
sensors

Article

A Fine-Grained Video Encryption Service Based on
the Cloud-Fog-Local Architecture for Public and
Private Videos

Hao Li 1, Zhaoquan Gu 2,* , Lianbing Deng 1,*, Yi Han 2,*, Cheng Yang 3 and Zhihong Tian 2

1 Post-Doctoral Research Center of Zhuhai Da Hengqin Science and Technology Development Co. Ltd.,
Zhuhai 519000, China; cuclihao@cuc.edu.cn

2 Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China;
tianzhihong@gzhu.edu.cn

3 College of Information Engineering, Communication University of China, Beijing 100024, China;
cafeeyang@163.com

* Correspondence: zqgu@gzhu.edu.cn (Z.G.); denglb@dhqtech.com (L.D.); hanyi@gzhu.edu.cn (Y.H.)

Received: 4 November 2019; Accepted: 3 December 2019; Published: 5 December 2019
����������
�������

Abstract: With the advancement of cloud computing and fog computing, more and more services
and data are being moved from local servers to the fog and cloud for processing and storage. Videos
are an important part of this movement. However, security issues involved in video moving have
drawn wide attention. Although many video-encryption algorithms have been developed to protect
local videos, these algorithms fail to solve the new problems faced on the media cloud, such as
how to provide a video encryption service to devices with low computing power, how to meet the
different encryption requirements for different type of videos, and how to ensure massive video
encryption efficiency. To solve these three problems, we propose a cloud-fog-local video encryption
framework which consists of a three-layer service model and corresponding key management
strategies, a fine-grain video encryption algorithm based on the network abstract layer unit (NALU),
and a massive video encryption framework based on Spark. The experiment proves that our
proposed solution can meet the different encryption requirements for public videos and private
videos. Moreover, in the experiment environment, our encryption algorithm for public videos reaches
a speed of 1708 Mbps, and can provide a real-time encryption service for at least 42 channels of
4K-resolution videos.

Keywords: sensor-cloud system; video encryption; public/private video; encryption performance;
fine-grained

1. Introduction

The sensor cloud system, having gained momentum in the recent years, is identified as an
inevitable choice for many problems in the big data age. Multimedia (videos, voices, images, etc.) are
major parts of big data, and building a media cloud based on sensors has become a major strategy
of the media industry. In a sensor cloud, a large number of sensors are deployed to collect video
and audio to the cloud, and finally build a huge multimedia transceiver system. Utilization of the
media cloud can alleviate the workload of video service providers and give video users convenient
and real-time access to video services.

However, as data are not stored or processed locally, data security emerges as an inevitable
concern in deployment and operations of cloud computing platforms [1]. Compared with texts, videos
have higher value, not only because they deliver more information, but also because of the copyright
and privacy issues involved in videos. Encryption is the most important choice to prevent illegal

Sensors 2019, 19, 5366; doi:10.3390/s19245366 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7546-852X
https://orcid.org/0000-0002-9409-5359
http://www.mdpi.com/1424-8220/19/24/5366?type=check_update&version=1
http://dx.doi.org/10.3390/s19245366
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 5366 2 of 21

access to videos and ensure information security [2,3]. Video encryption on media cloud, however,
faces many practical problems.

First, how to provide uniform video encryption service for devices with different computing
power. Devices connected to the media cloud, such as set-top boxes (STBs), computers, and mobile
devices, are diverse and differ in computing power. It is difficult to deploy encryption algorithms that
require intensive computing on devices with low computing power. Eiza et al. [4] and Pei et al. [5]
proposed video encryption services based on cloud computing. However, as the cloud center is distant
from the local server, video encryption on the media cloud usually faces the problem of communication
latency [6].

Second, how to meet the different encryption requirements for different type of videos. Generally,
there are two types of videos on the media cloud: public videos and private videos. Pubic videos,
such as TV programs, user-generated content (UGC) and short videos, aim to attract audience and
make profit. This type of video requires encryption but not to the degree of complete unrecognizable.
Private videos like surveillance videos, personal videos and conference videos, are highly private,
so the content of this type of video should be hidden as much as possible and real-timeliness should be
ensured. Whether public video or private video, the implementation of fine-grained encryption for a
single video is the basis to meet their different security requirements. Traditional video encryption
algorithms in [7,8], however, focus on how to select regions of interest and the encryption efficiency,
and fail to pay attention to application in actual scenarios.

Third, how to ensure massive video encryption efficiency. As more 4K- and 8K-resolution videos
are produced, the size of videos grow. Assuming that the compression ratio of H.265 videos is between
300:1 and 1000:1 [9], we can obtain the transmission rate of 4K-resolution videos after being encoded by
H.265 is about 11~40 Mbps. When the number of videos is large, we have to consider how to increase
the encryption efficiency and reduce the latency of video service caused by encryption.

In this paper, we propose a cloud-fog-local video encryption service framework to provide a
uniform video encryption service for devices with different computing power. In this framework,
the key management is deployed on the cloud layer to produce, store, distribute and destroy keys.
The video encryption is deployed on the fog layer and provides encryption service to the nearby
terminals of varied computing power. Compared with cloud computing, fog computing is closer to
the local users and can provide computing resources of low latency and high elasticity [10]. In order to
realize fine-grained video encryption with different security requirement, we propose a fine-grain video
encryption algorithm. Based on the network abstract layer unit (NALU), the encryption algorithm
provides two security levels, public and private, to achieve fine-grained encryption. In addition,
a massive video encryption framework based on Spark ensures the efficiency.

The major contribution of this paper is as follows.

• First, we proposed a three-layer (cloud-fog-local) video encryption framework and designed a
corresponding three-layer key management scheme. The framework can provide a uniform video
encryption service for devices with different computing power.

• Second, this paper is the first that designs a uniform video encryption algorithm to meet the
different encryption requirements for public and private videos, and makes in-depth analysis of
the encryption effect. The experiment proves that the algorithm we designed can meet encryption
requirements of different types of videos.

• Third, we deployed the video encryption algorithm on Spark, and increased the encryption
efficiency and scalability. The experiment proves that the cluster deployed on the two servers
under the experiment conditions can realize real-time encryption of at least 42 channels of
4K-resolution videos.

Noted that the focus of our paper is on the mechanism of video encryption, so authentication and
authorization are not described in detail. However, when designing the key management scheme,

Sensors 2019, 19, 5366 3 of 21

we preset a session key as an interface to connect with secure authentication and authorization strategies
(PKI, Kerberos, etc.).

The rest of this paper is arranged as follows. Section 2 introduces the related work on video
encryption; Section 3 presents the fine-grained video encryption service model and design details,
including the cloud-fog-local framework and its key management scheme, the NALU-based fine-grained
video encryption algorithm and the Spark-based massive video encryption framework; Section 4
analyzes the encryption performance of our proposed algorithm; Section 5 is the conclusion of our paper.

2. Related Work

Video encryption has long been a focus of the video encoding and information security industries.
When the video is large in size, complex in structure and requires real-time transmission, encryption
becomes challenging. According to the encrypted content, video encryption can be categorized into
full encryption and selective encryption.

Compared with full encryption, selective encryption has fewer encrypted data and higher
encryption efficiency. By the timing of encryption, selective encryption can be categorized into
encryption-before-encoding, encryption-after-encoding, and joint encryption-encoding (Figure 1) [3].

Sensors 2019, 19, x FOR PEER REVIEW 3 of 21

The rest of this paper is arranged as follows. Section 2 introduces the related work on video
encryption; Section 3 presents the fine-grained video encryption service model and design details,
including the cloud-fog-local framework and its key management scheme, the NALU-based fine-
grained video encryption algorithm and the Spark-based massive video encryption framework;
Section 4 analyzes the encryption performance of our proposed algorithm; Section 5 is the conclusion
of our paper.

2. Related Work

Video encryption has long been a focus of the video encoding and information security
industries. When the video is large in size, complex in structure and requires real-time transmission,
encryption becomes challenging. According to the encrypted content, video encryption can be
categorized into full encryption and selective encryption.

Compared with full encryption, selective encryption has fewer encrypted data and higher
encryption efficiency. By the timing of encryption, selective encryption can be categorized into
encryption-before-encoding, encryption-after-encoding, and joint encryption-encoding (Figure 1) [3].

Encryption Encoding

Raw Video Encrypted video1. encryption-before-encoding

Encoding Encryption

Raw Video Encrypted video3. encryption-after-encoding

 Encoding

Raw Video Encrypted video2. joint encryption-encoding

Encryption

Figure 1. Three selective encryption schemes.

In the encryption-before-encoding scheme, people first find the regions of interest and then
realize accurate encryption which ensure security of the video and realize format compliance [11,12].
However, the drawback of the encryption-before-encoding scheme is that it seriously reduces the
video compression quality. Only when sensitive data in a small range needs to be protected can the
encryption-before-encoding scheme have good performance.

In the joint encryption-encoding scheme, there are basically two types. The first type encrypts
the original compressed information, such as the intra-frame prediction model, the discrete cosine
transform (DCT) coefficients, and motion vectors, as described in [13–16]. This type of algorithm
encrypts videos in the first stage of video encoding, so it can achieve high accuracy in selective
encryption and realize complete format compliance, but it will result in severe compression losses.
The other type is encryption algorithms based on entropy coding and semantic elements, as described
in [17–20]. This type of algorithm encrypts videos after quantification of the compressed video data,
so it achieves lower accuracy in selective encryption than the former type; moreover, when the latter
type of algorithm is used, some underlying syntax elements will be inevitably encrypted, and only
partial format compliance can be realized. The compression loss will be worse than that incurred by
the former type. Because of complex coupling between encoding and encryption, the joint
encryption-encoding scheme is more suitable for design of security encoders/decoders.

In the encryption-after-encoding scheme, the advantages are that it can minimize the influence
of the video encoding algorithms on encryption and ensure zero compression loss [21−24]. Its major
drawback is that it cannot capture enough information on the video and hence its accuracy in

Figure 1. Three selective encryption schemes.

In the encryption-before-encoding scheme, people first find the regions of interest and then
realize accurate encryption which ensure security of the video and realize format compliance [11,12].
However, the drawback of the encryption-before-encoding scheme is that it seriously reduces the
video compression quality. Only when sensitive data in a small range needs to be protected can the
encryption-before-encoding scheme have good performance.

