
sensors

Review

Fluorescent Sensors for the Detection of Heavy Metal
Ions in Aqueous Media

Nerea De Acha 1,*, César Elosúa 1,2 , Jesús M. Corres 1,2 and Francisco J. Arregui 1,2

1 Department of Electric, Electronic and Communications Engineering, Public University of Navarra, E-31006
Pamplona, Spain; cesar.elosua@unavarra.es (C.E.); jmcorres@unavarra.es (J.M.C.);
parregui@unavarra.es (F.J.A.)

2 Institute of Smart Cities (ISC), Public University of Navarra, E-31006 Pamplona, Spain
* Correspondence: nerea.deacha@unavarra.es; Tel.: +34-948-166-044

Received: 21 December 2018; Accepted: 23 January 2019; Published: 31 January 2019
����������
�������

Abstract: Due to the risks that water contamination implies for human health and environmental
protection, monitoring the quality of water is a major concern of the present era. Therefore, in recent
years several efforts have been dedicated to the development of fast, sensitive, and selective sensors
for the detection of heavy metal ions. In particular, fluorescent sensors have gained in popularity due
to their interesting features, such as high specificity, sensitivity, and reversibility. Thus, this review
is devoted to the recent advances in fluorescent sensors for the monitoring of these contaminants,
and special focus is placed on those devices based on fluorescent aptasensors, quantum dots, and
organic dyes.
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1. Introduction

Monitoring the presence of contaminants in water is of general interest in order to ensure the
quality of surface, ground, and drinking water [1,2]. Among the several water pollutants, such as
plastic or waste [3], chemical fertilizers or pesticides [4], and pathogens [5], heavy metal ions are known
for their high toxicity [6]. Although some of them are essential nutrients (for instance, iron, zinc, or
cobalt), they can be toxic at higher concentrations [7]. For their part, cadmium, lead, and mercury are
highly poisonous even at trace levels [8,9], showing a close association to cancer or neurodegenerative
diseases [10,11]. Furthermore, heavy metal ions are non-biodegradable substances [12] and they
have an accumulative effect in human body [13], where they enter, typically, through the air [14],
beverages [15], and the food chain [16], in which water plays a key role. There, metal ions can be found
as a result of vehicle emissions [17], batteries [18], or industrial activities [19]. Thus, their detection
at low concentrations is a matter of priority for environmental protection and disease prevention as
well [20].

This issue requires highly sensitive and selective devices [21,22], which can be based on different
technologies; for instance, electronics [23], electrochemistry [24], or optics [25]. In particular, optical
sensors present numerous attractive features: the ease of integration in microfluidic platforms [26] and
the capability of monitoring hazardous environments [27] are just two of them. Among the optical
sensors, fluorescent ones have gained popularity in recent years since they provide high specificity as
well as low detection limits, fast response time, and technical simplicity [28,29]. Their working principle
consists of the emission of light by a material (fluorophore) after being excited at lower wavelengths [30].
The intensity (or lifetime) of that emission varies with the concentration of the target analyte [31]. So far,
several materials, such as porphyrins [32], metal-organic frameworks [33], DNAzymes [34], fluorescent
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aptamers [35], quantum dots [36], or organic dyes [37] have been developed for the monitoring of
heavy metal ions in water. This review is focused on the recent advances in sensors that employ the
last three kinds of materials: the first section is devoted to the different techniques based on fluorescent
aptamers, the second one is dedicated to the sensors fabricated with quantum dots and, finally, the
third one analyzes the devices developed using organic dyes.

2. Heavy Metal Ion Sensors Based on Fluorescent Aptamers

Aptamers are a type of artificial oligonucleotide (ON) sequences with the ability of specifically
binding to a target molecule [38]. Among their several attractive properties for the design of sensors are
good thermal stability [39], the ease of synthesis and modification [40], or their simple immobilization
procedure [41]. Their high affinity and specificity toward each of their target analytes [42,43] is the
most remarkable property. Consequently, aptamer-based detection techniques have emerged as very
selective recognition tools [44–46].

For instance, thymine (T) exhibits great affinity towards mercury (II) ions, forming T-Hg2+-T
base pairs in DNA duplexes [47], and cytosine (C) forms C-Ag+-C mismatches when it interacts with
Ag+ ions [48]. Thus, since the first ON-based Hg2+ sensor was reported by Ono et al. [49], T-rich ON
sequences have been widely employed for the selective detection of Hg2+ in water samples [50–52].
Furthermore, several selective sensors for Ag+ have also been reported in the literature [53–55].
The basis of Hg2+ sensors based on aptamers is the conformational change of the T-rich ON sequence,
which acquires a hairpin structure due to T-Hg2+-T mismatches, as shown in Figure 1. As Ag+ ions
and cytosine form C-Ag+-C base pairs, Ag+ monitoring is carried out with similar sequences than
Hg2+, but substituting the thymine groups with cytosine ones.
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Another particular case is the formation of guanine (G)-quadruplexes induced by the presence of
Pb2+ [56], as it is depicted in Figure 2. Although other metal ions, such as K+, Na+, or Ca2+ can slightly
influence the conformation of the G-quadruplex structure [57], G-rich aptamers show good selectivity
and specificity towards Pb2+ [58] owing to the high binding ability between Pb2+ and G bases [59].
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Figure 2. Pb2+-induced formation of G-quadruplex structures.

Utilizing these sensing structures, different fluorescent detection strategies have been developed,
all of them determined by the conformational change of the ON sequences in the presence of the target
metal ion.

The main mechanisms for the monitoring of heavy metal ions with aptamers are shown in
Figure 3. For the sake of simplicity, the sensing procedures exposed in this schematic are specific for
the particular case of Hg2+, but they can be implemented for the detection of other metal ions as long
as these compounds induce a conformational change of the aptamer. These detection procedures, as
well as the labelling of the fluorophores (and, if necessary, the quenchers), depend on the utilization of
one or two DNA strands, as explained below.
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Figure 3. Schematic of the different Hg2+ sensing procedures utilizing fluorescent aptasensors: (a) the
fluorophore is labeled to the sensitive aptamer, (b) the fluorophore and the quencher are linked to the
two terminis of the aptamer, and (c) the fluorophore and the quencher are labeled to the aptamer and
the complementary DNA, or vice versa. These sensing procedures can be applied to detect other heavy
metal ions just by substituting the T-rich sequences by the appropriate ON sequence.
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In the case of utilizing a single T-rich ON sequence, the luminophore is usually labeled to one
of its termini (5′ or 3′). Its fluorescent emission can be quenched either by the electron transfer to the
T-Hg2+-T mismatches (Figure 3a) [60] or by a quencher linked to the other termini (3′ or 5′) of the
sensitive strand (Figure 3b) [61]: as the T-Hg2+-T mismatches are formed, the ON sequence acquires a
hairpin structure [62], decreasing the distance between the fluorophore and the quencher. This fact
promotes the energy transfer between the first one (which acts as donor) and the second one (which
acts as acceptor) [63].

The third procedure (Figure 3c) consists of the detection of Hg2+ by competitive binding: a
T-rich aptamer (labeled to the fluorophore or the quencher) is usually linked to its complementary
DNA (labeled to the quencher or the fluorophore). In the presence of Hg2+, the complementary DNA
separates from the aptamer, to which the Hg2+ ions bind, forming the T-Hg2+-T mismatches that give
rise the hairpin structure [64].

