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Abstract: Acoustic rainbow trappers, based on frequency selective structures with graded geometries
and/or properties, can filter mechanical waves spectrally and spatially to reduce noise and
interference in receivers. These structures are especially useful as passive, always-on sensors in
applications such as structural health monitoring. For devices that face space and weight constraints,
such as microelectromechanical systems (MEMS) transducers and artificial cochleae, the rainbow
trapping structures must be compact as well. To address this requirement, we investigated the
frequency selection properties of a space-saving design consisting of Helmholtz resonators arranged
at sub-wavelength intervals along a cochlear-inspired spiral tube. The height of the Helmholtz
resonators was varied gradually, which induced bandgap formation at different frequencies along
the length of the spiral tube. Numerical simulations and experimental measurements of acoustic
wave propagation through the structure showed that frequencies in the range of 1–10 kHz were
transmitted to different extents along the spiral tube. These rainbow trapping results were achieved
with a footprint that was up to 70 times smaller than the previous structures operating at similar
bandwidths, and the channels are 2.5 times of the previous structures operating at similar bandwidths.

Keywords: acoustic rainbow trapping; artificial cochleae; Helmholtz resonator; spiral; locally
resonant metamaterial

1. Introduction

Frequency selective structures, which act as passive spectral filters for electromagnetic and
mechanical waves, play an important role in many engineering applications. For instance, they are
often employed to isolate desired frequencies in the multimodal Lamb wave to improve the accuracy of
structural health monitoring of thin plates [1–4], and reduce noise and interference in radio frequency
(RF) receivers in electronic and biomedical devices [5,6]. In recent years, it has been shown that the
use of frequency selective structures with graded geometric structures or properties can be used to
filter waves spectrally and spatially [7–14]. This technique has come to be known as rainbow trapping
and was originally applied on electromagnetic waves to control optical delays and allow temporary
storage of light [15–19]. However, it has been extended to acoustic waves as well [20].

In applications with space and/or weight constraints, such as microelectromechanical systems
(MEMS) acoustic transducers [21–23] and artificial cochleae [24–28], the rainbow trapping structures
need to be compact without altering the operational bandwidth. Meanwhile, a requirement that
current studies continue to overlook is needed. For instance, in their proposed design for an artificial
cochlear that realizes rainbow trapping of acoustic frequencies up to 10 kHz, Foucaud et al. [29]
made use of a long (~1 m), straight plate of varying width, which was fabricated using traditional
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machining techniques that cannot be easily extended to produce miniature structures. On the other
hand, White et al. [30] employed microfabrication techniques to manufacture a device, consisting of
polyimide membranes and silicon nitride beams, which was less than 1 cm3 in volume. However,
its operational frequency was extended to 35 kHz, which is too high for the use in an artificial
human cochlear.

To resolve this issue, we propose an acoustic rainbow trapping design that was inspired by the
coiled shape of the cochlear, which had evolved naturally from the need to perform spatial–spectral
isolation of acoustic waves in a tight space [28,31,32]. Helmholtz resonators [33–40], a locally resonant
metamaterial that can be positioned at subwavelength intervals to enhance the transmission loss of
specific frequency bands [35,41–43], were arranged in this bioinspired spiral formation to further
minimize the form factor of the design. The rainbow trapping function of the structure was realized by
varying the height of the Helmholtz resonators, as shown in the numerical simulations and experiments
in the following sections.

2. Numerical Simulation

2.1. Numerical Model

In this study, we implement the rainbow trapping of acoustic waves using 40 individual Helmholtz
resonators (Figure 1a,b) attached to a hollow tube in an Archimedean spiral configuration (Figure 1c),
which can be described by the following equation using polar coordinates (r, θ): x = rθ cos (θ) and y =

rθ sin (θ). In this paper, r = 20 mm, and θ changes from 0 to 2.1π. The total length of the spiral is l = 0.3
m, coiled within an area la × wa = 0.1 m × 0.1 m. The periodical length of the Helmholtz resonators
is a = 7 mm. All the Helmholtz resonators have the same cylinder inner radius ri = 2.5 mm, cylinder
outer radius ro = 3.5 mm, cylinder top and bottom thickness H = 0.5 mm, neck inner radius rni = 0.7
mm, neck outer radius rno = 1 mm, neck length L = 4 mm, duct inner radius Rni = 1 mm and duct outer
radius Rno = 1.5 mm. The cylinder height, h, is increased in discrete steps of δ = 0.359 mm from 1 mm
(for the first cylinder (n = 1)) to 15 mm for the last cylinder (n = 40) (Figure 1d).