In the joint encryption-encoding scheme, there are basically two types. The first type encrypts
the original compressed information, such as the intra-frame prediction model, the discrete cosine
transform (DCT) coefficients, and motion vectors, as described in [13–16]. This type of algorithm
encrypts videos in the first stage of video encoding, so it can achieve high accuracy in selective
encryption and realize complete format compliance, but it will result in severe compression losses.
The other type is encryption algorithms based on entropy coding and semantic elements, as described
in [17–20]. This type of algorithm encrypts videos after quantification of the compressed video
data, so it achieves lower accuracy in selective encryption than the former type; moreover, when
the latter type of algorithm is used, some underlying syntax elements will be inevitably encrypted,
and only partial format compliance can be realized. The compression loss will be worse than that
incurred by the former type. Because of complex coupling between encoding and encryption, the joint
encryption-encoding scheme is more suitable for design of security encoders/decoders.

Sensors 2019, 19, 5366 4 of 21

In the encryption-after-encoding scheme, the advantages are that it can minimize the influence
of the video encoding algorithms on encryption and ensure zero compression loss [21–24]. Its major
drawback is that it cannot capture enough information on the video and hence its accuracy in selective
encryption is low. The encryption-after-encoding scheme is highly practical because it can be deployed
simply after the video encoding system.

Table 1 summarizes the advantages and drawbacks of these three encryption schemes. On the
media cloud, Video encryption services prioritize practicability, compression loss and encryption
efficiency, but the requirement for encryption accuracy can be lowered. First of all, the media cloud is
complex, and video encryption should minimize coupling with the cloud’s own services [25]. Second,
when encrypting a massive number of videos, the transmission consumption caused by encryption is
unacceptable. Third, encryption efficiency is important because it is correlated to latency of the cloud’s
services. Last, low encryption accuracy is acceptable. Encryption accuracy is usually an indicator
for performance of selective encryption algorithms (human faces, moving objects, etc.), but privacy
is a hard-to-define concept, especially in videos full of all kinds of unstructured information [26].
In practical scenarios, the media cloud only needs to hide privacy information as much as possible.
Therefore, encryption accuracy is given a low priority.

Table 1. Comparison of different encryption schemes.

Performance Encryption-before-
Encoding

Joint-Encryption-
Encoding

Encryption-after-
Encoding

Encryption accuracy high medium low
Encryption efficiency low medium high

Compression loss high medium low
Practicability medium low high

3. Proposed Fine-Grained Video Encryption Service

Fog computing, shifting intelligence and resources from the remote cloud to edge networks, has
the potential of providing low-latency for the communication from sensing data sources to users [27,28].
Abbas et al. proposed a fog security service (FSS) in which the fog layer distributed secret keys to
IoT devices [29]. In our section, we proposed a cloud-fog-local video encryption service framework.
The framework uses fog computing to provide computing resources to proximate users. To be specific,
we completed three parts of work. First, we constructed the cloud-fog-local video service framework
and its corresponding key management scheme. Second, we designed a NALU-based fine-grained
video encryption algorithm, in which video segments were taken as the encryption content to realize
NALU-level fine-grained encryption. Third, we deployed the video encryption algorithm on Spark.
These three works will be detailed in the following.

3.1. Cloud-Fog-Local Video Encryption Service Architecture

3.1.1. System Architecture

In prior studies, we have proposed a “cloud-edge-local” media cloud service hierarchy [30]. Based
on [30], we proposed a cloud-fog-local security framework and applied it to video encryption services.
Figure 2 shows the architecture of the framework.

The tasks of each layer in the cloud-fog-local framework are as follows. The cloud layer, as the
control center of the whole system, has two tasks. The first is to send video processing commands
(file ID, encrypting/decrypting operations, secret keys, etc.) to the fog layer, and recollect the index
files similar to m3u8. The other is to verify legitimacy of the devices on the local layer, and complete
authentication operations. The fog layer first allocates computing resources for proximate devices, and
then encrypts/decrypts the videos. The local layer simulates different user terminals. In the encryption
process, it sends video encryption requests to the cloud layer and uploads the videos onto the fog layer.

Sensors 2019, 19, 5366 5 of 21

In the decryption process, it sends decryption requests to the cloud layer and receives the decrypted
videos from the fog layer. Figure 3 shows the diagram of the encryption and decryption process.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 21

the decrypted videos from the fog layer. Figure 3 shows the diagram of the encryption and decryption
process.

Cloud Layer

Fog Layer

Local Layer

Video

authentication
&

authorization

Key management

Video encryption

Figure 2. Cloud-Fog-Local Architecture.

FogLocal Cloud

Encrypiton
Request

Authentication
and Authorization

Failure
or

Success

Encryption CMD
Video

Encrypt
and Save

Index

Encryption Finish

Decryption
Request

Authentication
and Authorization

Failure
or

Success
Decryption CMD

Decrypt

Video

Figure 3. Diagram of encryption and decryption process.

Figure 2. Cloud-Fog-Local Architecture.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 21

the decrypted videos from the fog layer. Figure 3 shows the diagram of the encryption and decryption
process.

Cloud Layer

Fog Layer

Local Layer

Video

authentication
&

authorization

Key management

Video encryption

Figure 2. Cloud-Fog-Local Architecture.

FogLocal Cloud

Encrypiton
Request

Authentication
and Authorization

Failure
or

Success

Encryption CMD
Video

Encrypt
and Save

Index

Encryption Finish

Decryption
Request

Authentication
and Authorization

Failure
or

Success
Decryption CMD

Decrypt

Video

Figure 3. Diagram of encryption and decryption process.

Figure 3. Diagram of encryption and decryption process.

Sensors 2019, 19, 5366 6 of 21

3.1.2. Key Management Scheme

Encryption of large-scale videos will inevitable produce a large number of secret keys. In order to
ensure secure distribution, storage and updating of secret keys, a specific key management scheme is
needed [31,32]. We introduced a hierarchical key management scheme corresponding to the three-level
architecture of the proposed framework (Figure 4). The scheme has three advantages. First, each NALU
is matched with one unique secret key, which is closer to Shannon’s one-time pad. Second, it realizes
NAL-level fine-grained video encryption and can satisfy diverse access control. Third, the scheme
has three levels of keys: content keys, service keys (also named index keys), and session keys, and is
convenient for the management of massive keys.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

3.1.2. Key Management Scheme

Encryption of large-scale videos will inevitable produce a large number of secret keys. In order
to ensure secure distribution, storage and updating of secret keys, a specific key management scheme
is needed [31,32]. We introduced a hierarchical key management scheme corresponding to the three-
level architecture of the proposed framework (Figure 4). The scheme has three advantages. First, each
NALU is matched with one unique secret key, which is closer to Shannon’s one-time pad. Second, it
realizes NAL-level fine-grained video encryption and can satisfy diverse access control. Third, the
scheme has three levels of keys: content keys, service keys (also named index keys), and session keys,
and is convenient for the management of massive keys.

...

Payload 1 Info
CK1

Payload 2 Info
CK2

...Info
...CK

Payload n Info
CKn

Video (First-level)

Service 1
SK1

Service 2
SK2

Session Key

Legend:
Priority: Service 2 > Service 1

Payload 1

Payload 2

Payload n

CK1

CK2

CK

CKn

Index (Second-level) Session (Third-level)
Figure 4. Layered key management architecture.

The first-level keys are content keys (CKs). The payloads in different groups (i.e., different
NALUs) are matched with different content keys. The second-level keys are service keys (SKs) that
are used to encrypt different parts in the index files. For instance, two services are provided now:
Service 1 allows the ordinary users to decrypt only the first six minutes of a video, and Service 2 is
provided to VIP users to decrypt the whole video. The index information of the first six minutes of a
video will be encrypted by SK1, and the rest index content is encrypted by SK2. When decrypting,
ordinary users can only acquire SK1, but VIP users can obtain secret keys for both Service 1 and
Service 2 (SK1 and SK2). The third-level keys are session keys that are normally created by security
authentication protocols and used to encrypt service keys.

3.2. Fine-Grained Encryption Algorithm Based on NALU

Both H.264/AVC and H.265/HEVC use a double-layered structure that consists of a video coding
layer (VCL) and a network abstract layer (NAL). The compressed video data on VCL is encapsulated
into NALUs (NAL units). NALU consists of two parts: the NALU header and the NALU payload.

The NALU header has a fixed length (one byte for H.264 and two bytes for H.265) and records
the content features of NALUs and network information. Thus, to preserve information of NALU
headers can guarantee fault tolerance of the video information when transmitted online.

The NALU payload, also termed raw byte sequence payload (RBSP) is full-byte-length
information that records video compression data on VCL. In H.264 and H.265, a RBSP is a sequence
of bytes (8 bits) filled by a binary string of data bits (SODB) produced by the video encoder. When
the last byte of RBSP is filled by SODB, then the rbsp_trailing_bits() in the format of 100… is added.
To avoid emulation between the byte streams in NALU payload and the NALU start code and end
code, the RBSP must be byte-aligned and prevent emulation (Figure 5).

Figure 4. Layered key management architecture.

The first-level keys are content keys (CKs). The payloads in different groups (i.e., different NALUs)
are matched with different content keys. The second-level keys are service keys (SKs) that are used
to encrypt different parts in the index files. For instance, two services are provided now: Service 1
allows the ordinary users to decrypt only the first six minutes of a video, and Service 2 is provided to
VIP users to decrypt the whole video. The index information of the first six minutes of a video will
be encrypted by SK1, and the rest index content is encrypted by SK2. When decrypting, ordinary
users can only acquire SK1, but VIP users can obtain secret keys for both Service 1 and Service 2 (SK1
and SK2). The third-level keys are session keys that are normally created by security authentication
protocols and used to encrypt service keys.

3.2. Fine-Grained Encryption Algorithm Based on NALU

Both H.264/AVC and H.265/HEVC use a double-layered structure that consists of a video coding
layer (VCL) and a network abstract layer (NAL). The compressed video data on VCL is encapsulated
into NALUs (NAL units). NALU consists of two parts: the NALU header and the NALU payload.