Typical fluorophores that are labeled to the sensitive DNA sequences are dyes, such as
6-carboxyfluorescein, (6-FAM), carboxytetramethylrhodamine (TAMRA), or Texas Red, among others,
as well as fluorescent quantum dots and up-conversion nanoparticles. Chen et al. [65] developed a
mercury-mediated aptamer-beacon by labeling a 6-carboxyfluorescein (FAM) to the 5′ termini of a
T-rich oligonucleotide: 5′-FAM-CGC TTG TTT GTT CGC ACC CGT TCT TTC TT-3′. In the presence of
Hg2+, this aptamer acquired a hairpin structure due to the formation of the T-Hg2+-T pairs. This led
to the fluorescence resonance energy transfer (FRET) from the FAM to the T-Hg2+-T base pairs and,
consequently, to the decrease of the fluorescence intensity, as displayed in Figure 4. The sensing system
exhibited a limit of detection (LOD) of 4.28 nM Hg2+ and a linear detection range from 14.2 nM to
300 nM Hg2+. Furthermore, the selectivity of the sensor for Hg2+ over a series of metal ions (Pb2+,
Ag+, Cu2+, Ca2+, Ba2+, Ni2+, K+, Cd2+, Co2+, Cr3+, Fe3+, Al3+, Mn2+, and Zn2+) was also analyzed:
it was found that not one of them presented any kind of interference, even at 16–67 times higher
concentrations than that of Hg2+.
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different Hg2+ concentrations. Reprinted with permission from [65].

As explained previously, the fluorescent emission of the dyes can also be attenuated by a quencher
linked to the opposite termini of the sensitive aptamer. One which has been widely employed
with this aim is 4-([4-(dimethylamino)phenyl]azo)benzoic acid (DABCYL) [66], owing to its broad
absorption spectrum [67]: the sensor reported by Li and co-authors [68] presented a linear calibration
curve between 10 nM and 200 nM, with a LOD of 10 nM Hg2+. Furthermore, in order to avoid
the biodegradation of the aptamer, it was encapsulated in a porous phospholipid nanoshell (PPN),
allowing its utilization in human urine samples.
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Additionally, by labeling FAM and DABCYL to the 5′ and 3′ terminus of a thrombin-binding
aptamer (TBA), which is also a T-rich sequence, a Pb2+ and Hg2+ sensor was developed: it presented a
LOD of 300 pM and 5 nM for Pb2+ and Hg2+, respectively, and linear detection ranges from 0.5 nM and
30 nM for Pb2+ and from 10 nM to 200 nM for Hg2+ [61]. As the TBA is a T- and G-rich aptamer [69], in
order to develop a sensor for a specific metal ion, masking agents were used: the presence of Pb2+, and
that of Cu2+, Co2+, Ni2+, Cd2+, Cr3+, Al3+, and Fe3+ ions as well, was masked by adding phytic acid to
the samples. The interference of Hg2+ was avoided by utilizing CN− and a random DNA, as can be
seen in Figure 5. Regarding to the reutilization of the sensor, it provided recoveries between the 95%
and the 104%.
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Reprinted with permission from [61]. Copyright 2009 American Chemical Society.

As gold nanoparticles (Au NPs) are good energy acceptors [70], they are another kind of
fluorescence quenchers [71]: by covalently linking a Hg2+-sensitive aptamer labeled with FAM to an
Au NP, it was possible to linearly monitor the Hg2+ concentration from 20 nM to 1000 nM [29], with a
LOD of 16 nM. Furthermore, the utilization of Au NPs helped to stabilize the aptamer and decrease
the LOD [72]. The quenching effect of Au NPs has also been utilized to fabricate “turn-on” fluorescent
sensors: while the sensitive aptamer is linked to an Au NP (quencher), the complementary DNA
sequence is labeled with a fluorophore [73], or vice versa [74]. In the absence of mercury (II) ions, the
aptamer and the complementary strand are linked, so the fluorophore and the Au NP are in proximity
and fluorescence transfer occurs, resulting in a negligible fluorescent emission. In the presence of Hg2+,
due to the high specificity of the thymine groups to this metal ion, the sensitive aptamer acquires
a hairpin structure, displacing the complementary strand away from the Au NP, which leads to an
increase of the fluorescence [64].

Based on the competitive binding mechanism, an optical fiber sensor for monitoring Pb2+ was
fabricated [75]. The complementary strand was deposited onto the optical fiber: in the absence of
Pb2+, when the Cy5.5-labeled aptamer bound to the complementary DNA, its fluorescent emission
was coupled to the optical fiber. Oppositely, when Pb2+ was present, it induced the aptamer to form
G-quadruplex structures, being detached from the complementary strand, which resulted in a decrease
of the coupled fluorescent intensity, as can be observed in Figure 6.
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There also exist different dyes that are sensitive to the formation of double-stranded DNA
(dsDNA), such as PicoGreen [76] and SYBR Green 1 [77]. Utilizing this feature, a fluorescent
assay was developed for the detection of Hg2+ and Ag+ ions utilizing two complementary strands:
5′-TTCTTTCTTCCCCTTGTTTGTT-3′ and 5′-AACAAACAAGGGGAAGAAAGAA-3′ [78]. In the
absence of both of these metal ions, the two strands formed a dsDNA, which led to the fluorescence
emission by PicoGreen. As the Hg2+ or Ag+ concentration increased, the number of aptamer/cDNA
sequences decreased, resulting in a diminution of the PicoGreen emission. The LOD was 50 nM for
Hg2+ and 930 pM for Ag+, while the linear detection ranges were 50 nM to 4 µM and 930 pM to 930 nM
for Hg2+ and Ag+, respectively. Furthermore, not one of the other analyzed metal ions, including
Cu2+, Li+, Zn2+, Na+, Ca2+, Mg2+, K+, and Pb2+, interfered in the measurements and, finally, the sensor
presented recoveries of the 80–105% for Ag+ and 104–114% for Hg2+.

As most of the aptamer-based fluorescent sensors for heavy metal ions are focused on Hg2+ and
Pb2+ ions detection, the main ones are summarized in Table 1 (Hg2+) and Table 2 (Pb2+). Due to the
high affinity of T-rich and G-rich ON sequences to these ions, and their high toxicity even at trace
levels, less attention has been paid to other heavy metal ions. Thus, the development of sensitive and
specific ON sequences for those ions is one of the main challenges for scientists.



Sensors 2019, 19, 599 7 of 34

Table 1. Hg2+ fluorescent sensors based on aptamer detection.

Analyte ON Sequence Fluorophore Quencher Detection
Range LOD Reversibility Interferent

Analytes Aqueous Media Observations Ref.

Hg2+ 5-′FAM-CGC TTG TTT GTT
CGC ACC CGT TCT TTC TT-3′ FAM 14.2 × 10−9 to

3 × 10−7 M 4.28 × 10−9 M Not studied Negligible
influence

Tris–HCl buffer (10 mM, pH
8.5) [65]

Hg2+ 5′-NH2-(CH2)6-
TTCTTTCTTCCCTTGTTTGTT SYBR Green I 1 × 10−9 to

1 × 10−2 M
Not studied 93–110% Not studied Tris nitrate buffer (pH 8.0, 20

mM) [79]

Hg2+ 5′-NH2-(CH2)6-TTCTTTC
TTCGCGTTGTTTGTT-3′

Graphene oxide
(GO) sheets

1 × 10−9 to
50 × 10−9 M 9.2 × 10−10 M Not studied Negligible

influence
phosphate-buffered (PBS)
saline (10 mM, pH = 7.0) [80]

Hg2+ 5′-NH2-TTCTTCCCCTTGTT-3′
graphite carbon
nitride (g-C3N4)

sheets

5 × 10−10 to
1 × 10−6 M 1.7 × 10−8 M 98.3–110.8% Cu2+, Fe3+.

