pole. Therefore, when the value of
the element in the vector SSminpts increases suddenly, the corresponding distance should be defined as
the optimal radius r.

It should be emphasized that every pole in the stabilization diagram consists of three types of
modal information: modal frequency, modal damping ratio, and normalized mode shape. Therefore,
the procedures of Equations (17)–(20) will be used to clean the spurious poles based on different
threshold values of minpts and radius r for modal frequency, modal damping ratio, and normalized
mode shape. First, poles with abnormal frequencies are defined as noise, and the stable poles are
clustered into different groups. Subsequently, DBSCAN with automated parameter optimization is
again applied to the poles on the basis of the damping ratio, and the mode shape evaluated by the
quadratic sum of the normalized mode shape (QSNMP):

QSNMP = φTφ (21)

Finally, a cleaned stabilization diagram will be obtained, after discarding those spurious poles
that do not comply with Equation (17).

Generally, it is assumed that the number of stable poles in a modal order should be greater than
10% of the selected modal order. Thus, the minpts for the modal frequency in the DBSCAN procedure
is defined as 10% of the selected modal order, as defined in Equation (22):

minpts f = 10%× e (22)

where minptsf is the defined minpts value for the DBSCAN algorithm, based on the modal frequency,
and e is the selected model order, according to Equations (8)–(10).

For example, with regard to the stabilization diagram in Figure 3b, the selected system model
order e = 150 and the minptsf = 15. The matrix SS15, according to Equation (20), and also the 15th row
of the matrix Sd is plotted in Figure 4a. When the element value of SS15 increases suddenly, spurious
poles are more likely to appear. The increasing speed of the element value of SS15 can be evaluated
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by the derivative of the sorted elements, as shown in Figure 4b. The first clear peak indicates the
appearance of an isolated spurious pole. Thus, the radius of frequency clustering r f should be taken
as the corresponding frequency of the Euclidean distance, corresponding to the pole value, which is
determined by the first peak in the derivative of the distance. As shown in Figure 4b, the first peak
appears at around 2300. The corresponding radius of the DBSCAN algorithm in frequency r f was
0.015 Hz, corresponding to pole 2300 in Figure 4a.
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Figure 4. Determination of the r f : (a) the vector SS15; and (b) the first peak of the derivative of distance.

After applying the DBSCAN algorithm based on the modal frequency, the stabilization diagram
is further cleaned, as shown in Figure 3c. Compared with Figure 3b, more poles with abnormal
frequencies are eliminated, and the remaining poles are clustered in different groups (in the current
case, the poles are separated into 36 groups). To exhibit the complete modal information of each pole,
a 3D stabilization diagram is constructed, as shown in Figure 5. Figure 5a,b correspond to the 2D
stabilization diagram shown in Figure 3c. It is worth noting, from Figure 5a,b, that noise poles still
exist with discrete damping ratios and QSNMP, even after applying the DBSCAN procedure, based on
the modal frequency. In particular, the poles, whose frequencies are below 0.90 Hz in the range from
2.6 Hz to 3.8 Hz and in the scope from 5.3 Hz to 6.3 Hz, are unstable in terms of modal damping or
mode shape. Thus, the DBSCAN procedure should be further implemented for the 36 groups of poles
based on the modal damping and mode shape evaluated by QSNMP, in order to obtain stable poles
for all the modal information.

Since the number of poles gi clustered by the frequency-based DBSCAN algorithm varies in different
groups, corresponding to different modal orders, the minpts and the radius r for the DBSCAN
procedure, based on the damping ratio and QSNMP, should be determined according to the number
of poles in each group:

minptsdi = 10%× gi,minptsqi = 10%× gi (23)

where minptsdi and minptsqi are the threshold values of the DBSCAN procedure based on the damping
ratio and QSNMP, respectively. The radius rdi

and rqi can be specified by Equations (18)–(20) based on
modal damping and QSNMP.