The NALU header has a fixed length (one byte for H.264 and two bytes for H.265) and records the
content features of NALUs and network information. Thus, to preserve information of NALU headers
can guarantee fault tolerance of the video information when transmitted online.

The NALU payload, also termed raw byte sequence payload (RBSP) is full-byte-length information
that records video compression data on VCL. In H.264 and H.265, a RBSP is a sequence of bytes (8 bits)
filled by a binary string of data bits (SODB) produced by the video encoder. When the last byte of
RBSP is filled by SODB, then the rbsp_trailing_bits in the format of 100 . . . is added. To avoid emulation
between the byte streams in NALU payload and the NALU start code and end code, the RBSP must be
byte-aligned and prevent emulation (Figure 5).

Sensors 2019, 19, 5366 7 of 21

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

0X000000

0X000000

0X000000

0X000000

0X00000300

0X00000301

0X00000302

0X00000302
Figure 5. Byte alignment and emulation prevention of raw byte sequence payload (RBSP).

The content in RBSP is what we want to encrypt. As the RBSP are divided into different types in
the NALU header (nal-unit-type), we can analyze the content of different types of RBSP to reduce the
content for encryption and increase encryption efficiency. The definition of NALU types differs
between H.264 and H.265. In H.264, the video parameters are encapsulated NAL packets termed
sequence parameter sets (SPS) and picture parameter sets (PPS); but in H.265, aside from SPS and
PPS, the video parameter set (VPS) is introduced to store the global information of the video. Table 2
and 3 shows the NALU types in H.264 and H.265, in which NALUs that are considered as IDR
(Instantaneous Decoding Refresh) pictures or reference sets have more video information than those
not considered as IDR or reference.

Table 2. Network abstract layer unit (NALU) types in H.264.

NAL
Type

NAL Type Description NAL Type NAL Type Description

0 Unused 8 PPS
1 Non-IDR picture, no partitioning 9 Delimiter
2 Non-IDR picture, Slice Partition A 10 Sequence end
3 Non-IDR picture, Slice Partition B 11 Stream end
4 Non-IDR picture, Slice Partition C 12 Fill
5 IDR picture slice 13~23 Preserve

6
Supplementary enhancement

information unit (SEI) 24~31 Unused

7 SPS

Table 3. NALU types in H.265.

NAL
Type

Reference or
Not

NAL
Type

Reference or
Not

NAL
Type

Reference or
Not

0 N 8 N 20 Y(IDR)
1 Y 9 Y 21 Possible
2 N 10~14 N 22~23 Y
3 Y 15 Possible 24~31 N
4 N 16 Possible 32 VPS
5 Y 17 Possible 33 SPS
6 N 18 Y 34 PPS
7 Y 19 Possible

For public videos, the encryption algorithm needs to allow format compliance and ensure
normal decoding of encrypted videos to stimulate the users’ buying desire, so to encrypt NALUs that
contain video content can improve the format compliance and ensure enough cyphertext space.
Therefore, for public videos, the units considered as reference pictures are selected for encryption
(NALU Type = 5 in H.264; NALU Type = 1, 3, 5, 7, 9, 18, 20, 22~23 in H.265).

For private videos, especially the user’s personal videos, the possibility of video content leakage
should be minimized and high encryption efficiency should be ensured. For these videos, NALUs

Figure 5. Byte alignment and emulation prevention of raw byte sequence payload (RBSP).

The content in RBSP is what we want to encrypt. As the RBSP are divided into different types
in the NALU header (nal-unit-type), we can analyze the content of different types of RBSP to reduce
the content for encryption and increase encryption efficiency. The definition of NALU types differs
between H.264 and H.265. In H.264, the video parameters are encapsulated NAL packets termed
sequence parameter sets (SPS) and picture parameter sets (PPS); but in H.265, aside from SPS and PPS,
the video parameter set (VPS) is introduced to store the global information of the video. Tables 2 and 3
shows the NALU types in H.264 and H.265, in which NALUs that are considered as IDR (Instantaneous
Decoding Refresh) pictures or reference sets have more video information than those not considered as
IDR or reference.

Table 2. Network abstract layer unit (NALU) types in H.264.

NAL Type NAL Type Description NAL Type NAL Type Description

0 Unused 8 PPS
1 Non-IDR picture, no partitioning 9 Delimiter
2 Non-IDR picture, Slice Partition A 10 Sequence end
3 Non-IDR picture, Slice Partition B 11 Stream end
4 Non-IDR picture, Slice Partition C 12 Fill
5 IDR picture slice 13~23 Preserve
6 Supplementary enhancement information unit (SEI) 24~31 Unused
7 SPS

Table 3. NALU types in H.265.

NAL Type Reference or Not NAL Type Reference or Not NAL Type Reference or Not

0 N 8 N 20 Y(IDR)
1 Y 9 Y 21 Possible
2 N 10~14 N 22~23 Y
3 Y 15 Possible 24~31 N
4 N 16 Possible 32 VPS
5 Y 17 Possible 33 SPS
6 N 18 Y 34 PPS
7 Y 19 Possible

For public videos, the encryption algorithm needs to allow format compliance and ensure normal
decoding of encrypted videos to stimulate the users’ buying desire, so to encrypt NALUs that contain
video content can improve the format compliance and ensure enough cyphertext space. Therefore,
for public videos, the units considered as reference pictures are selected for encryption (NALU Type =

5 in H.264; NALU Type = 1, 3, 5, 7, 9, 18, 20, 22~23 in H.265).
For private videos, especially the user’s personal videos, the possibility of video content leakage

should be minimized and high encryption efficiency should be ensured. For these videos, NALUs that
contain the video’s global information should be selected to encrypt so that the fields to be encrypted
can be minimized and no unauthorized decoder can decode the videos. Therefore, for private videos
encoded by H.264, the SPS and PPS (NALU type = 8, 9) are selected for encryption; for private videos
encoded by H.265, the VPS, SPS and PPS (NALU Type = 32, 33, 34) are selected for encryption, as shown
in Table 4.

Sensors 2019, 19, 5366 8 of 21

Table 4. Encryption schemes of different security levels.

Video Attributes H.264 Encryption Content
(NALU Type)

H.265 Encryption Content
(NALU Type)

Public video 5 1, 3, 5, 7, 9, 18, 20, 22~23
Private video 8,9 32, 33, 34

The last step is the emulation prevention. In order to prevent emulation of encrypted fields with
NALU start codes and end codes, the sequence 0 × 000,000 needs to be processed (Figure 5). The AES
algorithm is used to encrypt the NALU payload, as shown in Figure 6.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 21

that contain the video’s global information should be selected to encrypt so that the fields to be
encrypted can be minimized and no unauthorized decoder can decode the videos. Therefore, for
private videos encoded by H.264, the SPS and PPS (NALU type = 8, 9) are selected for encryption; for
private videos encoded by H.265, the VPS, SPS and PPS (NALU Type = 32, 33, 34) are selected for
encryption, as shown in Table 4.

Table 4. Encryption schemes of different security levels.

Video
Attributes

H.264 Encryption Content (NALU
Type)

H.265 Encryption Content (NALU
Type)

Public video 5 1, 3, 5, 7, 9, 18, 20, 22~23
Private video 8,9 32, 33, 34

The last step is the emulation prevention. In order to prevent emulation of encrypted fields with
NALU start codes and end codes, the sequence 0 × 000,000 needs to be processed (Figure 5). The AES
algorithm is used to encrypt the NALU payload, as shown in Figure 6.

NALU

Video Type

Execute
Encryption

Execute
Encryption

Encryption？ Encryption?

End

Y Y
Key

N

Figure 6. Process of selective encryption.

3.3. Massive Video Encryption Framework Based on Spark

In this section, Apache Spark is used to execute encryption of massive video. First, massive video
NALUs are taken as Spark datasets and form an independent resilient distributed dataset (RDD) for
encryption. The video segments are suitable for the high-through-put and fault-tolerant stream
processing system of Spark. Second, selective encryption is a complex operation with high computing
load, and memory-based processing can increase the encryption efficiency. Last, the Spark
framework is scalable and can distribute workload of each node intelligently, hence suitable for the
allocate-on-demand encryption service.

Steps to deploy the video selective encryption algorithm onto the Spark framework are as
follows:

1. Deploy the Hadoop distributed file system (HDFS) for storing to-be-encrypted videos and
encrypted videos;

2. Compile the proposed encryption algorithm as “encryption.so” and deploy it on node servers;
3. Spark executor instances developed by Java call the “encryption.so” from the executor of worker

through the JNI interface to execute encryption.

The process of massive video encryption based on Spark are as follows (Figure 7):

1. Massive videos are upload and segmented, then the generated, to-be-encrypted segments are
stored in HDFS;

Figure 6. Process of selective encryption.

3.3. Massive Video Encryption Framework Based on Spark

In this section, Apache Spark is used to execute encryption of massive video. First, massive
video NALUs are taken as Spark datasets and form an independent resilient distributed dataset
(RDD) for encryption. The video segments are suitable for the high-through-put and fault-tolerant
stream processing system of Spark. Second, selective encryption is a complex operation with high
computing load, and memory-based processing can increase the encryption efficiency. Last, the Spark
framework is scalable and can distribute workload of each node intelligently, hence suitable for the
allocate-on-demand encryption service.

Steps to deploy the video selective encryption algorithm onto the Spark framework are as follows:

1. Deploy the Hadoop distributed file system (HDFS) for storing to-be-encrypted videos and
encrypted videos;

2. Compile the proposed encryption algorithm as “encryption.so” and deploy it on node servers;
3. Spark executor instances developed by Java call the “encryption.so” from the executor of worker

through the JNI interface to execute encryption.

The process of massive video encryption based on Spark are as follows (Figure 7):

1. Massive videos are upload and segmented, then the generated, to-be-encrypted segments are
stored in HDFS;

2. The Master node receives the tasks and obtains to-be-encrypted video segments from HDFS;
3. The Worker node executes the tasks and encrypt the video segments;
4. The encrypted segments are stored in HDFS, and the encryption is completed.

Sensors 2019, 19, 5366 9 of 21

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

2. The Master node receives the tasks and obtains to-be-encrypted video segments from HDFS;
3. The Worker node executes the tasks and encrypt the video segments;
4. The encrypted segments are stored in HDFS, and the encryption is completed.