Ag+

Detection range, LOD and
interferent analytes calculated

in Tris-HCl (pH 7.6, 25 mM)
buffer containing 150 mM

NaClReversibi-lity studied in
tap water

[81]

Hg2+ Fam-5′-GGTTGGTGTG
GTTGG-3′-DABCYL) FAM DABCYL 1 × 10−8 to

2 × 10−7 M 5 × 10−9 M 95–104% Pb2+ Tris–aceta-te (pH 7.4, 10 mM) [61]

Hg2+ 5′-FAM-GGT-TGG-TGT-GGT-
TGG-DABCYL-3′ FAM DABCYL 1 × 10−8 to

2 × 10−7 M 1 × 10−8 M Not studied Not studied Tris-acetate buffer (pH 7.4, 10
mM) [68]

Hg2+
5′-SH-3(CH2CH2O)6- TCATGT
TTGTTTGTTGGCCCCCCTTCT
TTCTTA-3′ linked to the AuNPs

Texas Red Au NPs 1 × 10−11 to
1 × 10−6 M 5.1 × 10−11 M Not studied Negligible

influence
phosphate-buffered saline (10
mM, pH 7.0) with 0.3 M NaCl

cDNA linked to the
Texas Red [64]

Hg2+ 5′-SH (CH2)6A10TTCTTTCTT
CCCCTTGTTTGTT-FAM-3′ FAM Au NPs 2 × 10−8 to

1 × 10−6 M 1.6 × 10−10 M Not studied Negligible
influence

Tris–HCl buffer (25 mM, pH
8.2) containing 0.3 M NaCl

Aptamer linked to the
Au NPs at the 5′

termini
[29]

Hg2+

5′ NH2- C6-CTA CAG TTT CAC
CTT TTC CCC CGT TTT GGT

GTT T-3′ linked to the
NaYF4:Tm3+, Yb3+ UCNPs

NaYF4:Tm3+, Yb3+

UCNPs
Au NPs 2 × 10−7 to

2 × 10−5 M 6 × 10−8 M 95.2–108.2% Negligible
influence

Detection range and LOD
studied in phosphate-buffered

saline (10 mM, pH 7.4) and
reversibility analyzed in milk

and tap water

cDNA linked to the
Au NPs [74]

Hg2+
5′-NH2-TCATCGTTCTTTCTTC
CCCTTGTTTGTT-3′ linked to

the UCNPs

Mn2+-doped
NaYF4: Yb, Er

UCNPs

Au
nanoballs

5 × 10−8 to
5 × 10−7 M 1.5 × 10−10 M 91.4–102.3% Negligible

influence

25 g of real samples of shrimps
or fish dipped in 225 mL of PBS

(pH 7.4)

cDNA-functionalized
Au nanoballs [82]

Hg2+
5′-SH-C6-TACAG TTTCA

CCTTT TCCCC CGTTT TGGTG
TTT-3′ linked to Au NPs

Mn:CdS/ZnS QDs Au NPs 1 × 10−9 to
1 × 10−6 M 1.8 × 10−10 M Not studied Negligible

influence

Tris–HCl (pH 7.4, 10 mM)
buffer with 100 mM KCl and 1

mM MgCl2

cDNA:5′SH-C6-TGAAA
CTGTA-3′ linked to

Mn:CdS/ZnS
[73]

Hg2+ 5′-SH-CGTCTTGTCGA-3′ linked
to QDs

Mn-doped
CdS/ZnS

core/shell QDs
Au NPs 1 × 10−9 to

1 × 10−8 M 4.9 × 10−10 M Not studied Negligible
influence PBS buffer (10 mM, pH 7.4)

cDNA:5′-SH-TCGTCTT
GTCG-3′ linked to the

Au NPs
[83]

Hg2+
5′-NH2-(CH2)6-TTCTTTCTTC
GCGTTGTTTGTT-3′ labeled to

the CDs
CQDs GO 5 × 10−9 to

2 × 10−7 M 2.6 × 10−9 M 94.7–109.8%
Equal

amount of
Fe2+

PBS (10 mM, pH 8.0) [84]
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Table 2. Pb2+ fluorescent sensors based on aptamer detection.

Analyte ON Sequence Fluorophore Quencher Detection
Range LOD Reversibility Interferent

Analytes Aqueous Media Observations Ref.

Pb2+ 5′-Cy5.5-(CH2)6-GGGTGGGTG
GGTGGGT-3′ Cy5.5 1 × 10−9 to

3 × 10−7 M 2.2 × 10−10 M 80–105% Negligible
influence PBS (10 mM, pH 7.4)

cDNA: 5′-NH2-
(CH2)6-TTTTTTAC
CCACCCACCC-3′

[75]

Pb2+ 5′-GTGGGTAGGGCGGGTTGG-3′ SYBR Green 1 1 × 10−8 to
1 × 10−6 M

Not studied 98–102.3% Not studied Tris–HAc buffer (10 mM,
pH 7.4) [85]

Pb2+ 5′-GGT TGG TGT GGT TGG-3′ PicoGreen (PG) 5 × 10−8 to
5 × 10−6 M 4.8 × 10−9 M Not studied Negligible

influence Water cDNA: 5′-CCA ACC
ACA CCA ACC-3′ [86]

Pb2+ FAM-5′-GGTTGGTGTGGTTGG-
3′-DABCYL) FAM DABCYL 5 × 10−10 to

3 × 10−8 M 3 × 10−10 M 95–104% Hg2+ Tris–aceta-te (pH 7.4,
10 mM) [61]

Pb2+ 5′-FAM-GGTTGGTGTGGTTGG-3′ FAM Au NPs 1.25 × 10−8 to
1 × 10−7 M 1 × 10−8 M 92–112%

Slightly affected
by Cu2+, Al2+

and Hg2+

Tris–HAc buffer (5 mM, pH
7.4) [87]

Pb2+
5′-SH-3(CH2CH2O)6-GGAAGG
TGTGGAAGG-3′ linked to the

Au NPs
Cy5.5 Au NPs 1 × 10−11 to

1 × 10−6 M 2.7 × 10−13 M Not studied Negligible
influence

phosphate-buffered saline
(10 mM, pH 7) with 0.3 M

NaCl
cDNA linked to Cy5.5 [64]

Pb2+ 5′-ATTO647N-GGGTGGG
TGGGTGGGT-3′ ATTO647N SWNTs 0 to

1 × 10−6 M 4.2 × 10−10 M Not studied Negligible
influence

PBS buffer (10 mM, pH 7)
with 0.25 M NaCl [88]

Pb2+
5′-NH2-GGGTGGGTGGGTGGG

T-3′ linked to NaYF4: Yb, Ho
UCNPs

NaYF4: Yb, Ho
UCNPs Au NRs 1 × 10−10 to

1 × 10−7 M 5 × 10−11 M 96.3–110.6% Negligible
influence

25 g of real samples of
shrimps or fish dipped in

225 mL of PBS (pH 7.4)

cDNA-functionalized
Au NRs [82]

Pb2+ 5′-NH2-(CH2)6-GGGTGGG
TGGGTGGGT-3′ Graphene QDs GOx 6 × 10−10 to

4 × 10−7 M 6 × 10−10 M Not studied Negligible
influence

PBS buffer (10.0 mM, pH
7.4) [89]

Pb2+ 5′-NH2-(CH2)6-GGGTGGGT
GGGTGGGT-3′ CdSe/ZnS QDs GO sheets 1 × 10−10 to

1 × 10−8 M 9 × 10−11 M Not studied Negligible
influence PBS buffer (10 mM, pH 7.4) [90]