After applying both modal damping and QSNMP, based on the DBSCAN algorithm, the poles
with unstable damping ratios and mode shapes are further excluded. The final 2D and 3D stabilization
diagrams are shown in Figures 3d and 5d, respectively. It can be observed, from Figure 5d, that each
mode in the different orders has a stable damping ratio and an excellent MAC value, exceeding 95%.
The unstable poles, whose frequencies are below 0.90 Hz in the range from 2.6 Hz to 3.8 Hz and in the
scope from 5.3 Hz to 6.3 Hz, are further discarded. Finally, the modal parameters in different model
orders are identified automatically by clustering the poles in each group.
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on both the modal frequency and damping ratio; (d) poles after applying the DBSCAN, based on the
modal frequency, damping, and mode shape.

3. Validation of the Automated Modal Analysis Algorithm with an Arch Bridge

In this section, a numerical model and modal experiment on the Rainbow Bridge are used to
validate the AMA algorithm proposed in Section 2.

3.1. Introduction of the Rainbow Bridge

The Rainbow Bridge (Figure 6) over the Dasha River in Shenzhen is located between the Peking
University Shenzhen Graduate School and the gymnasium of University Town. The arch bridge is
composed of three main parts: two arches, with an inclination angle of 14.4◦, 34 pre-stressed cables,
and a deck supported by two box girders.

The numerical model of the Rainbow Bridge is established by multiple element types, based on
the ANSYS environment. The beam element with shear deformation is used in the simulated arch,
while the tension-only link element is applied for the cables. In order to obtain more accurate solutions,
the deck is considered as an assembly of shell elements. According to the equivalent stiffness of the pot
rubber bearing, the spring elements, with a constant of 1.1E9 N/m, are implemented at the abutment.

The ambient vibration modal experiment is carried out on the bridge deck. As it is difficult to
install massive accelerometers on an inclined arch, the physical mode of the arch is verified by three
fixed lateral accelerometers for long-term monitoring (Section 4) and numerical simulation.
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To obtain both the bending and torsional modes with a higher spatial resolution, an ambient
vibration experiment was performed on both sides of the deck by a multi-reference point method. As
shown in Figure 7, the 32 black stars are the test points, while the two red stars are the reference points.
A total of 32 test points is divided into 16 setups. In each setup, the bridge responses are measured,
with an initial sampling frequency of 2048 Hz lasting 15 min, and these are processed with a low-pass
anti-aliasing filter of 10 Hz and are further down-sampled to 20 Hz by cubic spline interpolation.
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3.2. Validation of the Automated Modal AnalysisAlgorithm

The bridge responses are further analyzed by the AMA algorithm, as stated in Section 2.
The modal parameters of the physical mode, identified by the ambient vibration experiment and
calculated by the numerical simulation, are listed in Table 1. Furthermore, the visualized mode shapes
identified by the LabVIEW toolkit [26], are shown in Figures 8–10.

Table 1. Results of the numerical simulation and modal experiment.

Order FEM (Hz) SSI (Hz) Description Errors MAC

1 0.93 0.92 1st arch transversal (symmetry) 1.08% -

2 0.99 1.01 1st arch transversal (anti-symmetry) 1.98% -

3 2.00 1.99 2nd deck vertical + 2nd arch vertical and transversal
(symmetry) 0.50% 0.99

4 2.56 2.34 1st deck vertical + 1st arch vertical and transversal (symmetry) 10.26% 0.99

5 2.50 2.55 2nd arch transversal (anti-symmetry) 1.96% -

6 3.81 3.94 1st deck torsion + 3rd arch transversal (anti-symmetry) 3.30% 0.98

7 4.34 4.39 3rd deck vertical + 3rd arch transversal (symmetry) 1.10% 0.97

8 5.22 5.11 3rd arch transversal (symmetry) 2.15% -

9 6.54 6.48 4st deck vertical + arch longitudinal (symmetry) 0.92% 0.98

10 7.32 7.03 3st deck torsion +3rd arch vertical and transversal (symmetry) 4.13% 0.98

11 8.64 8.32 2st deck torsion + arch longitudinal (anti-symmetry) 3.85% 0.99
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Figure 9. Mode dominated by the arch: (a) the 1st mode (0.93 Hz); (b) the 2nd mode (0.99 Hz); (c) the
5th mode (2.50 Hz); (d) the 8th mode (5.22 Hz).