For the dispersion curve analysis, the structure is assumed to be infinite and periodic in the
direction of wave propagation (x) with the period a and. According to the Floquet–Bloch theorem, the
relation for the pressure distribution (p) can be expressed as [44]:

p(x + a) = p(x) exp [i(ka)] (1)

where k is the wavenumber of the acoustic wave.
For the spatial-spectral analysis, the equation used to analyze the acoustic wave problems is

expressed as [44]:

∇·(−1
ρ
∇p)− ω2 p

ρc2 = 0 (2)

where p = p0eiωt, the input pressure amplitude is p0 = 1 Pa, ρ is the density of air (ρ = 1.225 kg/m3),
c is the acoustic wave speed in air (c = 343 m/s).

For the element size used in these studies, we choose the “physics-controlled mesh” type with
“finer” element size.
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Figure 1. Schematic illustration of the cochlear-inspired structure. (a) Front view of Helmholtz 
resonator unit cell. (b) Cross-sectional view of the Helmholtz resonator unit cell showing the hollow 
interior of the cylinder and spiral tube. (c) Archimedean spiral and (d) isometric view of the entire 
structure. 

2.2. Dispersion Analysis 

Since the cylinder height is designed to increase linearly along the length of the duct for the 
graded Helmholtz resonators and the increment δ = 0.359 mm between two consecutive cylinders are 
reasonably small, we can consider the n-th cylinder with the height hn in the graded Helmholtz 
resonators as a cylinder with the same height hn in a series of the periodic Helmholtz resonators. 
Therefore, we could use the dispersion characteristics of the periodic Helmholtz resonators to 
approximate those of the n-th cylinder in a set of the graded Helmholtz resonators [20]. 

Since the bandgap of a Helmholtz resonator is strongly dependent on its geometry, the cylinders 
at different locations have different dispersion curves. To demonstrate the spatial evolution of 
dispersion curves in the graded Helmholtz resonators, Figure 2a–d presents the frequency-
wavenumber dispersion curves in the first Brillouin zone for cylinders with different heights: h7 = 3.1 
mm (the 7th cylinder), h15 = 6.0 mm (the 15th cylinder), h24 = 9.2 mm (the 24th cylinder), h32 = 12.1 mm 
(the 32nd cylinder). From Figure 2a–d, we can see there is a bandgap for each Helmholtz resonator, 
for which acoustic waves in those frequencies are not allowed to propagate.  

Figure 2e shows the frequency variation of acoustic wave bandgap (shaded in blue) with respect 
to cylinder height in the graded Helmholtz resonators. With an increase of cylinder height, the width 
of the bandgap becomes larger, and the bandgap gradually shifts to lower frequencies. Hence, if 
acoustic waves that carry frequencies in the range of 1614 Hz–6083 Hz transmit the graded Helmholtz 
resonators from cylinders n =1 to n = 40, the different frequency components will propagate to 
different extents. For instance, f1 = 1 kHz will be able to propagate to all the Helmholtz resonators, 

Figure 1. Schematic illustration of the cochlear-inspired structure. (a) Front view of Helmholtz resonator
unit cell. (b) Cross-sectional view of the Helmholtz resonator unit cell showing the hollow interior of
the cylinder and spiral tube. (c) Archimedean spiral and (d) isometric view of the entire structure.

2.2. Dispersion Analysis

Since the cylinder height is designed to increase linearly along the length of the duct for the
graded Helmholtz resonators and the increment δ = 0.359 mm between two consecutive cylinders
are reasonably small, we can consider the n-th cylinder with the height hn in the graded Helmholtz
resonators as a cylinder with the same height hn in a series of the periodic Helmholtz resonators.
Therefore, we could use the dispersion characteristics of the periodic Helmholtz resonators to
approximate those of the n-th cylinder in a set of the graded Helmholtz resonators [20].

Since the bandgap of a Helmholtz resonator is strongly dependent on its geometry, the cylinders at
different locations have different dispersion curves. To demonstrate the spatial evolution of dispersion
curves in the graded Helmholtz resonators, Figure 2a–d presents the frequency-wavenumber
dispersion curves in the first Brillouin zone for cylinders with different heights: h7 = 3.1 mm (the 7th
cylinder), h15 = 6.0 mm (the 15th cylinder), h24 = 9.2 mm (the 24th cylinder), h32 = 12.1 mm (the 32nd
cylinder). From Figure 2a–d, we can see there is a bandgap for each Helmholtz resonator, for which
acoustic waves in those frequencies are not allowed to propagate.