Pb2+ 5′-GGTTGGTGTGGTTGG-3′
perylenetetracar

boxylic acid
diimide (PTCDI)

4.8 × 10−10 to
4.8 × 10−5 M 4.8 × 10−10 M 77.2–93.4% Negligible

influence MOPS buffer (5 mM, pH 7) [91]

Pb2+
5′-/3ThioMC3-D/CGATAAC

TCACTATrAGGAAGAGATG-3′

linked to the GQDs
Graphene QDs Au NPs 5 × 10−8 to

4 × 10−6 M 1.67 × 10−8 M Not studied Negligible
influence

PBS buffer (5 mM, pH 7.4)
with 0.1 M NaCl

5′-/5AmMC6/CATC
TCTTCTCCGAGCC
GGTCGA-AATAG

TGAGT-3′ linked to
the Au NPs

[92]
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3. Heavy Metal Ion Sensors Based on Fluorescent Quantum Dots

Quantum dots (QDs) are nanocrystals [93] that exhibit interesting optical properties, such as
narrow and symmetric emission spectra and broad absorption band [94]: both parameters are tunable
by modifying their material, shape, and size [95]. Thus, they can be used in a wide range of applications,
for instance, photovoltaic devices [96], light-emitting diodes [97], or bioimaging [98].

Fluorescent QDs can be fabricated utilizing semiconductor materials [99,100], carbon [101] or
carbon derivatives [102]. Sensing devices can be developed following three main strategies, which are
shown in Figure 7: direct interaction between the analyte and the QDs [103], functionalization of the
QDs [104,105], and integration of the QDs with other sensory materials [106].
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Among the semiconductor QDs, CdTe QDs have been widely employed for the monitoring of
heavy metal ions [107,108]. Furthermore, their selectivity and sensitivity can be tuned by utilizing
different capping agents [109], such as thioglycolic acid (TGA) or L-cysteine: in the first case, an
electron transfer process occurs between the functional groups of TGA and Hg2+ ions, which quenches
the luminescent intensity of the CdTe QDs. Thus, employing TGA capped CdTe QDs, it was possible
to detect Hg2+ in the nanomolar range, from 1.25 × 10−9 M to 1 × 10−8 M, with a LOD of 3.5 ×
10−10 M Hg2+, as it can be observed in Figure 8a. In the case of L-cysteine capped CdTe QDs, their
interaction with Hg2+ ions depends on the concentration of the metal ion: for concentrations of
Hg2+ in the picomolar range, these ions interact with the carboxylate moiety of the L-cysteine on
the surface of CdTe QDs by electrostatic forces [110]. As a consequence, their luminescent intensity
was linearly quenched by the Hg2+ ions from 5 × 10−12 M to 2.5 × 10−11 M, as it is displayed in
Figure 8b. Furthermore, the LOD of this sensor was 2.7 × 10−12 M Hg2+

. At higher concentrations of
Hg2+, there is an electron transfer between the Hg2+ ions and the L-cysteine capped CdTe QDs [111]
which induces not only a quenching of the luminescence, but also a red shift in the luminescence peak.
Other QDs that show sensitivity to Hg2+ are hyperbranched-graft-copolymers-capped CdS QDs [112],
L-cysteine-capped ZnS QDs [113] or polyethylene glycol-capped ZnO QDs [114].
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Sometimes, these QDs are functionalized with a sensitive element. That is the case of
cysteamine-capped CdTe/ZnS core-shell QDs functionalized with T-rich aptamers [115] which,
as explained previously, exhibit high affinity for Hg2+ ions. In the absence of Hg2+ ions, these
aptamers act as an aggregator agent, resulting in a quenching of the fluorescence. As the Hg2+

concentration increases, T-rich aptamers acquire a hairpin structure and are detached from the QDs,
which de-aggregate, giving rise to an increase of the fluorescent intensity. The LOD of this sensor was 8
× 10−11 M Hg2+, and it was capable of detecting Hg2+ linearly from 5 × 10−10 M to 1 × 10−6 M Hg2+.
Taking advantage of the high affinity of thiourea for Hg2+, this compound was used to modify CdSe/
CdS core-shell QDs for the development of a Hg2+ sensor [116] with a LOD of 2.79 × 10−9 M and a
linear detection range from 5 × 10−9 M to 1.5 × 10−6 M. Although Cu2+ was found as an interferent
ion, its presence could be masked with potassium cyanide. Apart from that, the recoveries of the
fluorescent emission after removal of Hg2+ were between 83.8% and 95.4%.

Carbon QDs (CQDs) are a new kind of fluorescent nanomaterials [117] that exhibit several
advantages over semiconductor QDs, such as good biocompatibility [118], low toxicity [119], good
aqueous solubility [120], or facile synthesis [121].

A common approach to tune their fluorescent properties is by doping them of other elements [122]:
nitrogen (N) is the most commonly employed one [123–125], but boron (B), sulfur (S), and phosphorous
(P) are also utilized [126–128]. Liu et al. [129] improved the performance of carbon dots by N-doping:
although the first ones exhibited a larger linear detection range (from 6 × 10−7 to 1.4 × 10−5 M, while
that of N-doped CQDs was from 0.2−8 µM), their LOD was much lower, 8.7 × 10−8 M, opposite to
that of 2.5 × 10−7 M of the CQDs, as shown in Figure 9. Furthermore, the N-doping also enhanced the
selectivity of the CQDs, avoiding the interference of Ag+, Fe3+, Cu2+ and Cd2+ cations. The potential
use of N-CQDs in real applications was tested by determining Hg2+ concentrations in real water
samples: in the case of mineral water, the recoveries of the N-CQDs were between 96.6% and 105.5%,
while in tap water they ranged from 98.5% to 105%.
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While N-dopants improve the quantum yield on CQDs [130], S-dopants are good ligands for
metal ions [131]. Thus, S-doped carbon dots have been widely employed for the detection of Fe3+

ions [132–134]. One example is the sensor reported in [135], which exhibited high selectivity for Fe3+

at pH 0. In this acid media, the LOD of the sensor was 9.6 × 10−7 M, while the linear detection range
was from 2.5 × 10−5 to 5 × 10−3 M.

In order to enhance the properties of CQDs, they can be doped of several compounds. N-,
S-, co-doped carbon dots without any functionalization were fabricated for the linear detection of
Hg2+ [136] between 0 and 20 µM, with a LOD of 1.7 × 10−7 M. Additionally, the fluorescent intensity
can be linearly recovered by using cyanide anions.

A particular kind of carbon QDs are based on graphene: their features are derived from graphene
and carbon nanodots [137]. Hence, their sensing properties can also be modified with dopants such as
nitrogen or sulfur [138,139]. In particular, N-, S-codoped graphene QDs-based paper strips have been
used in real waste water for the detection of Hg2+ ions [140]: as it can be observed in Figure 10a, the
luminescence intensity of the QDs-coated paper strips decreased as the Hg2+ concentration increased
from 10 to 200 µM. Furthermore, concentrations of 100 µM of other metal ions (Fe2+, Mn2+, Cr3+, Cd2+,
Co2+, and Zn2+) did not present any interference, as it is displayed in Figure 10b.
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Most of the sensors based on fluorescent QDs have been developed with the purpose of monitoring
Hg2+ ions. Thus, Table 3 is focused on this kind of sensors, while devices for other metal ions, are
summarized in Table 4.
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Table 3. Hg2+ fluorescent sensors based on QDs.

Analyte QDs Detection Range LOD Reversibility Interferent Analytes Aqueous Media Observations Ref.