It can be seen from Table 1 that the frequency differences between the identified and calculated
results are less than 5%, except for the 4th mode, and the MAC values between them exceed 97%.
This means that the numerical simulation and field modal experiment are well matched.

It is interesting to note, from both the numerical simulation and ambient vibration experiment,
that some modes are dominated by the arch, while some modes are coupled by both the arch and
the deck. As shown in Figure 8 and Table 1, the 1st, 2nd, 5th and 8th modes can only be recognized
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in the stabilization diagram of the arch. The corresponding mode shapes, calculated by ANSYS, are
presented in Figure 9. They are also the 1st (both symmetry and anti-symmetry) to the 3rd transversal
modes of the arch, respectively.

Generally, the vibration of the arch and deck are coupled. As shown in Figure 10, the 3rd, 4th,
6th, 7th and 10th modes are coupled by the vertical mode of the deck and transversal mode of the
arch, which could be identified in the stabilization diagram of the deck and the arch, while the 9th and
11th modes are only observed in the stabilization diagram of the deck. A possible reason for such a
phenomenon may be that the arch vibration in Figure 10j is along the longitudinal direction, which
cannot be captured by lateral accelerometers. In summary, all the spurious modes are eliminated,
and the identified modal parameters are reliable when using the AMA algorithm. The tracking of the
modal frequencies and their application to structural change detection are exhibited in Section 4.
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Figure 10. Mode coupled by the deck and arch: (a) the 3rd mode identified by SSI-COV (1.99 Hz);
(b) the 3rd mode calculated by ANSYS (2.00 Hz); (c) the 4th mode identified by SSI-COV (2.34 Hz);
(d) the 4th mode calculated by ANSYS (2.56 Hz); (e) the 6th mode identified by SSI-COV (3.94 Hz); (f)
the 6th mode calculated by ANSYS (3.81 Hz); (g) the 7th mode identified by SSI-COV (4.39 Hz); (h) the
7th mode calculated by ANSYS (4.34 Hz);(i) the 9th mode identified by SSI-COV (6.48 Hz); (j) the 9th
mode calculated by ANSYS (6.54 Hz); (k) the 10th mode identified by SSI-COV (7.03 Hz)); (l) the 10th
mode calculated by ANSYS (7.32 Hz); (m) the 11th mode identified by SSI-COV (8.32 Hz); (n) the 11th
mode calculated by ANSYS (8.64 Hz).

4. The Continuous Dynamic Monitoring System and Tracking of Long-Term Modal Frequency

In this section, the continuous dynamic monitoring system is introduced, and the frequencies of
different bridge modes are tracked by an AMA, implemented with the DBSCAN algorithm to track the
structural change during the construction phase. Subsequently, the temperature effect on frequency
under the operation phase is eliminated by ANN, and the abnormal detector (AD) is established by
the Euclidean distance of the error matrix.

4.1. The Continuous Dynamic Monitoring System

The Rainbow Bridge began construction in November 2016 and was finished in June 2017. In order
to monitor structural long-term behavior, a continuous dynamic monitoring system was implemented
on this bridge, and it began to work on 1 March 2017. The vertical vibration of the deck and the
transversal vibration of the arch were designed to be the main monitoring objects, according to
the modal analysis of the FE model. In order to ensure that each physical mode was identified,
accelerometers are selected and installed at the corresponding position of the red stars in Figure 11.
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BV1–BV5 represents the five vertical magneto-electric accelerometers on the deck, while GH1–GH3
show the position of the three horizontal magneto-electric accelerometers on the arch. Meanwhile,
a piezoelectric accelerator is applied to monitor the vibration of the longest cable (S1).
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taken during a time-span of 320 days are available, although some days are missing due to the 

Figure 11. Distribution of the accelerometers.