Figure 2e shows the frequency variation of acoustic wave bandgap (shaded in blue) with respect
to cylinder height in the graded Helmholtz resonators. With an increase of cylinder height, the width of
the bandgap becomes larger, and the bandgap gradually shifts to lower frequencies. Hence, if acoustic
waves that carry frequencies in the range of 1614 Hz–6083 Hz transmit the graded Helmholtz resonators
from cylinders n = 1 to n = 40, the different frequency components will propagate to different extents.
For instance, f 1 = 1 kHz will be able to propagate to all the Helmholtz resonators, while f 2 = 2 kHz
can only propagate to resonators with h < 10.69 mm. Similarly, f 3 = 3 kHz and f 4 = 4 kHz can only
propagate to resonators with h < 4.95 mm and h < 2.79 mm respectively (Figure 2e). In other words,
the different frequencies in an acoustic wave will be spatially filtered into 1 of the 40 Helmholtz
resonators, each acting as a spatial–spectral channel.
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2.3. Spatial–Spectral Analysis 

Figure 2. Dispersion curve analysis of graded Helmholtz resonators. Frequency-wavenumber
dispersion curves in the first Brillouin zone for unit cell with cylinder height (a) h = 3 mm, (b) h = 6 mm,
(c) h = 9 mm, (d) h = 12 mm. (e) Variation of bandgap with respect to cylinder height. The blue shaded
area represents the bandgaps.

2.3. Spatial–Spectral Analysis

To ascertain the above expectation that different frequencies propagate to different extents in
the spiral structure, finite element simulations are performed using COMSOL Multiphysics 5.3 [45].
An incident pressure field is applied for excitation starting from n = 1 using four different frequencies
f 1 = 1 kHz, f 2 = 2 kHz, f 3 = 3 kHz and f 4 = 4 kHz.

Results presented in Figure 3a–d indicate that the acoustic wave can propagate through all
the graded Helmholtz resonators at the frequency f 1 = 1 kHz, which is not within the bandgap of
any cylinder. In contrast, the acoustic wave would not propagate beyond the 28-th, 12-th, and 6-th
cylinders for the frequencies f 2 = 2 kHz, f 3 = 3 kHz and f 4 = 4 kHz, respectively. These results are



Sensors 2019, 19, 788 5 of 11

markedly different from those obtained when the graded Helmholtz resonators are conjoined together
graded [46]. In such structures, each resonator can only support a narrow range of frequencies and
the tight mechanical coupling between adjacent resonators prevents complete rainbow trapping from
being achieved i.e. waves of a single frequency will be “trapped” at the target resonator, as well as
its neighbors.Sensors 2018, 18, x FOR PEER REVIEW  6 of 12 
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Figure 3. Normalized acoustic pressure in the spiral structure with Helmholtz resonators for
(a) f 1 = 1 kHz, (b) f 2 = 2 kHz, (c) f 3 = 3 kHz, (d) f 4 = 4 kHz, and (e) normalized pressure amplitude
(brighter spots indicate higher values) for each frequency along the central axis of the spiral tube.

A more comprehensive examination is conducted using a frequency sweep, f = 1 kHz–10 kHz,
of the excitation source, which contains a broadband frequency information. The excitation signal
used in this study is similar to the broadband pulse used in [47]. The frequency-space representation
of normalized pressure amplitude, distributed along the Archimedean spiral shape, was plotted in
Figure 3e. It clearly shows that acoustic waves of different frequencies stopped propagating forward
and concentrated their wave energy at different locations along the spiral tube. The height of the
Helmholtz resonators and the “trapped” wave frequencies at each of these locations correspond to the
lower boundary of the bandgap as shown in Figure 2e. In addition, it is observed that with increasing
excitation frequency, the wave propagation distance along the spiral tube became shorter and the
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location with concentrated energy gradually shifted towards the source. Note that the upper frequency
range (> 8kHz) means that the signals can propagate through the entire structure, that’s why the
pressure are very high over the entire length range. This result is consistent with the bandgap plot in
Figure 2e, because when the frequency over 8 kHz, it is a passband.