Hg2+ CdTe QDs 0 to 2 × 10−6 M 6.23 × 10−9 M 96.9–99.4% Negligible influence Ultrapure water [141]

Hg2+ capped CdTe QDs

(TGA) 1.25 × 10−9 to
1 × 10−8 M

(l-cysteine) 5 × 10−12 to
2.5 × 10−11 M

(TGA) 3.5 × 10−10 M
(l-cysteine)

2.7 × 10−12 M
Not studied (TGA) not evaluated

(l-cysteine) Zn2+, Cu2+ Ultrapure water
QDs capped with
thioglycolic acid

(TGA) or l-cysteine
[109]

Hg2+ Cysteamine (CA)-capped CdTe
QDs 6 × 10−9 to 4.5 × 10−7 M 4 × 10−9 M 97–106.4% 10-fold Pb2+, Cu2+ and Ag+

< 7%
acetic-acetate buffer

(pH 5.0) [107]

Hg2+ l-Tryptophan-capped carbon
quantum dots 1.1 × 10−8 to 4 × 10−6 M 1.1 × 10−8 M Not studied Negligible influence sodium phosphate buffer

(10 mM, pH 6.0) [142]

Hg2+ HPEI-g-HPGs-capped CdS QDs 1 × 10−8 to 1 × 10−4 M 1.5 × 10−8 M Not studied Cu2+ Tris–HCl buffer (pH 7.4, 10
mM) [112]

Hg2+ MPA coated Mn doped ZnSe/ZnS
colloidal NPs 0 to 2 × 10−8 M 1 × 10−10 M Not studied Negligible influence PBS (10 mM, pH 7.4) [143]

Hg2+ PDDA-functionalized CdTe QDs 6 × 10−9 to 1 × 10−6 M 5 × 10−9 M 97.5–103% Negligible influence Double distilled water
PDDA eliminates the

interference from
Cu2+ and Ag+

[144]

Hg2+ TU-functionalized TGA-capped
CdSe/CdS QDs 5 × 10−9 to 1.5 × 10−6 M 2.79 × 10−9 M 83.8–95.4% Not studied PBS (pH 7.73) [116]

Hg2+ CdTe@SiO2@GQDs 1 × 10−8 to 2.2 × 10−5 M 3.3 × 10−9 M 107.3–108.7% Fe2+, Fe3+ PBS (10 mM, pH 7.73) [145]

Hg2+ Carbon QDs blended with
Rhodamine B 1 × 10−7 to 4 × 10−5 M 3 × 10−8 M 94.5–957% glutathione (GSH) High purity water [146]

Hg2+ N-doped carbon QDs 1 × 10−7 to 1 × 10−4 M 2.3 × 10−8 M 97.2–103.8% GSH Ultrapure water [147]

Hg2+ N-doped carbon QDs 0.2 × 10−6 to 8 × 10−6 M 8.7 × 10−8 M 96.6–105.5% Negligible influence PBS (50 mM, pH 7)
Doping with N
improves the

selectivity
[129]

Hg2+ N-doped carbon QDs 0 to 2.5 × 10−5 M 2.3 × 10−7 M No Negligible influence Ultra-pure water [148]
Hg2+ N-dopped carbon QDs 1 × 10−8 to 1 × 10−7 M 2.1 × 10−9 M No Not studied PBS (10 mM, pH 7) [149]

Hg2+ N-, S-, Co- doped carbon QDs 0 to 2 × 10−5 M 1.8 × 10−7 M No Cu2+, Ni2+ Deionized water and
filtered river water [136]

Hg2+ S- and O- doped carbon nitride
QDs 1 × 10−8 to 1 × 10−6 M 1 × 10−11 M Not studied Negligible influence Double distilled water and

tap water [150]

Hg2+ Graphene QDs 8 × 10−7 to 9 × 10−6 M 1 × 10−7 M Not studied Ca2+, Zn2+, Fe2+, and Co2+

< 10%
Tris–HCl buffer (pH 8, 50

mM) [151]

Hg2+ O-rich N-doped graphene QDs 4 × 10−8 to 6 × 10−6 M 8.6 × 10−9 M 86.7–103.5% Pb2+, Cd2+, Cu2+, and Ni2+ Tris–HCl buffer (pH 8, 10
mM) [138]

Hg2+ N-, S-doped graphene QDs 5 × 10−8 to 1.5 × 10−5 M 1.4 × 10−8 M
(96 ± 4.7)–

(116 ± 3.8)% Negligible influence PBS buffer (100 mM, pH 7) [140]
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Table 4. Fluorescent sensors for different metal ions based on QDs.

Analyte QDs Detection Range LOD Reversibility Interferent Analytes Aqueous Media Observations Ref.

Pb2+ xylenol orange functionalized
CdSe/CdS QDs 5 × 10−8 to 6 × 10−6 M 2 × 10−8 M 94.8–103.7% Negligible influence PBS (pH 6.47) [152]

Pb2+
green Au NCs covalently linked to
the surface of silica NPs embedded

with red QDs
2.5 × 10−8 to 2.5 × 10−7 M 3.5 × 10−9 M 95.2–112.4% Negligible influence PBS (50 mM, pH 6) [153]

Pb2+ S-doped graphene QDs 1 × 10−7 to 1.4 × 10−4 M 3 × 10−8 M Not studied Negligible influence PBS (3 mM, pH 7) [139]

Pb2+ Silica-coated ZnS QDs (ZnS@SiO2
QDs) 1 × 10−9 to 2.6 × 10−4 M - No Cd2+ Deionized water [154]

Pb2+ Flavonoid moiety-incorporated
carbon QDs 1 × 10−10 to 2 × 10−8 M 5.5 × 10−11 M Not studied Negligible influence Deionized water [155]

Pb2+ CdTe QDs 2 × 10−8 to 3.6 × 10−6 M 8 × 10−8 M Not studied Negligible influence Human serum [156]

Cu2+ N-acetyl-l-cysteine capped
CdHgSe QDs 1 × 10−9 to 4 × 10−7 M 2 × 10−10 M 98.3–101.6% Ag+, Co2+, Hg2+ PBS (pH 9) [157]

Cu2+ L-cysteine capped Mn2+-doped
ZnS QDs 7.87 × 10−6 to 3.15 × 10−4 M 3.15 × 10−6 M Not studied Hg2+ Phosphate buffer (pH 7) [113]

Cu2+ ligand-capped CdTe QDs (CdTe-L
QDs)

(5.16 ± 0.07) × 10−8 to (1.50 ±
0.03) × 10−5 M

(1.55 ± 0.05) ×
10−8 M Not studied Negligible influence Tris–HCl buffer (pH 6.5, 10

mM) [158]

Cu2+ inorganic CsPbBr3 perovskite QDs 0 to 1 × 10−7 M 1 × 10−10 M Not studied Negligible influence Hexane [159]

Cu2+ Polyethylene glycol capped ZnO
QDs (PEG@ZnO QDs) 4 × 10−9 to 1 × 10−5 M 3.33 × 10−9 M 99.6–104.0% Negligible influence

Detection range, LOD and
interferent analytes in

Ultra-pure studied water,
reversibi-lity in tap water

[114]

Cu2+ Water-soluble silica-coated
ZnS:Mn NPs (ZnS:Mn/SiO2) 8.16 × 10−8 to 4.16 × 10−4 M - 94.76–105.82% Negligible influence Seawater [160]

Fe3+ Carbon QDs 0 to 3 × 10−4 M 13.68 × 10−6 M
With ascorbic

acid Negligible influence Ultra-pure water [161]

Fe3+

CdTe QDs:
(1) thioglyco-lic acid capped

quantum dots (Green)
(2) N-Acetyl-l-cysteine capped

QDs (red)