HDFS RDD

Master

Workers

Segment
Server

 Data Stream
 Command Stream

Legend:

Figure 7. Massive video encryption based on Spark.

4. Experiments and Analyses

4.1. Experiment Environment and Deployment

Table 5 shows the configuration of the Spark cluster servers.

Table 5. Server configuration.

Item Configuration (for each server)
CPU 24 cores

Memory 32 GB
DISC 100 GB

Operating System CentOS 7.0
Hadoop Hadoop2.7.1

Spark Spark1.6
Java JDK1.7.051

Number of nodes 3
CPU cores for each node 4
Memory for each node 4 G

Two servers are used to build the Spark experiment environment, and the gigabit router is used
to realize communication between servers. In each server, there are 3 worker nodes, and each node
contains 3 CPU cores and 4G of memory.

The realization of the Spark-based massive video selective encryption framework is as follows.
The video segments processed by Spark are from HDFS; Spark is in the standalone mode, consisting
of Master and Worker. Spark converts the HDFS video segments into resilient distributed datasets
(RDDs) required for distributed processing; the mapToPair function is used to convert RDDs into
JavaPairRDDs, and the encryption algorithm is called during the conversion process to encrypt all
RDDs. The parameter type of JavaPairRDD is <LongWritable, BytesWritable>, in which the key of the
type LongWritable is assigned the video segment ID, the value of the type BytesWritable is assigned
the video segment; the Master constructs the logic graph of the elastic distributed dataset, that is, the
directed acyclic graph (DAG), and transmits the DAG to DAGScheduler. The number of partitions in
RDD determines the number of tasks, and the Master uses TaskScheduler, the shared memory agent
node scheduling algorithm, to distribute each element in the distributed dataset to each Worker for

Figure 7. Massive video encryption based on Spark.

4. Experiments and Analyses

4.1. Experiment Environment and Deployment

Table 5 shows the configuration of the Spark cluster servers.

Table 5. Server configuration.

Item Configuration (for Each Server)

CPU 24 cores
Memory 32 GB

DISC 100 GB
Operating System CentOS 7.0

Hadoop Hadoop2.7.1
Spark Spark1.6
Java JDK1.7.051

Number of nodes 3
CPU cores for each node 4
Memory for each node 4 G

Two servers are used to build the Spark experiment environment, and the gigabit router is used
to realize communication between servers. In each server, there are 3 worker nodes, and each node
contains 3 CPU cores and 4G of memory.

The realization of the Spark-based massive video selective encryption framework is as follows.
The video segments processed by Spark are from HDFS; Spark is in the standalone mode, consisting
of Master and Worker. Spark converts the HDFS video segments into resilient distributed datasets
(RDDs) required for distributed processing; the mapToPair function is used to convert RDDs into
JavaPairRDDs, and the encryption algorithm is called during the conversion process to encrypt all
RDDs. The parameter type of JavaPairRDD is <LongWritable, BytesWritable>, in which the key of the
type LongWritable is assigned the video segment ID, the value of the type BytesWritable is assigned
the video segment; the Master constructs the logic graph of the elastic distributed dataset, that is,
the directed acyclic graph (DAG), and transmits the DAG to DAGScheduler. The number of partitions
in RDD determines the number of tasks, and the Master uses TaskScheduler, the shared memory agent
node scheduling algorithm, to distribute each element in the distributed dataset to each Worker for
processing according to the node performance and use conditions. Encryption of video segments are
executed on the Executor on the Worker nodes.

The standard test sequences are used in the experiment, as shown in Table 6.

Sensors 2019, 19, 5366 10 of 21

Table 6. List of test sequences.

Video Name Frame No. Frame Rate Resolution Format

Traffic 150 30 fps 2560 × 1260 YUV
BasketballDrive 500 50 fps 1920 × 1080 YUV

Kimono1 240 24 fps 1920 × 1080 YUV
Cactus 500 50 fps 1920 × 1080 YUV

KristenAndSara 600 60 fps 1280 × 720 YUV
Johnny 600 60 fps 1280 × 720 YUV

Flowervase 300 30 fps 832 × 480 YUV
PartyScene 500 50 fps 832 × 480 YUV

Keiba 300 30 fps 416 × 240 YUV
RaceHorses 300 30 fps 416 × 240 YUV

The YUV-format files are encoded into H.264 or H.265 videos by FFMPG [33], and the video
encoding parameters are shown in Table 7. In H.264 encoding process, FFMPEG uses -b:v to adjust the
code rate of encoded videos. In H.265 encoding process, FFMPEG uses the quantization parameter
(QP) to adjust the code rate. When the QP is 22, 27, 32, and 37, the code rates of H.265 format videos
are similar to those presented in Table 8 [20,34].

Table 7. Video encoding parameters.

Video Attribute H. 264 Parameters Value H.265 Parameters Value

Encoding method -vcodec h264 -c:v libh265
Code rate control -b:v Table 8 -x265-params qp 22, 27, 32, 37

Group of pictures (GOP) -g 8 -x265-params keyint 8
Use of B-frames -bf 2 libh265

Table 8. Different code rates for encoding the same video.

Sequence Rate 1(QP = 22) Rate 2(QP = 27) Rate 3(QP = 32) Rate 4(QP = 37)

2560 × 1260 30000 kbps 20000 kbps 10000 kbps 5000 kbps
1920 × 1080 20000 kbps 10000 kbps 5000 kbps 2500 kbps
1280 × 720 10000 kbps 5000 kbps 2500 kbps 1000 kbps
832 × 480 10000 kbps 5000 kbps 2500 kbps 1000 kbps
416 × 240 5000 kbps 2500 kbps 1000 kbps 500 kbps

To ensure credibility of the experiment, we tested the performance of encrypted videos with
different code rates and different resolution ratios. Different code rates can be considered as
heterogenous network environments with different communication capabilities, and different resolution
ratios can simulate terminal devices with different resolution ratios.

A satisfying video encryption algorithm should not only meet requirements for different
security levels, but also minimize encryption/decryption-caused computing consumption and reduce
encryption-induced loss of compression. Thus, the performance of the proposed fine-grained video
encryption framework is discussed with regard to three aspects: security, encryption efficiency
and compression loss. Then, we discuss how to realize fine-grained access control of video in our
proposed scheme.

4.2. Security

In [35], Tang proposed two levels of security for video encryption. The first level is hidden, that
is, the encrypted pictures have far poorer quality than the original pictures but are still recognizable.
The second level is unrecognizable, that is, the encrypted pictures contain no valid information of the
original pictures. Because public videos are to attract potential buyers, encryption of public videos

Sensors 2019, 19, 5366 11 of 21

needs to reach the hidden level; however, in the case of private videos, it is hard to define the term of
privacy and valid information of the original pictures should be minimized, so encryption of private
videos should reach the unrecognizable level. The security of the proposed encryption algorithm is
analyzed from two aspects: encryption quality and anti-attack capability.

4.2.1. Encryption Quality

Private videos will lose the global information after being encrypted and cannot be played, so it is
meaningless to discuss the encryption quality. For public videos, the best effect of encryption is: when
an unauthorized user watches an encrypted video, the user can acquire the contour information of the
pictures, but have no see to the detailed information. Figure 8 compares the encryption effect of the
351st frame of an H.264 video sequence (BasketballDrive) with different code rates. The original video
presents the picture of “shoot”, and the audience can see the “shooting” movements from the encrypted
video, but other details including the “shooting player”, “the position of the defender”, and “scoring”
are blurred in the encrypted pictures. The visual effect can basically meet the requirement of attracting
potential buyers. Figure 9 shows the encryption effect of the 351st frame of an H.265 video sequence
(BasketballDrive) with different code rates. Compared with H.264, H.265 video is encrypted with more
content, and has more perceptual disruption.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 21

The second level is unrecognizable, that is, the encrypted pictures contain no valid information of the
original pictures. Because public videos are to attract potential buyers, encryption of public videos
needs to reach the hidden level; however, in the case of private videos, it is hard to define the term of
privacy and valid information of the original pictures should be minimized, so encryption of private
videos should reach the unrecognizable level. The security of the proposed encryption algorithm is
analyzed from two aspects: encryption quality and anti-attack capability.

4.2.1. Encryption Quality

Private videos will lose the global information after being encrypted and cannot be played, so it
is meaningless to discuss the encryption quality. For public videos, the best effect of encryption is:
when an unauthorized user watches an encrypted video, the user can acquire the contour information
of the pictures, but have no see to the detailed information. Figure 8 compares the encryption effect
of the 351st frame of an H.264 video sequence (BasketballDrive) with different code rates. The original
video presents the picture of “shoot”, and the audience can see the “shooting” movements from the
encrypted video, but other details including the “shooting player”, “the position of the defender”,
and “scoring” are blurred in the encrypted pictures. The visual effect can basically meet the
requirement of attracting potential buyers. Figure 9 shows the encryption effect of the 351st frame of
an H.265 video sequence (BasketballDrive) with different code rates. Compared with H.264, H.265
video is encrypted with more content, and has more perceptual disruption.

Figure 8. Encryption effect of H.264 video with different code rates (the 351st frame).

Figure 9. Encryption effect of H.265 video with different code rates (the 351st frame).

Figure 8. Encryption effect of H.264 video with different code rates (the 351st frame).

Sensors 2019, 19, x FOR PEER REVIEW 11 of 21

The second level is unrecognizable, that is, the encrypted pictures contain no valid information of the
original pictures. Because public videos are to attract potential buyers, encryption of public videos
needs to reach the hidden level; however, in the case of private videos, it is hard to define the term of
privacy and valid information of the original pictures should be minimized, so encryption of private
videos should reach the unrecognizable level. The security of the proposed encryption algorithm is
analyzed from two aspects: encryption quality and anti-attack capability.