Figure 12 shows the continuous dynamic system, providing high-quality data. Acceleration
signals in both the deck and arch are continuously acquired, with a sampling ratio of 2000 Hz, and they
are connected to a low-pass anti-aliasing filter of 10 Hz, as well as being down-sampled to 20 Hz by the
spline interpolation. The cable acceleration signal is applied with a low-pass filter of 25 Hz, and then
down-sampled to 50 Hz. All acceleration signals acquired within 10 min are stored in a local computer
in a nonstop manner. Furthermore, a continuous transmission toolkit is developed to automatically
deliver the acceleration signals from the bridge to the laboratory.
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4.2. Tracking of the Long-Term Modal Frequency

The continuous monitoring system started to operate on 1 March 2017. Until 31 July 2018, signals
taken during a time-span of 320 days are available, although some days are missing due to the
instability of the power supply in the construction phase. Fortunately, several interesting events were
recorded by the continuous monitoring system.

As described in Section 3, some modes are dominated by the transversal vibration of the arch,
while others recoupled with both the transversal arch and vertical deck vibrations. Thus, the physical
modes are divided into two categories to track the long-term modal frequencies.
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As shown in Figure 13a, on the 17th day (5 April 2017), an obvious jump appeared in the 3rd, 4th,
6th, 7th and 10th modes, which is due to the modest coupling of both the arch and deck vibrations.
Afterwards, the frequencies decreased gradually until the 90th day (15 August 2017). In order to
illustrate the variation tendency in a better way, the average normalized frequencies were introduced:

f j =

24×j
∑

i=24×j−23
fi

24× ( fi)max
, (j = 1, 2, . . . , 320) (24)

where fi is the number of identified frequencies, and i represents the total number of frequencies,
which was 24 × 320 = 7680 in this case. f j represents the average normalized frequencies in each day.
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Figure 13. Modal frequencies of the arch lateral and deck vertical vibrations from 1 March 2017 to 31 
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of the coupled modes. (The two triangle marks in green: the 90th day (15 August 2017) and the 320th 
day (31 July 2018); The two triangle marks in red: the 1st day (1 March 2017) and the 220th day (1 
March 2018)). 

The calculated normalized frequencies are shown in Figure 13b. In order to illustrate the annual 
variation tendency of the frequency clearly, four time data notes (four triangles in both red and green) 
are labelled in Figures 13b, 14b and 15b for the arch-deck coupled mode, deck mode and cable mode. 
The two green triangle marks are the 90th day (15 August 2017) and the 320th day (31 July 2018), 
respectively. The two red triangle marks are the 1st day (1 March 2017) and the 220th day (1 March 
2018). 
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due to temperature.  
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corresponding average normalized frequencies are plotted in Figure 14b. It is interesting to note that 
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Figure 13. Modal frequencies of the arch lateral and deck vertical vibrations from 1 March 2017
to 31 July 2018: (a) the long-term frequencies of the coupled modes; (b) the average normalized
frequencies of the coupled modes. (The two triangle marks in green: the 90th day (15 August 2017) and
the 320th day (31 July 2018); The two triangle marks in red: the 1st day (1 March 2017) and the 220th
day (1 March 2018)).

The calculated normalized frequencies are shown in Figure 13b. In order to illustrate the annual
variation tendency of the frequency clearly, four time data notes (four triangles in both red and
green) are labelled in Figures 13b, 14b and 15b for the arch-deck coupled mode, deck mode and cable
mode. The two green triangle marks are the 90th day (15 August 2017) and the 320th day (31 July
2018), respectively. The two red triangle marks are the 1st day (1 March 2017) and the 220th day
(1 March 2018).

For all identified coupled modes, it can be observed that the frequencies jump on the 17th day
and then decrease until the 90th. In the period from the 90th day (15 August 2017) to the 320th day
(31 July 2018), during a time-span of one year, the frequencies in different modes fluctuate regularly
due to temperature.