0 to 3.5 × 10−6 M 1.4 × 10−8 M Not studied Negligible influence Deioni-zed water [108]

Fe3+ S-doped carbon QDs 2.5 × 10−5 to 5 × 10−3 M 9.6 × 10−7 M Not studied Negligible influence Ultra-pure water
It works in strongly

acid (pH < 2)
solutions

[135]

Fe3+ N-, B-, S- doped carbon dots 3 × 10−7 to 5.46 × 10−4 M 9 × 10−8 M 97.98–108.55% Negligible influence Tris–HCl buffer (pH 7) [162]

Hg2+, Pb2+ L-cysteine-capped CdS QDs
1 × 10−9 to 4 × 10−9 M (Hg2+)

3 × 10−9 to 1.5 × 10−8 M
(Pb2+)

1 × 10−9 M (Hg2+)
1 × 10−7 M (Pb2+)

Not studied Negligible influence phosphate buffer (pH 7.4) [163]

Cr(III) ligand-coated CdTe QDs (CdTe-L
QDs)

(6.78 ± 0.05) × 10−9 to (3.70 ±
0.02) × 10−6 M

(20.30 ± 0.03) ×
10−9 M 98.32–100.50% Negligible influence PBS (10 mM, pH 7) [164]

Cd2+
Green emitting CdSe QDs
covalently linked onto red

emitting CdTe QDs
1 × 10−7 to 9 × 10−6 M 2.5 × 10−9 M 86.5–102.6% Negligible influence

Detection range, LOD and
interferent analytes studied
in Tris-EDTA. Reversibility
studied in lake water and

tap water

[165]
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4. Heavy Metal Ion Sensors Based on Organic Dyes

Organic dyes have been widely employed for the development of fluorescence-based
sensors [166–168] because of their attractive features: high molar extinction coefficient [169], bright
signal [170], ease of modification [171], and presence of many possible reactive sites in their
skeletons [172]. For the detection of heavy metal ions, these fluorophores are modified with an ion
recognition unit (ionophore), which serves as host for the target metal ion (guest) [173]. The interaction
between the ionophore and the target analyte induces a modification of the photophysical features of
the fluorophore that is translated into a change of its fluorescent emission [174], usually from “off” to
“on”. Typically employed ionophores are crown ethers [175] and aliphatic or aromatic amines [176],
which act as electron donors, that is, they quench the fluorescent emission through a photo-induced
electron transfer (PET) mechanism with the fluorophore [177] in the absence of the target metal ion.
However, in its presence, PET does not occur, giving rise to an enhancement of the fluorescence
intensity, as shown in Figure 11.
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Among all of the organic dyes, rhodamine derivatives are the most utilized ones due to their
structure-dependent properties [178–180]. Other dyes that are also widely employed for the fabrication
of fluorescent sensors are fluorescein [181,182] and coumarin derivatives [183,184].

Li and co-workers [185] developed a turn-on fluorescent probe for Hg2+ based on a rhodamine B
derivative (rhodamine B hydroxamate spirolactam) linked to a NS2 unit as a receptor that detected
Hg2+ linearly from 0 to 1.6 × 10−5 M with a LOD of 2.36 × 10−6 M. The fluorescent response of the
sensor towards Hg2+ was not interfered by any other metal ion and the probe was regenerated by
using Na2S. Furthermore, the potential utilization of this sensor in real applications was tested by
exposing the sensor to three natural water samples to which different Hg2+ concentrations were added,
as shown in Figure 12.
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samples. Reprinted with permission from [185].

Rhod-5N is another rhodamine derivative that consists of a 5N-BAPTA ionophore linked to a
rhodamine fluorophore: it exhibits a fluorescence enhancement in the presence of Hg2+ and Cd2+ [186].
Ruan et al. [187] fabricated a Hg2+ sensor by immobilizing it in a silica sol-gel matrix onto the end of
an optical fiber: its LOD was 1.25 × 10−7 M Hg2+, and it also presented a linear detection range up to
5 × 10−7 M Hg2+.

Apart from for the detection of Hg2+, rhodamine derivatives have been utilized for monitoring
Cu2+, Cd2+, or Pb2+ ions [188,189]. For instance, a probe based on rhodamine 6G and p-Cresol
derivatives [190] exhibited a fluorescence enhancement under the addition of Pb2+ ions when it was
illuminated with UV light. Furthermore, the color change promoted by Pb2+ allowed the naked-eye
detection of that ion, as shown in Figure 13.

Regarding to fluorescein, it has been shown that the modification of its sites with different
functional groups gives rise to sensors of different sensitivities to Ag+ ions [191]: when the 4,5-positions
of fluorescein were modified with N,Se-containing receptors, the LOD of the sensor was 3 × 10−8 M
Ag+, whereas the introduction of a N,S-receptor decreased it up to 4 × 10−9 M. In both cases, the
presence of Ag+ ions induced the opening of the spironolactone ring, which led to the increase of the
fluorescence intensity, as shown in Figure 14.
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ions. Reprinted with permission from [190].
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Another commonly used dye is coumarin, which has been functionalized with receptors that are
sensitive to different heavy metal ions: in the case of utilizing a triazole substituted 8-hydroxyquinoline
(8-HQ) receptor [192], which exhibits a high affinity towards Pb2+, a highly sensitive (LOD = 3.36 ×
10−11 M) and selective sensor was developed. In the absence of Pb2+, due the PET mechanism from
the receptor to coumarin, the fluorescent emission was weak. In the presence of that metal ion, the
PET process did not occur, so the blue emission of coumarin was recovered and visually detectable.

As well as in the case of aptamer- or QDs-based heavy metal ions sensors, most of the devices
based on organic dyes are devoted to the detection of Hg2+ ions, whereas those dedicated to the
monitoring of other heavy metal ions are not so numerous.

Table 5 summarizes the sensors for Hg2+ detection based on organic dyes, whereas those
developed for the detection of other metal ions are outlined in Table 6.
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Table 5. Hg2+ sensors for different metal ions based on organic dyes.

Analyte Organic Dye Detection Range LOD Reversibility Interferent
Analytes Aqueous Media Observations Ref.

Hg2+ Rhodamine B 1 to 5 × 10−8 M - Not studied Negligible influence Acetonitrile
Functionalized with

5-aminoisophthalic acid diethyl
ester

[193]

Hg2+ Rhodamine B 0 to 7 × 10−5 M - Not studied Zn2+, Fe2+,and
Cu2+ Water Functionalized with glucose [194]

Hg2+ non-sulfur rhodamine
derivative 0 to 5 × 10−6 M 2 × 10−7 M Yes Negligible influence Acetonitrile Functionalized with ethylene

moiety [195]

Hg2+ Rhodamine B (RBAI)
Rhodamine 6G (RGAI)

RBAI—5 × 10−6 to
2.2 × 10−5 M

RGAI—7.94 × 10−6

to 2.5 × 10−5 M

RBAI—4.23 × 10−6 M
RGAI—6.34 × 10−6 M

> 90% Negligible influence

Detection range, LOD, reversibility
and interferent analytes studied in

ethanol-water (4/6 v/v, 20 mM,
HEPES pH 7.4). Detection also
tested in living cells and mice

Functionalized with
di-Aminobenzene-phenyl

Isothiocyanate
[196]

Hg2+ Rhodamine B derivative 0 to 1.6 × 10−5 M 2.36 × 10−6 M Yes Negligible influence

Detection range, LOD, reversibility
and interferent analytes studied in

deionized water. Potential
application analyzed in three

natural water samples.