4.2.1. Encryption Quality

Private videos will lose the global information after being encrypted and cannot be played, so it
is meaningless to discuss the encryption quality. For public videos, the best effect of encryption is:
when an unauthorized user watches an encrypted video, the user can acquire the contour information
of the pictures, but have no see to the detailed information. Figure 8 compares the encryption effect
of the 351st frame of an H.264 video sequence (BasketballDrive) with different code rates. The original
video presents the picture of “shoot”, and the audience can see the “shooting” movements from the
encrypted video, but other details including the “shooting player”, “the position of the defender”,
and “scoring” are blurred in the encrypted pictures. The visual effect can basically meet the
requirement of attracting potential buyers. Figure 9 shows the encryption effect of the 351st frame of
an H.265 video sequence (BasketballDrive) with different code rates. Compared with H.264, H.265
video is encrypted with more content, and has more perceptual disruption.

Figure 8. Encryption effect of H.264 video with different code rates (the 351st frame).

Figure 9. Encryption effect of H.265 video with different code rates (the 351st frame). Figure 9. Encryption effect of H.265 video with different code rates (the 351st frame).

The peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) are two major
indicators of video encryption quality [36]. PSNR is based on the difference between pixels and

Sensors 2019, 19, 5366 12 of 21

sensitive to detailed information; SSIM is concerned with more macroscopic aspects of pictures
including luminance, contrast ratio and structure. For public videos that need to attract potential
buyers, the encrypted video should have a smaller PSNR, and the SSIM between the encrypted and
original videos should be a little larger.

Videos of different resolution ratios are encoded into H.264 and H.265 formats by FFMEPG,
and then encrypted by the encryption algorithm we proposed. Tests on a video under different code
rates can simulate the encryption effect of video code streams in different network environments, and
tests on a video of different resolutions and a fixed code rate (5000 kbps) can simulate the encryption
effect of video streams on devices with different resolution ratios.

Typical PSNR values for good quality pictures range between 30 and 40 dB [37]. Figure 10a
shows that the PSNR values of an encrypted H.264 video (BasketballDrive) with different code
rates are between 14 to 21 dB. Figure 10b shows that the PSNR values of an encrypted H.265 video
(BasketballDrive) with different code rates are between 7 and 14 dB. By comparing these two figures,
we reach two conclusions: first, encrypted pictures show notable losses in the value of PSNR compared
with the original pictures; second, encrypted H.265 videos have a smaller PSNR value than encrypted
H.264 videos.

Sensors 2019, 19, x FOR PEER REVIEW 12 of 20

The peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) are two major
indicators of video encryption quality [36]. PSNR is based on the difference between pixels and
sensitive to detailed information; SSIM is concerned with more macroscopic aspects of pictures
including luminance, contrast ratio and structure. For public videos that need to attract potential
buyers, the encrypted video should have a smaller PSNR, and the SSIM between the encrypted and
original videos should be a little larger.

Videos of different resolution ratios are encoded into H.264 and H.265 formats by FFMEPG, and
then encrypted by the encryption algorithm we proposed. Tests on a video under different code rates
can simulate the encryption effect of video code streams in different network environments, and tests
on a video of different resolutions and a fixed code rate (5000 kbps) can simulate the encryption effect
of video streams on devices with different resolution ratios.

Typical PSNR values for good quality pictures range between 30 and 40 dB [37]. Figure 10a
shows that the PSNR values of an encrypted H.264 video (BasketballDrive) with different code rates
are between 14 to 21 dB. Figure 10b shows that the PSNR values of an encrypted H.265 video
(BasketballDrive) with different code rates are between 7 and 14 dB. By comparing these two figures,
we reach two conclusions: first, encrypted pictures show notable losses in the value of PSNR
compared with the original pictures; second, encrypted H.265 videos have a smaller PSNR value than
encrypted H.264 videos.

(a) (b)

Figure 10. Peak signal-to-noise ratio (PSNR) of encrypted videos with different code rates. (a) PSNR
of encrypted H.264 format videos with different rates; (b) PSNR of encrypted H.265 format videos
with different rates.

Figure 11 shows the test results on videos with different resolution ratios. Videos of five different
resolution ratios, 2560 × 1600, 1920 × 1080, 1280 × 720, 832 × 480, and 416 × 240, are tested. Figure 11a
shows that the PSNR values of an encrypted H.264 video with different resolution ratios are between
10 and 18 dB, and the encrypted pictures suffer considerable distortion. We encoded the test sequence
into H.265 videos and encrypted the videos according to the security standard for public videos. The
obtained PSNR values, as shown in Figure 11b, are between 4 and 15 dB. The encryption effect is
better than that of H.264 videos, and the distortion of pictures is severe.

Figure 10. Peak signal-to-noise ratio (PSNR) of encrypted videos with different code rates. (a) PSNR of
encrypted H.264 format videos with different rates; (b) PSNR of encrypted H.265 format videos with
different rates.

Figure 11 shows the test results on videos with different resolution ratios. Videos of five different
resolution ratios, 2560 × 1600, 1920 × 1080, 1280 × 720, 832 × 480, and 416 × 240, are tested. Figure 11a
shows that the PSNR values of an encrypted H.264 video with different resolution ratios are between
10 and 18 dB, and the encrypted pictures suffer considerable distortion. We encoded the test sequence
into H.265 videos and encrypted the videos according to the security standard for public videos.
The obtained PSNR values, as shown in Figure 11b, are between 4 and 15 dB. The encryption effect is
better than that of H.264 videos, and the distortion of pictures is severe.

Sensors 2019, 19, 5366 13 of 21
Sensors 2019, 19, x FOR PEER REVIEW 13 of 21

(a) (b)

Figure 11. PSNR of encrypted videos of different resolution ratios. (a) PSNR of encrypted H.264
format videos with different resolutions; (b) PSNR of encrypted H.265 format videos with different
resolutions.

SSIM is a metric to assess similarity of two images and has been widely used in video quality
assessment. In [38], Yeung et al. argue that SSIM is a more accurate metric than PSNR for image
quality assessment. The value of SSIM is between 0 and 1. The closer the SSIM value approaches 0,
the less similarity there is between the original image and the encrypted image. As Table 9 shows,
the average SSIM value of the BasketballDrive.H.264 video with different code rates before and after
encryption is 0.64. Table 10 shows the SSIM values of encrypted images and original images when a
video of different resolution ratios is encrypted. Regardless of the type of compression, encryption
will inevitably lead to reduction in the SSIM value. The SSIM value of H.265 videos are smaller than
that of H.264 videos.

Table 9. Structural similarity index (SSIM, average) of encrypted videos with different code rates

Sequence 2500kpbs/QP = 37 5000kpbs/QP = 32 10000kpbs/QP = 27 20000kpbs/QP = 22
H.264 0.692 0.646 0.616 0.611
H.265 0.275 0.347 0.386 0.415

Table 10. SSIM ALL (average) of encrypted videos of different resolution ratios

Sequence 416 × 240 832 × 480 1280 × 720 1920 × 1080
H.264 0.536 0.600 0.579 0.607
H.265 0.407 0.406 0.320 0.248

As the experiment result shows, videos encrypted by our encryption algorithm according to the
security standard for public videos have small average values of PSNR (16.43 dB for H.264 videos
and 10.57 dB for H.265 videos) and high average values of SSIM (0.61 for H.264 videos and 0.32 for
H.265 videos). Table 11 compares the encryption effect of our algorithm with that of other algorithms
proposed in recent studies. For an H.264 video, our algorithm achieves a PSNR value lower than that
obtained in [39] and similar to those in [37] and [40], but a higher SSIM value. For an H.265 video,
our algorithm achieves a PSNR value lower than those in [41] and [42], but a higher or similar SSIM
value. This indicates that when our algorithm is used to encrypt public videos, unauthorized users
can get more contour information and less detailed information, so it can meet the requirement of
attracting potential buyers.

Table 11. Comparison of our proposed algorithm with other algorithms

Figure 11. PSNR of encrypted videos of different resolution ratios. (a) PSNR of encrypted H.264 format
videos with different resolutions; (b) PSNR of encrypted H.265 format videos with different resolutions.

SSIM is a metric to assess similarity of two images and has been widely used in video quality
assessment. In [38], Yeung et al. argue that SSIM is a more accurate metric than PSNR for image
quality assessment. The value of SSIM is between 0 and 1. The closer the SSIM value approaches 0,
the less similarity there is between the original image and the encrypted image. As Table 9 shows,
the average SSIM value of the BasketballDrive.H.264 video with different code rates before and after
encryption is 0.64. Table 10 shows the SSIM values of encrypted images and original images when a
video of different resolution ratios is encrypted. Regardless of the type of compression, encryption will
inevitably lead to reduction in the SSIM value. The SSIM value of H.265 videos are smaller than that of
H.264 videos.

Table 9. Structural similarity index (SSIM, average) of encrypted videos with different code rates.

Sequence 2500kpbs/QP = 37 5000kpbs/QP = 32 10000kpbs/QP = 27 20000kpbs/QP = 22

H.264 0.692 0.646 0.616 0.611
H.265 0.275 0.347 0.386 0.415

Table 10. SSIM ALL (average) of encrypted videos of different resolution ratios.

Sequence 416 × 240 832 × 480 1280 × 720 1920 × 1080

H.264 0.536 0.600 0.579 0.607
H.265 0.407 0.406 0.320 0.248

As the experiment result shows, videos encrypted by our encryption algorithm according to the
security standard for public videos have small average values of PSNR (16.43 dB for H.264 videos
and 10.57 dB for H.265 videos) and high average values of SSIM (0.61 for H.264 videos and 0.32 for
H.265 videos). Table 11 compares the encryption effect of our algorithm with that of other algorithms
proposed in recent studies. For an H.264 video, our algorithm achieves a PSNR value lower than
that obtained in [39] and similar to those in [37,40], but a higher SSIM value. For an H.265 video,
our algorithm achieves a PSNR value lower than those in [41,42], but a higher or similar SSIM value.
This indicates that when our algorithm is used to encrypt public videos, unauthorized users can get
more contour information and less detailed information, so it can meet the requirement of attracting
potential buyers.

Sensors 2019, 19, 5366 14 of 21

Table 11. Comparison of our proposed algorithm with other algorithms.

Sequence Proposed [37] [39] [40] [41] [42]

H.264
PSNR 16.43 ~14 ~20 15.22 – –
SSIM 0.61 ~0.2 – 0.183 – –

H.265
PSNR 10.57 – – – 10.79 11.06
SSIM 0.35 – – – 0.11 0.34

4.2.2. Brute-force Attacks

To resist brute-force attacks, video encryption should have large key space and ciphertext space.
Our proposed massive video selective encryption algorithm uses AES to encrypt video segments, the
key length is 128 bits, and the key space reaches 2128, which is large enough.