The identified frequencies of the 1st, 2nd, 5th, and 8th modes are tracked in Figure 14a, and the
corresponding average normalized frequencies are plotted in Figure 14b. It is interesting to note that
the modal frequencies dominated by the arch show the opposite behavior to those with the coupled
modes. Comparing Figure 13b with Figure 14b, it can be observed that the average normalized
frequencies in Figure 13b keep rising until the 17th day, while the coupled modes decrease in this
period, as shown in Figure 14b. Then, a sudden change, but with a different tendency, is observed in
both Figures 13b and 14b, and subsequently, the frequencies of the arch-dominated mode keep rising
until the 90th day. In the period from the 90th day to the 320th day, an opposite fluctuation trend is
observed in the arch-dominated mode, compared with the tendency in the arch-deck coupled mode.
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Cable force can be evaluated continuously by tracking the frequency variation [27–29]. The cable 
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15a. The average normalized frequencies of the monitored cable are displayed in Figure 15b. It can 
be seen that the normalized frequencies rise during the period from the 20th day to the 80th day and 
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Figure 15. Frequencies of the longest cable (cable 9) from 1 March 2017 to 31 July 2018: (a) the long-
term frequencies of the cable; (b) the average normalized frequencies of the cable. 

The important events in the bridge construction phase may partially explain the variation of 
frequencies of different structural modes shown in Figures 13b–15b. From the 1st day to the 17th day, 
the concrete deck was cast on the bridge, leading to decreasing frequencies in the coupled mode and 

Figure 14. Frequencies of the lateral arch and vertical deck from 1 March 2017 to 31 July 2018: (a) the
long-term frequencies of the modes dominated by the arch; (b) the average normalized frequencies of
the modes dominated by the arch. (The two triangle marks in green: the 90th day (15 August 2017) and
the 320th day (31 July 2018); The two triangle marks in red: the 1st day (1 March 2017) and the 220th
day (1 March 2018)).
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Figure 15. Frequencies of the longest cable (cable 9) from 1 March 2017 to 31 July 2018: (a) the long-
term frequencies of the cable; (b) the average normalized frequencies of the cable. 

The important events in the bridge construction phase may partially explain the variation of 
frequencies of different structural modes shown in Figures 13b–15b. From the 1st day to the 17th day, 
the concrete deck was cast on the bridge, leading to decreasing frequencies in the coupled mode and 

Figure 15. Frequencies of the longest cable (cable 9) from 1 March 2017 to 31 July 2018: (a) the long-term
frequencies of the cable; (b) the average normalized frequencies of the cable.

Cable force can be evaluated continuously by tracking the frequency variation [27–29]. The cable
frequencies of each order are integer multiples of the fundamental frequencies, as shown in Figure 15a.
The average normalized frequencies of the monitored cable are displayed in Figure 15b. It can be seen
that the normalized frequencies rise during the period from the 20th day to the 80th day and decrease
slowly from the 80th to the 120th day, while a sudden drop occurs on the 120th day (9 November 2017).
Afterwards, the normalized frequencies oscillate with temperature.

The important events in the bridge construction phase may partially explain the variation of
frequencies of different structural modes shown in Figures 13b, 14b and 15b. From the 1st day to the
17th day, the concrete deck was cast on the bridge, leading to decreasing frequencies in the coupled
mode and increasing frequencies in the arch-dominated mode. Meanwhile, one of eight bearings was
in a state of suspension, without supporting the bridge box girder (Figure 16a), due to an unexpected
construction error. On the 17th day, the bearing was repaired and the boundary condition changes
significantly, resulting in sudden changes of the tracked frequencies of both the deck and arch, as shown
in Figures 13b and 14b. On the 120th day (9 November 2017), the cable force of the 2nd, 8th and
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10th cables reduced by 20, 10 and 20 tons, respectively, and the 13th cable force increased by 20 tons,
ensuring that all cable forces reached a designated value (Figure 17). The adjustment in the cable force
resulted in the sudden drop in the frequencies of the 9th cable (the longest cable) on the 120th day
(9 November 2017). It can be concluded that variations of the modal frequency, tracked by the AMA
based on DBSCAN algorithm can reveal structural changes in the construction phase.