Functionalized with
NS2-containing receptor [185]

Hg2+ Rhodamine derivative 0 to 6 × 10−4 M 6.79 × 10−6 M Not studied Negligible influence DMSO–HEPES buffer (0.02 mol/L,
pH 7.4; v/v = 6:4)

Functionalized with
hydroxyquinoline group [197]

Hg2+ Rhod-5N 0 to 3 × 10−7 M 1.5 × 10−9 M Not studied Not studied Milli-Q water Functionalized with BAPTA [187]

Hg2+ Rhodamine C 4 × 10−7 to 5 × 10−6

M 7.4 × 10−8 M Yes (Na2S addition) Negligible influence buffered HEPES (20 mM, pH 7.0)
water-ethanol (7/3, v/v)

synthesized by the reaction of
rhodamine ethylenediamine and

cinnamoyl chloride
[198]

Hg2+ Rhodamine B derivatives
RW-1, RW-2

RW-1: 5 × 10−7 to 3
× 10−6 M

RW-2: 5 × 10−7 to 4
× 10−6 M

RW-1: 2.5 × 10−8 M
RW-2: 4.2 × 10−8 M

Yes Negligible influence 4:6 CH3OH/HEPES buffer (v/v, 10
mM, pH 7.0)

Functionalized with a spirocyclic
moiety [199]

Hg2+ RR1-rhodamine–
rhodanine-based 0 to 12 × 10−6 M 5 × 10−9 M No Negligible influence water–ACN (60/40 v/v) mixture [200]

Hg2+,
Pb2+, Cd2+ rhodamine 6G hydrazide

Hg2+: 1 × 10−5 to 5 ×
10−5 M

Pb2+: 1 × 10−5 to 7 ×
10−5 M

Cd2+: 1 × 10−5 to 9 ×
10−5 M

Hg2+: 1.6 × 10−8 M
Pb2+: 1.2 × 10−8 M
Cd2+: 4.7 × 10−8 M

Yes: Hg2+ and Cd2+

(with EDTA)
No: Pb2+

Cu2+ and Ni2+ in
the case of Cd2+

detection

HEPES buffer solution (EtOH:H2O
= 9/1, 10 mM HEPES buffer, pH

7.2)

Functionalized with
N-methylisatin [189]

Hg2+ Fluorescein and rhodamine
B

2.5 × 10−7 to 2.52 ×
10−6 M 2.02 × 10−8 M Yes Negligible influence Dichlorome-thane [201]

Hg2+ Coumarine derivative 0 to 1.4 × 10−5 M - Yes (after TPEN
incubation) Negligible influence Deionized water Modified with azathia crown ether

moiety [202]

Hg2+ rhodol-coumarin 0 to 2.5 × 10−5 M 5.5 × 10−9 M Not studied Negligible influence MeOH-H2O (v/v = 1:1) solution Modified with hydrazide moiety [203]

Hg2+ coumarin 0 to 4 × 10−6 M 1 × 10−5 M No

Co2+, Ni2+ and
Cu2+ (can me

masked by using
EDTA)

HEPES buffer solution (20 mM
HEPES, pH 7.2, EtOH:H2O = 1:1,

v/v)

thiosemicarbazide
derivative reacts with Hg2+ [204]
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Table 5. Cont.

Analyte Organic Dye Detection Range LOD Reversibility Interferent
Analytes Aqueous Media Observations Ref.

Hg2+ dibenzo-18-crown-6-ether
(DB18C6)

1.25 × 10−6 to 1.2 ×
10−4 M 1.25 × 10−8 M Not studied Cu2+, Pb2+ Titrisol buffer (pH 7) [205]

Hg2+
2-((2-(vinyloxy)-naphthalen-

1-yl)methylene)
malononitrile

0 to 5 × 10−6 M 4.31 × 10−8 M Not studied Negligible influence
PBS buffer (10

mM, pH 7.4, containing 1%
CH3CN)

[206]

Hg2+ Dansyl-Met-NH2
1 × 10−8 to 6 × 10−6

M 5 × 10−9 M Yes

Potentital
interference from
Fe2+, Pb2+, Cd2+,

Pd2+

HEPES buffer (10 mM, pH 7.4).
Potential application also studied

in synthetic marine water
[207]

Table 6. Fluorescent sensors for different metal ions based on organic dyes.

Analyte Organic Dye Detection Range LOD Reversibility Interferent
Analytes Aqueous Media Observations Ref.

Pb2+ Rhodamine 6G derivative 1 × 10−8 to 1 × 10−5

M 2.7 × 10−9 M Yes Negligible influence HEPES buffer (10 mM, pH 7.4).
Also tested in sea shells food.

Recognition moiety attached to the
R-6G derivative [190]

Pb2+
rhodamine

tri methoxy benzaldehyde
conjugate derivative

0 to 1 × 10−5 M 1.5 × 10−8 M Not studied Negligible influence HEPES buffer solution (pH 7.54) [208]

Pb2+ rhodamine hydroxamate
derivative 0 to 1 × 10−5 M 2.5 × 10−7 M

Yes (adding
EDTA) Negligible influence HEPES buffer (10 mM, pH 6.5) Functionalized with an acyclic diethyl

iminodiacetate receptor [188]

Pb2+ Coumarin 0 to 2 × 10−5 M 1.9 × 10−9 M Not studied Negligible influence phosphate-buffer (20 mM, 1:9
DMSO/H2O (v/v), pH 8.0)

Coumarin-trizaole-based receptor:
(4-((1-(2-oxo-2H-chromen-4-yl)-1H-1,2,3-
triazol-5-yl)methoxy)-2H-chromen-2-one)

[209]

Pb2+ Coumarin 6 × 10−6 to 2 × 10−5

M 3.36 × 10−11 M Not studied Negligible influence
HEPES buffer solution

(CH3CN:H2O = 95:5, v/v, 10 mM,
pH 7.2)

Functionalized with a triazole
substituted 8-hydroxyquinoline

(8-HQ) receptor
[192]

Pb2+ BODIPY fluorophore 5 × 10−8 to 2.5 ×
10−6 M 1.34 × 10−8 M Not studied Negligible influence PBS buffer (0.1 M, pH 7.2) Functionalized with a polyamide

receptor [210]

Pb2+ 1,3,6-trihydroxy xanthone 1 × 10−5 to 2 × 10−4

M 1.8 × 10−7 M Not studied - DMSO–H2O solution (2:1 ratio,
v/v) [211]

Pb2+ 2-amino-4-phenyl-4H-benzo
[h]chromene-3-carbonitrile 0 to 2 × 10−3 M 4.14 × 10−4 M Yes Cd2+, Fe3+, Hg2+,

Cu2+ Methanol [212]

Cu2+ rhodamine B
semicarbazide

2 × 10−8 to 3 × 10−7

M 1.6 × 10−7 M Not studied Negligible influence Methanol–water (1:1, v/v) at pH 7 [213]

Cu2+ rhodamine hydroxamate
derivative 0 to 1.2 × 10−5 M 5.8 × 10−7 M

Yes (Na2S
addition) Negligible influence HEPES buffer (10 mM, pH 6.5)

containing 1% CH3CN (v/v)
Functionalized with an acyclic diethyl

iminodiacetate receptor [188]

Cu2+ 6,7-dihydroxy-3-(3-
chlorophenyl) coumarin 0 to 2.5 × 10−6 M 3.3 × 10−10 M Yes (with S2−) Negligible influence CH3CN/H2O (90:10, v/v) [214]

Cu2+ Fluorescein 1 × 10−6 to 6 × 10−5

M 3 × 10−7 M Not studied Negligible influence DMSO/HEPES solution(3:1, v/v, 1
mM, pH 7.2) Functionalized with a pyrrole moiety [215]

Pb2+, Cu2+ styrylcyanine dye
containing pyridine

Pb2+: 3 × 10−5 to 6 ×
10−4 M

Cu2+: 3 × 10−6 to 9 ×
10−7 M

Pb2+: 3.41 × 10−6 M
Cu2+: 1.24 × 10−6 M

Not studied Negligible influence CH3CN–water mixture (9:1, v/v) [216]
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Table 6. Cont.