These observations are supported by the time dependent pressure wave results obtained from the
37th (Figure 4a), 17th (Figure 4b) and 7th (Figure 4c) cylinders, as well as their Fast Fourier transform
(FFT) (Figure 4d–f). This clearly shows that only acoustic waves with the frequency of f 1 = 1 kHz can
reach the 37th cylinder, while waves with the frequencies f 1 = 1 kHz and f 2 = 2 kHz were present in
the 17th cylinder, and the frequencies f 1 = 1 kHz, f 2 = 2 kHz and f 3 = 3 kHz were found in the 7th
cylinder. These results are consistent with the implications derived from the bandgap plot in Figure 2e
and demonstrate the rainbow trapping potential of the spiral structure.Sensors 2018, 18, x FOR PEER REVIEW  7 of 12 
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used to reflect the sound wave amplitude at different frequency ranges. The vibrometer is connected 
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Figure 4. Pressure level at the (a) 37th (b) 17th and (c) 7th cylinders, and the corresponding Fourier
spectrum of the pressure level at the (d) 37th (e) 17th and (f) 7th cylinders.

3. Experiments

3.1. Experimental Setup

A proof-of-concept experiment is conducted on a sample with the same dimensions as the
numerical model described in Figure 1. The sample is 3D printed with the Grey Resin, which has a
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high stiffness after curing [48], using a commercial stereolithography 3D printer, Form 2 (Formlabs Inc.,
USA) (Figure 5a). A single hole with diameter of 1 mm is drilled in the hollow tube at the location of
the 7th, 17th and 37th cylinders and covered over with reflective tapes for acoustic wave measurements
using a point laser Doppler vibrometer (Polytech GmbH, Germany). The scanning laser vibrometer is
used to measure the particle velocity on the reflective tapes. The measured particle velocity amplitude
on the reflective tapes is proportional to the pressure of sound waves, which is used to reflect the
sound wave amplitude at different frequency ranges. The vibrometer is connected to a decoder box for
acquiring the particle velocity. A small loudspeaker is used to generate the acoustic wave at different
frequencies. In this study, there are four tests for each hole at the frequencies of f 1 = 1 kHz, f 2 = 2 kHz,
f 3 = 3 kHz and f 4 = 4 kHz.
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Figure 5. Experimental verification of artificial cochlea for acoustic wave trapping, (a) 3D printed
spiral structure with Helmholtz resonators, (b) schematic of the experimental setup. A loudspeaker
is connected to the opening of the spiral tube to generate acoustic waves. A point laser Doppler
vibrometer was used to measure the acoustic waves at three different locations.

3.2. Experimental Results

The experimental results are shown in Figure 6. They are very similar to those predicted in Figure 4,
except that shorter peaks are observed for f 2 = 2 kHz (Figure 6e,f) and f 3 = 3 kHz (Figure 6f). This is
likely a combined result of attenuation along the spiral tube and background noise. The background
noise is due to the broadband white noise exists everywhere and this experiment is performed without
echoless chamber. Nevertheless, Figure 6 clearly indicates that the spiral structure with the Helmholtz
resonators does indeed possess rainbow trapping capabilities, in accordance to the results obtained
from numerical simulations. Moreover, this spatial-spectral filtering of acoustic waves is realized
in a structure with a footprint up to 70 times smaller [29], and with the channels as many as 1.3 to
2.5 times [20,49] of that of previous designs operated in similar frequency ranges. Further optimization
of the current design is expected to lead to even higher channel densities for acoustic rainbow trapping.
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Figure 6. Particle velocities, which are proportional to the local pressure, in the temporal domain and
their frequency spectrum, (a)–(c) particle velocities at the hollow tube corresponding to locations of the
37th, 17th and 7th cylinders, and (d)–(f) their Fourier spectrum correspondingly.

4. Conclusions

We have numerically and experimentally demonstrated that broadband acoustic waves can be
filtered spectrally at different spatial locations when propagating along a spiral array of the Helmholtz
resonators, which have subwavelength periods and a graded height. The linear variation in height led
to a systematic modulation of the acoustic bandgap along the spiral, resulting in the rainbow trapping
effect. This was verified through numerical simulations and experiments. The results showed that a
total length of l = 0.3 m of the graded frequency selective structure with 40 spatial-spectral channels
can be fabricated within an area of la × wa = 0.1 m × 0.1 m, which was up to 70 times smaller and had
up to 2.5 times as many channels as that of previous structures operating in similar bandwidths.
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