Sensors 2019, 19, x FOR PEER REVIEW 18 of 23 

 

increasing frequencies in the arch-dominated mode. Meanwhile, one of eight bearings was in a state 
of suspension, without supporting the bridge box girder (Figure 16a), due to an unexpected 
construction error. On the 17th day, the bearing was repaired and the boundary condition changes 
significantly, resulting in sudden changes of the tracked frequencies of both the deck and arch, as 
shown in Figure 13b and 14b. On the 120th day (9 November 2017), the cable force of the 2nd, 8th 
and 10th cables reduced by 20, 10 and 20 tons, respectively, and the 13th cable force increased by 20 
tons, ensuring that all cable forces reached a designated value (Figure 17). The adjustment in the cable 
force resulted in the sudden drop in the frequencies of the 9th cable (the longest cable) on the 120th 
day (9 November 2017). It can be concluded that variations of the modal frequency, tracked by the 
AMA based on DBSCAN algorithm can reveal structural changes in the construction phase. 

  
(a) (b) 

Figure 16. The change of the boundary condition: (a) before the 17th day (5 April 2017); (b) after the 
17th day (5 April 2017). 

  
(a) (b) 

Figure 17. The adjustment of cable forces (cable 8 and 10): (a) before the 120th day (9 November 2017); 
(b) after the 120th day (9 November 2017). 

4.3. Removal of the Temperature Effect on Modal Frequency 

The temperature is reported to have a significant influence on the frequencies. After the 120th 
day, the bridge is open for operation. The correlation between temperature and tracked frequencies 
of the arch are shown in Figure 18. Under operation conditions, daily temperature changes resulted 
in about 2% frequency fluctuations in one day, while the maximum frequency fluctuation, caused by 
the annual temperature differences, reaches about 4.5% (Figure 14). Therefore, the feature that is only 
sensitive to structural change should be extracted by removing the non-linear temperature effects on 
frequencies. 

The polynomial regression model (PR) [30] and artificial neural networks (ANN) [31] are the 
main mathematic models fitting non-linear relationships. An optimal PR model can be obtained by 
the generalized least square method. Theoretically, the rising model order of PR can decrease the 
fitting errors, but it also leads to an over-training problem. Thus, the Akaike information criterion 

Figure 16. The change of the boundary condition: (a) before the 17th day (5 April 2017); (b) after the
17th day (5 April 2017).

Sensors 2019, 19, x FOR PEER REVIEW 18 of 23 

 

increasing frequencies in the arch-dominated mode. Meanwhile, one of eight bearings was in a state 
of suspension, without supporting the bridge box girder (Figure 16a), due to an unexpected 
construction error. On the 17th day, the bearing was repaired and the boundary condition changes 
significantly, resulting in sudden changes of the tracked frequencies of both the deck and arch, as 
shown in Figure 13b and 14b. On the 120th day (9 November 2017), the cable force of the 2nd, 8th 
and 10th cables reduced by 20, 10 and 20 tons, respectively, and the 13th cable force increased by 20 
tons, ensuring that all cable forces reached a designated value (Figure 17). The adjustment in the cable 
force resulted in the sudden drop in the frequencies of the 9th cable (the longest cable) on the 120th 
day (9 November 2017). It can be concluded that variations of the modal frequency, tracked by the 
AMA based on DBSCAN algorithm can reveal structural changes in the construction phase. 

  
(a) (b) 

Figure 16. The change of the boundary condition: (a) before the 17th day (5 April 2017); (b) after the 
17th day (5 April 2017). 

  
(a) (b) 

Figure 17. The adjustment of cable forces (cable 8 and 10): (a) before the 120th day (9 November 2017); 
(b) after the 120th day (9 November 2017). 

4.3. Removal of the Temperature Effect on Modal Frequency 

The temperature is reported to have a significant influence on the frequencies. After the 120th 
day, the bridge is open for operation. The correlation between temperature and tracked frequencies 
of the arch are shown in Figure 18. Under operation conditions, daily temperature changes resulted 
in about 2% frequency fluctuations in one day, while the maximum frequency fluctuation, caused by 
the annual temperature differences, reaches about 4.5% (Figure 14). Therefore, the feature that is only 
sensitive to structural change should be extracted by removing the non-linear temperature effects on 
frequencies. 