Analyte Organic Dye Detection Range LOD Reversibility Interferent
Analytes Aqueous Media Observations Ref.

Zn2+ Fluorescein-coumarin
conjugate 0 to 1 × 10−5 M 1 × 10−7 M Yes Negligible influence HEPES buffer (water/ethanol, 1:9,

v/v; 10 mM HEPES; pH 7.4) [217]

Cd2+ coumarin 0 to 1.6 × 10−5 M - Not studied Hg2+ Deionized water Functionalized with a dipicolylamine
receptor [177]

Ag+ Fluorescein

L1: 0 to 1.98 × 10−6

M
L2: 0 to 4.95 × 10−6

M

L1: 4 × 10−9 M
L2: 3 × 10−8 M

Yes (Na2S) Negligible influence Ethanol L1: functionalized with N,S- receptor
L2: functionalized with N,Se- receptor [191]

Pd2+ Coumarin 460 0 to 1 × 10−5 M 2.5 × 10−7 M Not studied Negligible influence PBS buffer containing 1% DMSO [218]
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5. Comparison between Fluorescent Sensors for Heavy Metal Ions Based on Different Materials

Although this review is focused on those sensors fabricated with fluorescent aptamers, quantum
dots, and organic dyes, other materials can be utilized for the detection of heavy metal ions, such as
porphyrins and metal-organic frameworks (MOFs). Thus, in this section, a brief comparison between
all the materials is carried out.

As it can be observed in Table 7, the sensors developed with fluorescent aptamers and quantum
dots present the lowest limits of detection, oppositely to those fabricated with MOFs. Regarding the
detection ranges, the sensors based on porphyrins and MOFs are capable of detecting heavy metal
ions at higher concentration ranges (from nanomolar to hundreds of micromolar concentrations) than
the rest of the sensors, which monitor concentrations from the picomolar range to the micromolar
one. Although reversibility and specificity are not always analyzed, the obtained results are usually
positive: the sensors recover their original fluorescence intensity once the contaminants are removed
from the aqueous media, and the sensors are not or slightly affected by the presence of other heavy
metal ions.
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Table 7. Fluorescent sensors for heavy metal ions based on different kind of materials.

Type of Material Sensitive Material Analyte Detection Range LOD Reversibility Interferent Analytes Ref.

Fluorophore-
labelled aptamer

Mn2+-doped NaYF4: Yb, Er UCNPs labelled to
5′-NH2-TCATCGTTCTTTCTTCCCCTTGTTTGTT-3′ Hg2+ 5 × 10−8 to 5 × 10−7 M 1.5 × 10−10 M 91.4–102.3% Negligible influence [82]

Texas Red labelled to 5′-SH-3(CH2CH2O)6-
TCATGTTTGTTTGTTGGCCCCCCTTCTTTCTTA-3′

linked to the AuNPs
Hg2+ 1 × 10−11 to 1 × 10−6 M 5.1 × 10−11 M Not studied Negligible influence [64]

5′- Cy5.5-SH-3(CH2CH2O)6-GGAAGGTGTGGAAGG-3′

linked to the Au NPs Pb2+ 1 × 10−11 to 1 × 10−6 M 2.7 × 10−13 M Not studied Negligible influence [64]

Quantum dots
S- and O- doped carbon nitride QDs Hg2+ 1 × 10−8 to 1 × 10−6 M 1 × 10−11 M Not studied Negligible influence [150]

Flavonoid moiety-incorporated carbon QDs Pb2+ 1 × 10−10 to 2 × 10−8 M 5.5 × 10−11 M Not studied Negligible influence [157]
Polyethylene glycol capped ZnO QDs (PEG@ZnO QDs) Cu2+ 4 × 10−9 to 1 × 10−5 M 3.33 × 10−9 M 99.6–104% Negligible influence [114]

Organic dyes
rhodol-coumarin Hg2+ 0 to 2.5 × 10−5 M 5.5 × 10−9 M Not studied Negligible influence [203]

6,7-dihydroxy-3-(3-chlorophenyl) coumarin Cu2+ 0 to 2.5 × 10−6 M 3.3 × 10−10 M
Yes

(with S2−) Negligible influence [214]

Rhodamine 6G derivative Pb2+ 1 × 10−8 to 1 × 10−5 M 2.7 × 10−9 M Yes Negligible influence [190]

Porphyrins
5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrin(TPPS) Hg2+ 3.3 × 10−8 to 3.3 × 10−5 M 3.3 × 10−8 M Not studied Negligible influence [32]

5,10,15,20-tetrakis (N-methyl-4-pyridyl) porphyrin
(TMPyP) Hg2+ 5 × 10−9 to 1 × 10−7 M 1.3 × 10−9 M 96–105% Slightly affected by Pb2+ [219]

5,10-bis(4-aminophenyl)-15,20-diphenyl-porphyrin (BATP) Cd2+ 5 × 10−8 to 4 × 10−6 M 3.2 × 10−8 M Yes Slightly affected by Cu2+

and Hg2+ [220]

Metal-organic
frameworks

UiO-66-PSM Hg2+ 0 to 7.81 × 10−5 M 5.88 × 10−6 M 96.9–100.6% Negligible influence [221]
MIL-53(Al) Fe3+ 3 × 10−6 to 2 × 10−4 M 9 × 10−5 M 98–106% Negligible influence [222]

UiO-66-NH2 Cd2+ 1 × 10−5 to 5 × 10−4 M 3.36 × 10−7 M Not studied Not studied [223]



Sensors 2019, 19, 599 23 of 34

6. Conclusions

As it has been shown in this review, fluorescence-based sensors exhibit interesting features for the
monitoring of heavy metal ions in aqueous media: the devices presented here exhibit good sensitivity
and selectivity, low detection limits as well as large detection ranges. Apart from that, some of them
show recovery values close to the 100%, even after being tested in real water samples. Among the
heavy metal ion species, special attention has been paid to the sensors devoted to Hg2+, as long as it is
one of the most hazardous water pollutants and it presents an accumulative effect on human body
through the food chain.

Depending on the application, different sensing materials can be utilized for the monitoring of
heavy metal ions: on one side, the utilization of aptamers allows the development of sensors with
low detection limits, good reversibility and outstanding specificity for Hg2+ or Pb2+, due to the high
affinity that T and G bases present for these contaminants, respectively. Additionally, thanks to the
functionalization of quantum dots, it is possible to fabricate sensors for monitoring a wide range
of heavy metal ions: although their detection limits are not as low as those of the aptasensors, they
present good selectivity and reversibility. Finally, the modification of organic dyes with ion recognition
units also permits the detection of several metal ions in real water samples, presenting large detection
ranges, good selectivity and reversibility. Although the three kinds of materials present appropriate
features for sensing applications (low detection limits, acceptable selectivity and reversibility), those
devices based on aptamers exhibit the lowest limits of detection and the highest selectivity, due to
the high affinity of the T-rich and G-rich ODN sequences for Hg2+ and Pb2+, respectively. However,
this specificity for these analytes does not allow their utilization for the detection of other metal ions,
which can be done by QDs and organic dyes.

These facts, together with all the advantages that the optic technology presents nowadays,
make custom-designed fluorescent sensors attractive tools for the monitoring of heavy metal ions in
real applications.
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