There are two encryption levels: one is the private-video encryption level and the other is
public-video encryption level. As the requirements for encryption efficiency differ among videos, two
encryption levels have different ciphertext space.

Private-video encryption level. Sequence parameter sets and picture parameters sets (video
parameter sets are included in H.265 videos) are encrypted in the private video encryption scheme.
Parameters with a GOP size of 8 are chosen for encoding. The frame per second (fps) is set as 24. If HLS
segments a video into segments of 10 s [43], the frames included in each video slice is 10× 24 = 240.
In H.264 videos, the length of the sequence parameter set (SPS) is at least 31 bits (calculated by the
known fixed length, same for the following), and the length of PPS is at least 9 bits. In H.265 videos,
the length of VPS is at least 106 bits, SPS is at least 40 bits, and PPS is at least 27 bits, which are
notably longer than the length of encrypted content in H.264 videos. The size of ciphertext space
with video slices as the encryption unit is at least 230×(31+9) = 21200, and the ciphertext space for
private-video encryption is large enough. Table 12 shows that the encrypted content of videos with
different resolutions at the private-video encryption level.

Table 12. Encryption depth in Private-video encryption.

Sequence H.264 H.265

Keiba 1026 bytes 2574 bytes
Flowervase 1026 bytes 2652 bytes

KristenAndSara 899 bytes 5025 bytes
Kimono1 2100 bytes 2139 bytes

Traffic 532 bytes 1311 bytes

Public-video encryption level. The encryption space ratio (ESR) is calculated as the ratio of the
encrypted bits to all the bits of a compressed video bitstream. Table 13 shows the ESR of different
resolution videos when the video bit rate is 5000 kbps. As the resolution increases, the ESR value also
increases. It is shown that the more details the video contains, the stronger the ability of public-video
encryption to resist brute-force attacks.

Table 13. Encryption space ratio (ESR) in public-video encryption level.

Sequence H.264 H.265

Keiba 23.70% 35.02%
Flowervase 40.48% 43.87%

KristenAndSara 52.80% 58.28%
Kimono1 55.80% 46.66%

Traffic 79.43% 76.48%

Sensors 2019, 19, 5366 15 of 21

In summary, our proposed algorithm has large key space and ciphertext space, so it can defend
against brute-force attacks and replacement attacks.

4.2.3. Differential Attack

In differential attack, the attackers try to guess the keys by investigation of the encrypted bitstream
streams. Video encryption algorithm should be sensitive to keys. A slight change of decryption key
will make the ciphertext completely unable to decrypt. In our proposed encryption scheme, when
the decryption key K2 is only 1 bit different from the encryption K1, the video cannot be decrypted
correctly. Figure 12 shows the decrypted image of the 351st frame of the BasketballDrive encoded by
H.264. With the original frame as a reference, the PSNR value of the encrypted frame is 13.371646 and
the PSNR value of the corresponding incorrect decrypted frame is 13.313982. Using the wrong key to
decrypt the video cannot only restore the video, but also make the quality of the video worse.

Sensors 2019, 19, x FOR PEER REVIEW 15 of 21

In differential attack, the attackers try to guess the keys by investigation of the encrypted
bitstream streams. Video encryption algorithm should be sensitive to keys. A slight change of
decryption key will make the ciphertext completely unable to decrypt. In our proposed encryption
scheme, when the decryption key K2 is only 1 bit different from the encryption K1, the video cannot
be decrypted correctly. Figure 12 shows the decrypted image of the 351st frame of the BasketballDrive
encoded by H.264. With the original frame as a reference, the PSNR value of the encrypted frame is
13.371646 and the PSNR value of the corresponding incorrect decrypted frame is 13.313982. Using
the wrong key to decrypt the video cannot only restore the video, but also make the quality of the
video worse.

(a) (b) (c)

Figure 12. Key sensitivity analysis. (a) Original frame; (b) Encrypted with K1; (c) Decrypted by K2

4.2.4. Known-Plaintext Attack

In this type of attacks, the attackers use the known plaintext and the corresponding ciphertext
to obtain the key or the whole plaintext. However, our proposed algorithm has enough ciphertext
space. For example, the test sequence “BasketballDrive” contains 501 frames. The compressed video
encoded by H.264 according to Table. 7 will have at least 63 IDR frames, and a total of 3,060,512 bytes
data will be encrypted. Such a large amount of data makes it difficult for attackers to guess the whole
plaintext.

4.2.5. Interference Attack

Selectively encrypted video is vulnerable to interference attack [40]. Attackers can infer the
presence of an object in any one of the R, G, B domains. Figure 13 shows that the pixel distribution
histogram of R, G, B channels before and after the 351st frame is encrypted. In the three channels, the
pixel distribution of the encrypted frame is distorted to varying degrees. It illustrates that the
proposed algorithm can resist the interference attack.

Figure 12. Key sensitivity analysis. (a) Original frame; (b) Encrypted with K1; (c) Decrypted by K2.

4.2.4. Known-Plaintext Attack

In this type of attacks, the attackers use the known plaintext and the corresponding ciphertext to
obtain the key or the whole plaintext. However, our proposed algorithm has enough ciphertext space.
For example, the test sequence “BasketballDrive” contains 501 frames. The compressed video encoded
by H.264 according to Table 7 will have at least 63 IDR frames, and a total of 3,060,512 bytes data will
be encrypted. Such a large amount of data makes it difficult for attackers to guess the whole plaintext.

4.2.5. Interference Attack

Selectively encrypted video is vulnerable to interference attack [40]. Attackers can infer the
presence of an object in any one of the R, G, B domains. Figure 13 shows that the pixel distribution
histogram of R, G, B channels before and after the 351st frame is encrypted. In the three channels,
the pixel distribution of the encrypted frame is distorted to varying degrees. It illustrates that the
proposed algorithm can resist the interference attack.

Sensors 2019, 19, 5366 16 of 21

Sensors 2019, 19, x FOR PEER REVIEW 16 of 21

Figure 13. Distribution comparison between the original 351st frame and the corresponding
encrypted frame.

4.3. Encryption Efficiency

Massive video encryption is provided to video manufacturers and individuals that are sensitive
to encryption efficiency, and scenarios like video conferences and live sports have high standard for
real-time transmission. Moreover, as the cloud computing service is very flexible, the encryption
service should have high flexibility and scalability [44].

We use the Spark streaming processing system to extend the selective video encryption
algorithm. In the experiment, we segment the 100G video with 120 s as the fixed unit, and execute
the encryption algorithm for ten times. Figure 14 shows the time consumed by each encryption
operation. In the experiment environment, the public-video encryption algorithm spends an average
of 479.6693 s to complete encryption of the 100G video content, so the average encryption speed is
1708 Mbps. The code rate of a 4K-resolution video compressed by H.265 is 11~40 Mbps. Therefore,
in the experiment environment, the Spark cluster can meet the encryption requirement for 42
channels of 4K-resolution videos. Meanwhile, as the size of the Spark cluster grows and the resource
scheduling and optimizing algorithm improves, the encryption efficiency will improve.

Figure 13. Distribution comparison between the original 351st frame and the corresponding
encrypted frame.

4.3. Encryption Efficiency

Massive video encryption is provided to video manufacturers and individuals that are sensitive
to encryption efficiency, and scenarios like video conferences and live sports have high standard for
real-time transmission. Moreover, as the cloud computing service is very flexible, the encryption
service should have high flexibility and scalability [44].

We use the Spark streaming processing system to extend the selective video encryption algorithm.
In the experiment, we segment the 100G video with 120 s as the fixed unit, and execute the encryption
algorithm for ten times. Figure 14 shows the time consumed by each encryption operation. In the
experiment environment, the public-video encryption algorithm spends an average of 479.6693 s to
complete encryption of the 100G video content, so the average encryption speed is 1708 Mbps. The code
rate of a 4K-resolution video compressed by H.265 is 11~40 Mbps. Therefore, in the experiment
environment, the Spark cluster can meet the encryption requirement for 42 channels of 4K-resolution
videos. Meanwhile, as the size of the Spark cluster grows and the resource scheduling and optimizing
algorithm improves, the encryption efficiency will improve.

Sensors 2019, 19, 5366 17 of 21
Sensors 2019, 19, x FOR PEER REVIEW 17 of 21

Figure 14. Encryption efficiency

4.4. Loss of Compression

For massive videos, loss of compression will cause large consumption of the storage space and
transmission bandwidth. The massive video selective encryption algorithm we propose executes
encryption after video encoding, which can in theory reduce the loss of compression to 0. By
comparing the size of videos before and after encryption (Table 14), we consider that the massive
video selective encryption algorithm we propose causes no loss of compression.

Table 14. Video size before and after encryption.

Test sequence Encoding
format

Encryption
level

Pre-encryption size
(byte)

Post-encryption size
(byte)

Johnny.yuv H.264 Public video 15,686,244 15,686,244
ParkScene.yuv H.264 Private video 12,743,282 12,743,282

Cactus.yuv H.265 Public video 11,564,461 11,564,461
RaceHorses.yuv H.265 Private video 3,034,798 3,034,798

4.5. Fine-grained Access Control

Massive video fine-grained access control allows operators to develop more flexible services,
but increases the workload for key management. The service framework we propose uses a layered
key management scheme. In this scheme, the video encryption layer takes the NALU as the basic
encryption unit, each NALU is matched with one content key, and it realizes NALU-level fine-
grained encryption and stores video information and corresponding content keys into the video
index. In the service layer, the different parts in the encrypted video’s index file are encrypted by the
service keys which are generated according to different services. In the authentication &
authorization layer, the session keys are built between users and the server, and then used to
transport service keys to the corresponding users. In this way, fine-grained access to a particular part
of one video is realized. Because massive amounts of content keys are stored in the index, the key
management module only needs to manage a few service keys.