The polynomial regression model (PR) [30] and artificial neural networks (ANN) [31] are the 
main mathematic models fitting non-linear relationships. An optimal PR model can be obtained by 
the generalized least square method. Theoretically, the rising model order of PR can decrease the 
fitting errors, but it also leads to an over-training problem. Thus, the Akaike information criterion 

Figure 17. The adjustment of cable forces (cable 8 and 10): (a) before the 120th day (9 November 2017);
(b) after the 120th day (9 November 2017).

4.3. Removal of the Temperature Effect on Modal Frequency

The temperature is reported to have a significant influence on the frequencies. After the 120th day,
the bridge is open for operation. The correlation between temperature and tracked frequencies of the
arch are shown in Figure 18. Under operation conditions, daily temperature changes resulted in about
2% frequency fluctuations in one day, while the maximum frequency fluctuation, caused by the annual
temperature differences, reaches about 4.5% (Figure 14). Therefore, the feature that is only sensitive to
structural change should be extracted by removing the non-linear temperature effects on frequencies.

The polynomial regression model (PR) [30] and artificial neural networks (ANN) [31] are the
main mathematic models fitting non-linear relationships. An optimal PR model can be obtained by the
generalized least square method. Theoretically, the rising model order of PR can decrease the fitting
errors, but it also leads to an over-training problem. Thus, the Akaike information criterion (AIC) is
introduced to determine the optimal model order of the PR method. The detailed algorithm in [10] can
be consulted. In this paper, a four-order PR model is used to fit the nonlinear relationship between the
temperature and arch frequency.
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Figure 18. The relationship between the temperature and frequencies: (a) the 5th mode; (b) the 8th 
mode. 
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Figure 18. The relationship between the temperature and frequencies: (a) the 5th mode; (b) the
8th mode.

The ANN algorithm is designed to simulate the mechanism of neural networks in the human
brain. The independent neurons, representing mathematical functions, are interconnected in networks
to forecast outputs. The networks contain three parts: one input layer, hidden layers (there can be
more than one), and one output layer. Each layer node has the former layer node values multiplied by
the associated weights, and processes them with a certain function:

Sx,i = f (∑
i

Sx−1,i ·Wx,i) (25)

where f () represents the processing function (normal sigmoid function: y = ex−e−x

ex+e−x ), Sx,i and Wx,i are
the value and weights of the ith neuron in the xth layer, respectively.

A back-propagation algorithm is performed to train the neural networks. Along with the training
procedure, the weights of each node in each layer will approximate accurate values. The initial values
of weight W are set to random numbers (normally, −0.1 to 0.1). After multiple iterations, the errors E
between the output values Y and target value T are calculated. The errors E will propagate backward
by changing the weight (dW):

dWx,i = LR× Ex,i × f ′(Sx,i)×Yx,i (for the weight connected to output neurons) (26)

dWx−1,i = LR× Ex−1,i × f ′(Sx,i)×Yx,i (for the weight connected to output neurons) (27)

where LR is the learning rate, Sx,i is the value calculated by Equation (26), Yx,i is the output value
of neurons, x represents the layer number, I represents the neuron number, and j represents the
weight number.

The weights are optimized for the next iteration by:

Wn+1 = Wn+1 + dWn (28)

In the current research, the temperature is taken as the input variable, while the arch frequency in
different orders is set as the output variable. One hidden layer with two neurons is set for the curve
fitting. In order to prevent over-training of the network, data in both the input and output layers are
split into two groups. The first group consists of odd data points (dpn(n = 1, 3, 5, . . .)) and is used
for training the model, while the other group includes even data points (dpn(n = 2, 4, 6, . . .)) and is
applied to test the trained model.

The iteration number of the ANN model is first determined to avoid the overtraining problem.
The root mean square of error (RMSE) between the predicted frequency and the tracked frequency
is used to evaluate the performance of the ANN model. Over-training occurs when the RMSE of
training decreases and the RMSE of testing increases. The training procedure is executed with two
different initial values of weight W, ranging from –0.1 to 0.1. As shown in Figure 19a, the RMSE for
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both training models, with different initial values, decreases with increasing iteration numbers. When
the iteration number approximates 7000, the RMSE of both testing groups starts to rise, which suggests
over-training of the models. Thus, the iteration number of the proposed ANN model is set as 7000.
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Figure 19. The RMSE of the training and testing groups: (a) the RMSE of training; (b) the RMSE of 
testing. 
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Figure 19. The RMSE of the training and testing groups: (a) the RMSE of training; (b) the RMSE
of testing.

The performance of the removal of the temperature effect based on the ANN and PR models
is compared in Figure 20. It is evidenced that the predicted frequency based on the ANN model is
closer to the tracked frequency, indicating that the ANN model has a better fitting capacity than the
PR model.
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Figure 20. Comparison of ANN and PR in the fitting of identified frequencies: (a) the 5th mode; (b) the
8th mode.

Figure 21 shows the distributions of error between the predicted and tracked frequency based on
both the ANN and PR models. Table 2 lists the RMSE of both models. The RMSE values produced by
the ANN model are smaller than those computed by PR, suggesting a better fitting performance of
the ANN model. Therefore, the optimal ANN model is chosen to remove the temperature effect and
establish the health index for the arch bridge.

Error vectors between the predicted and tracked frequency are regarded as only sensitive to
structural change since the temperature is effectively removed:

εi = fi − f̃i (29)
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where fi is the ith order identified frequency while f̃i is the ith order frequency estimated by ANN,
and εi represents the ith error vector.
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Table 2. The RMSE of errors produced by the ANN and PR models.

RMSE (Hz)

1st Mode 2nd Mode 5th Mode 8th Mode

ANN 0.0056 0.0056 0.0068 0.0075
PR 0.0063 0.0066 0.0078 0.0084

Establishing the error matrix E = [ε1 . . . εi . . . εk] and defining the anomaly detector (AD) to
display the occurrence of structural change gives [32]:

AD =
√
‖E‖ (30)

CL = µ (31)

UCL = µ + ασ (32)

where CL is the central limit, while UCL and LCL represent the upper and lower central limit,
respectively. µ and σ are the mean value and standard deviation of AD in the “health state”. Taking as
3 means a confidence level of 99.7%.

Figure 22 shows the AD, calculated by removing the temperature effect on arch frequency,
based on the ANN model. It can be observed that the temperature effect is efficiently removed, and
the AD serves as the health index for the arch bridge under operational conditions.
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5. Conclusions

This paper proposes an automated modal analysis (AMA) algorithm, based on the system model
order determination and the DBSCAN method. By applying the algorithm, all the physical modes
are identified, and the corresponding modal parameters are extracted. Furthermore, a continuous
monitoring system in an arch bridge is implemented to track the long-term frequency, based on the
proposed AMA. The main conclusions can be drawn as follows:

(1) The stabilization diagram, identified by the acceleration signals of the arch and deck, shows two
different patterns. One was dominated by the arch, and the other was coupled by both the arch
and deck. The identified modal parameters of both patterns coincided well with the numerical
simulation, which partially validates the correctness of the proposed AMA algorithm.

(2) By applying the AMA algorithm, the long-term modal frequencies of the physical modes from
March 2017 to July 2018 were tracked. During the construction phase, several clear fluctuations
of the frequencies of the deck, arch and cables are observed. They reflect structural changes, such
as modification of boundary conditions and adjustment of cable forces.

(3) Under the operation condition, obvious temperature effects on frequencies are observed.
By comparing two nonlinear curve fitting algorithms of both PR and ANN, the latter was proved
to be more efficient in eliminating the temperature effect. The AD index, extracted from the error
matrix of the ANN model, serves as the health index for the bridge under operational conditions.
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