Figure 15 describes a common fine-grained access control scenario. In this scenario, there is a 1-
h video. The first six minutes of the video can be freely viewed by tourists, and the rest can only be
viewed by VIP users. Suppose the video play speed is 25 frames per second and the raw video
contains 90,000 frames. When the GOP is 8, the whole video has at least 11,250 IDR frames,
corresponding to 11,250 CKs. The described scenario has two access levels: 1) the first 6 min; 2) the
last 56 min. The 1125 CKs corresponding to the first 6 min video will be encrypted by a service key
SK1, and the rest will be encrypted by other service key SK2. The tourists can only get SK1, so they
can only play the first 6 min of video. VIP users can get both of the two SKs, so they can watch the
whole video. Unlike DES, AES algorithm does not have weak keys. A large number of CKs are

Figure 14. Encryption efficiency.

4.4. Loss of Compression

For massive videos, loss of compression will cause large consumption of the storage space and
transmission bandwidth. The massive video selective encryption algorithm we propose executes
encryption after video encoding, which can in theory reduce the loss of compression to 0. By comparing
the size of videos before and after encryption (Table 14), we consider that the massive video selective
encryption algorithm we propose causes no loss of compression.

Table 14. Video size before and after encryption.

Test Sequence Encoding Format Encryption Level Pre-Encryption
Size (Byte)

Post-Encryption
Size (Byte)

Johnny.yuv H.264 Public video 15,686,244 15,686,244
ParkScene.yuv H.264 Private video 12,743,282 12,743,282

Cactus.yuv H.265 Public video 11,564,461 11,564,461
RaceHorses.yuv H.265 Private video 3,034,798 3,034,798

4.5. Fine-Grained Access Control

Massive video fine-grained access control allows operators to develop more flexible services,
but increases the workload for key management. The service framework we propose uses a layered
key management scheme. In this scheme, the video encryption layer takes the NALU as the basic
encryption unit, each NALU is matched with one content key, and it realizes NALU-level fine-grained
encryption and stores video information and corresponding content keys into the video index. In the
service layer, the different parts in the encrypted video’s index file are encrypted by the service keys
which are generated according to different services. In the authentication & authorization layer,
the session keys are built between users and the server, and then used to transport service keys to
the corresponding users. In this way, fine-grained access to a particular part of one video is realized.
Because massive amounts of content keys are stored in the index, the key management module only
needs to manage a few service keys.

Figure 15 describes a common fine-grained access control scenario. In this scenario, there is a
1-h video. The first six minutes of the video can be freely viewed by tourists, and the rest can only be
viewed by VIP users. Suppose the video play speed is 25 frames per second and the raw video contains
90,000 frames. When the GOP is 8, the whole video has at least 11,250 IDR frames, corresponding
to 11,250 CKs. The described scenario has two access levels: (1) the first 6 min; (2) the last 56 min.
The 1125 CKs corresponding to the first 6 min video will be encrypted by a service key SK1, and the
rest will be encrypted by other service key SK2. The tourists can only get SK1, so they can only play the
first 6 min of video. VIP users can get both of the two SKs, so they can watch the whole video. Unlike

Sensors 2019, 19, 5366 18 of 21

DES, AES algorithm does not have weak keys. A large number of CKs are generated by the video
encryption algorithm itself through a random function. The CKs are saved as index files which will be
encrypted by SKs. The key management center only needs to generate and manage two keys, SK1
and SK2. When the access control policy is changed, only two keys needs to be updated or revoked.
The burden of the key management center is greatly reduced. Because the encryption content of each
CK is very few and only one NALU, the proposed scheme can support more fine-grained and complex
access control policy easily.

Sensors 2019, 19, x FOR PEER REVIEW 18 of 21

generated by the video encryption algorithm itself through a random function. The CKs are saved as
index files which will be encrypted by SKs. The key management center only needs to generate and
manage two keys, SK1 and SK2. When the access control policy is changed, only two keys needs to
be updated or revoked. The burden of the key management center is greatly reduced. Because the
encryption content of each CK is very few and only one NALU, the proposed scheme can support
more fine-grained and complex access control policy easily.

... ...

1 hour video

The first 6 mins (IDR) The last 54 mins (IDR)

...CK1 CK2 CK1126 CK1127 CK11249 CK11250CK1125

SK1 SK2

...

Guest VIP

Figure 15. A fine-grained access control scenario.

5. Conclusion and Future Work

Video content contains more information than textual content, but faces more problems with
regard to copyright and privacy leakage, so it is important to ensure security when the videos are
transmitted to the cloud server. Terminal devices, due to limited computing capability, are not
suitable for large-scale encryption, and the services have different requirements for real-timeliness
and encryption security. To solve these problems, we propose a fine-grained video encryption service
that consists of the cloud-fog-local framework, a fine-grained video encryption algorithm based on
NALU and a massive video encryption framework based on Spark. Compared with other cloud
computing services, our proposed service deploys video encryption on the fog layer that is closer to
the local servers, and the cloud layer is only responsible for key management and authority control,
so the framework reduces latency of video services. The experiment and analysis verify that our
proposed video encryption algorithm can meet the security requirements for both public videos and
private videos, and incurs no loss of compression. The encryption speed of encrypting public videos
by using the Spark cluster in the experiment environment reaches 1708 Mbps, so it can meet real-
time encryption for at least 42 channels of 4K-resolution videos.

In future, our main work will include the following two aspects. First, for the private-video
encryption level, we have paid more attention to the efficiency than the security. However, it is
necessary to further explore its security capability. Based on the security analysis, we will improve
the private video encryption schemes. Second, although the layered key management mechanism
can greatly save the workload of the key management center, there is also a new problem, namely
that the video encryption key CK cannot be directly updated and revoked. Part of our future work
will be focused on how to realize the periodic, automatic and efficient update of CKs.

Author Contributions: Conceptualization, writing—original draft preparation, software, H.L.; formal analysis,
funding acquisition, Z.G.; supervision, writing—review and editing, L.D.; methodology, resources, Y.H.;
investigation, validation, Y.C.; project administration, writing—review and editing, Z.T.

Figure 15. A fine-grained access control scenario.

5. Conclusions and Future Work

Video content contains more information than textual content, but faces more problems with
regard to copyright and privacy leakage, so it is important to ensure security when the videos are
transmitted to the cloud server. Terminal devices, due to limited computing capability, are not
suitable for large-scale encryption, and the services have different requirements for real-timeliness and
encryption security. To solve these problems, we propose a fine-grained video encryption service that
consists of the cloud-fog-local framework, a fine-grained video encryption algorithm based on NALU
and a massive video encryption framework based on Spark. Compared with other cloud computing
services, our proposed service deploys video encryption on the fog layer that is closer to the local
servers, and the cloud layer is only responsible for key management and authority control, so the
framework reduces latency of video services. The experiment and analysis verify that our proposed
video encryption algorithm can meet the security requirements for both public videos and private
videos, and incurs no loss of compression. The encryption speed of encrypting public videos by using
the Spark cluster in the experiment environment reaches 1708 Mbps, so it can meet real-time encryption
for at least 42 channels of 4K-resolution videos.

In future, our main work will include the following two aspects. First, for the private-video
encryption level, we have paid more attention to the efficiency than the security. However, it is
necessary to further explore its security capability. Based on the security analysis, we will improve the
private video encryption schemes. Second, although the layered key management mechanism can
greatly save the workload of the key management center, there is also a new problem, namely that the
video encryption key CK cannot be directly updated and revoked. Part of our future work will be
focused on how to realize the periodic, automatic and efficient update of CKs.

Sensors 2019, 19, 5366 19 of 21

Author Contributions: Conceptualization, writing—original draft preparation, software, H.L.; formal analysis,
funding acquisition, Z.G.; supervision, writing—review and editing, L.D.; methodology, resources, Y.H.;
investigation, validation, C.Y.; project administration, writing—review and editing, Z.T.

Funding: This work is supported in part by the National Key R&D Program of China 2018YEB1004003, China
grants U1636215.

Acknowledgments: We thank the anonymous reviewers for their very helpful comments which helped improve
the presentation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, T.; Mei, Y.; Jia, W.; Zheng, X.; Wang, G.; Xie, M. Edge-based differential privacy computing for
sensor-cloud systems. J. Parallel Distrib. Comput. 2019, 136, 75–85. [CrossRef]

2. Liu, F.; Koenig, H. A survey of video encryption algorithms. Comput. Secur. 2010, 29, 3–15. [CrossRef]
3. Stutz, T.; Uhl, A. A survey of h.264 avc/svc encryption. IEEE Trans. Circuits Syst. Video Technol. 2011, 22,

325–339. [CrossRef]
4. Eiza, M.H.; Ni, Q.; Shi, Q. Secure and privacy-aware cloud-assisted video reporting service in 5G-enabled

vehicular networks. IEEE Trans. Veh. Technol. 2016, 65, 7868–7881. [CrossRef]
5. Pei, D.; Guo, X.; Zhang, J. A video encryption service based on cloud computing. In Proceedings of the 2017

IEEE 7th International Conference on Electronics Information and Emergency Communication (ICEIEC2017),
Shenzhen, China, 21–23 July 2017.

6. Tian, Z.; Su, S.; Shi, W.; Du, X.; Guizani, M.; Yu, X. A data-driven method for future Internet route decision
modeling. Future Gener. Comput. Syst. 2019, 95, 212–220. [CrossRef]

7. Chung, Y.; Lee, S.; Jeon, T.; Park, D. Fast video encryption using the H. 264 error propagation property for
smart mobile devices. Sensors 2015, 15, 7953–7968. [CrossRef]

8. Kaknjo, A.; Rao, M.; Omerdic, E.; Newe, T.; Toal, D. Real-Time Secure/Unsecure Video Latency
Measurement/Analysis with FPGA-Based Bump-in-the-Wire Security. Sensors 2019, 19, 2984. [CrossRef]

9. Lin, T.; Chen, X.; Wang, S. Pseudo-2D-matching based dual-coder architecture for screen contents coding.
In Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW),
San Jose, CA, USA, 15–19 July 2013.

10. Tian, Z.; Shi, W.; Wang, Y.; Zhu, C.; Du, X.; Su, S.; Sun, Y.; Nadra, G. Real Time Lateral Movement Detection
based on Evidence Reasoning Network for Edge Computing Environment. IEEE Trans. Ind. Inf. 2019, 15,
4285–4294. [CrossRef]

11. Metzler, R.E.L.; Agaian, S.S. Selective region encryption using a fast shape adaptive transform. In Proceedings
of the 2010 IEEE International Conference on Systems, Man and Cybernetics (SMC2010), Istanbul, Turkey,
10–13 October 2010.

12. Carrillo, P.; Kalva, H.; Magliveras, S. Compression independent object encryption for ensuring privacy in
video surveillance. In Proceedings of the 2008 IEEE International Conference on Multimedia and Expo
(ICME2008), Hannover, Germany, 23–26 June 2008.

13. Shen, H.; Zhuo, L.; Zhao, Y. An efficient motion reference structure based selective encryption algorithm for
H.264 videos. IET Inf. Secur. 2014, 8, 199–206. [CrossRef]

14. Wang, Q.; Wang, X. A new selective video encryption algorithm for the H.264 standard. In Proceedings of
the 2014 IEEE International Conference on Progress in Informatics and Computing (PIC2014), Shanghai,
China, 16–18 May 2014.

15. Zeng, B.; Yeung, S.K.A.; Zhu, S.; Gabbouj, M. Perceptual Encryption of H.264 Videos: Embedding Sign-Flips
into the Integer-Based Transforms. IEEE Trans. Inf. Forensics Secur. 2014, 9, 309–320. [CrossRef]

16. Ma, X.; Yang, L.T.; Xiang, Y.; Zeng, W.K.; Zou, D.; Jin, H. Fully reversible privacy region protection for cloud
video surveillance. IEEE Trans. Cloud Comput. 2015, 5, 510–522. [CrossRef]

17. Shahid, Z.; Chaumont, M.; Puech, W. Over the real-time selective encryption of AVS video coding standard.
In Proceedings of the 2010 18th European Signal Processing Conference (EUSIPCO2010), Aalborg, Denmark,
23–27 August 2010.

18. Shahid, Z.; Chaumont, M.; Puech, W. Fast Protection of H.264/AVC by Selective Encryption of CAVLC and
CABAC for I and P Frames. IEEE Trans. Circuits Syst. Video Technol. 2011, 21, 565–576. [CrossRef]

http://dx.doi.org/10.1016/j.jpdc.2019.10.009
http://dx.doi.org/10.1016/j.cose.2009.06.004
http://dx.doi.org/10.1109/TCSVT.2011.2162290
http://dx.doi.org/10.1109/TVT.2016.2541862
http://dx.doi.org/10.1016/j.future.2018.12.054
http://dx.doi.org/10.3390/s150407953
http://dx.doi.org/10.3390/s19132984
http://dx.doi.org/10.1109/TII.2019.2907754
http://dx.doi.org/10.1049/iet-ifs.2012.0349
http://dx.doi.org/10.1109/TIFS.2013.2293955
http://dx.doi.org/10.1109/TCC.2015.2469651
http://dx.doi.org/10.1109/TCSVT.2011.2129090

Sensors 2019, 19, 5366 20 of 21

19. Zhao, Y.; Zhuo, L. A content-based encryption scheme for wireless H.264 compressed videos. In Proceedings
of the 2012 International Conference on Wireless Communications and Signal Processing (WCSP2012),
Huangshan, China, 25–27 October 2012.

20. Van Wallendael, G.; Boho, A.; De Cock, J.; Munteanu, A.; van de Walle, R. Encryption for high efficiency
video coding with video adaptation capabilities. IEEE Trans. Consum. Electron. 2013, 59, 634–642. [CrossRef]

21. Tian, Z.; Li, M.; Qiu, M.; Sun, Y.; Su, S. Block-DEF: A secure digital evidence framework using blockchain.
Inf. Sci. 2019, 491, 151–165. [CrossRef]

22. Wee, S.J.; Apostolopoulos, J.G. Secure scalable video streaming for wireless networks. In Proceedings of the
2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, USA,
7–11 May 2001.

23. Xiao, C.; Lian, S.; Wang, L.; Ma, S.; Lv, W.; Xu, K. A speed-adaptive media encryption scheme for real-time
recording and playback system. Eurasip J. Wirel. Commun. Netw. 2010, 2010, 1–9. [CrossRef]

24. Puvvadi, U.L.N.; Di Benedetto, K.; Patil, A.; Kang, K.; Park, Y. Cost-effective security support in real-time
video surveillance. IEEE Trans. Ind. Inform. 2015, 11, 1457–1465. [CrossRef]

25. Wang, T.; Luo, H.; Zheng, X.; Xie, M. Crowdsourcing mechanism for trust evaluation in cpcs based on
intelligent mobile edge computing. ACM Trans. Intell. Syst. Technol. 2019, 10, 62. [CrossRef]

26. Senior, A.; Pankanti, S.; Hampapur, A.; Brown, L.; Tian, Y.; Ekin, A.; Connell, J.; Shu, C.F.; Lu, M. Enabling
Video Privacy through Computer Vision. IEEE Secur. Priv. 2005, 3, 50–57. [CrossRef]

27. Wu, J.; Su, Z.; Wang, S.; Li, J. Crowd Sensing-Enabling Security Service Recommendation for Social Fog
Computing Systems. Sensors 2017, 17, 1744. [CrossRef]

28. Tian, Z.; Luo, C.; Qiu, J.; Du, X.; Guizani, M. A Distributed Deep Learning System for Web Attack Detection
on Edge Devices. IEEE Trans. Ind. Inform. 2019. [CrossRef]

29. Abbas, N.; Asim, M.; Tariq, N.; Baker, T.; Abbas, S. A mechanism for securing IoT-enabled applications at the
fog layer. J. Sens. Actuator Netw. 2019, 8, 16. [CrossRef]

30. Li, H.; Yang, C.; Liu, J. A novel security media cloud framework. Comput. Electr. Eng. 2019, 74, 605–615.
[CrossRef]

31. Sanchez-Iborra, R.; Sánchez-Gómez, J.; Pérez, S.; Fernández, P.J.; Santa, J.; Hernández-Ramos, J.; Skarmeta, A.F.
Enhancing lorawan security through a lightweight and authenticated key management approach. Sensors
2018, 18, 1833. [CrossRef] [PubMed]

32. Wang, T.; Bhuiyan, M.Z.A.; Wang, G.; Qi, L.; Wu, J.; Hayajneh, T. Preserving Balance between Privacy and
Data Integrity in Edge-Assisted Internet of Things. IEEE Int. Things J. 2019, (in press). [CrossRef]

33. FFMPEG. Available online: http://www.FFmpeg.org (accessed on 9 October 2019).
34. Ferroukhi, M.; Ouahabi, A.; Attari, M.; Habchi, Y.; Taleb-Ahmed, A. Medical Video Coding Based on

2nd-Generation Wavelets: Performance Evaluation. Electronics 2019, 8, 88. [CrossRef]
35. Tang, L. Methods for encrypting and decrypting MPEG video data efficiently. In Proceedings of the fourth

ACM international conference on Multimedia, Boston, MA, USA, 18–22 November 1996.
36. Thiyagarajan, K.; Lu, R.; El-Sankary, K.; Zhu, H. Energy-Aware Encryption for Securing Video Transmission

in Internet of Multimedia Things. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 610–624. [CrossRef]
37. Khlif, N.; Masmoudi, A.; Kammoun, F.; Masmoudi, N. Secure chaotic dual encryption scheme for H. 264/AVC

video conferencing protection. IET Image Process. 2017, 12, 42–52. [CrossRef]
38. Yeung, S.K.A.; Zhu, S.; Zeng, B. Quality assessment for a perceptual video encryption system. In Proceedings

of the 2010 IEEE International Conference on Wireless Communications, Networking and Information
Security, Beijing, China, 25–27 June 2010.

39. Tabash, F.K.; Izharuddin, M. Efficient encryption technique for H. 264/AVC videos based on CABAC and
logistic map. Multimed. Tools Appl. 2019, 78, 7365–7379. [CrossRef]

40. Shifa, A.; Asghar, M.N.; Noor, S.; Gohar, N.; Fleury, M. Lightweight Cipher for H. 264 Videos in the Internet
of Multimedia Things with Encryption Space Ratio Diagnostics. Sensors 2019, 19, 1228. [CrossRef]

41. Sallam, A.I.; Faragallah, O.S.; El-Rabaie, E.S.M. HEVC selective encryption using RC6 block cipher technique.
IEEE Trans. Multimed. 2017, 20, 1636–1644. [CrossRef]

42. Xu, D. Commutative Encryption and data hiding in HEVC Video Compression. IEEE Access 2019, 7,
66028–66041. [CrossRef]

http://dx.doi.org/10.1109/TCE.2013.6626250
http://dx.doi.org/10.1016/j.ins.2019.04.011
http://dx.doi.org/10.1155/2010/371513
http://dx.doi.org/10.1109/TII.2015.2491259
http://dx.doi.org/10.1145/3324926
http://dx.doi.org/10.1109/MSP.2005.65
http://dx.doi.org/10.3390/s17081744
http://dx.doi.org/10.1109/TII.2019.2938778
http://dx.doi.org/10.3390/jsan8010016
http://dx.doi.org/10.1016/j.compeleceng.2018.07.022
http://dx.doi.org/10.3390/s18061833
http://www.ncbi.nlm.nih.gov/pubmed/29874839
http://dx.doi.org/10.1109/JIOT.2019.2951687
http://www.FFmpeg.org
http://dx.doi.org/10.3390/electronics8010088
http://dx.doi.org/10.1109/TCSVT.2018.2808174
http://dx.doi.org/10.1049/iet-ipr.2017.0022
http://dx.doi.org/10.1007/s11042-018-6494-3
http://dx.doi.org/10.3390/s19051228
http://dx.doi.org/10.1109/TMM.2017.2777470
http://dx.doi.org/10.1109/ACCESS.2019.2916484

Sensors 2019, 19, 5366 21 of 21

43. HTTP Live Streaming. Available online: https://tools.ietf.org/html/rfc8216 (accessed on 9 October 2019).
44. Tian, Z.; Gao, X.; Su, S.; Qiu, J.; Du, X.; Guizani, M. Evaluating reputation management schemes of internet

of vehicles based on evolutionary game theory. IEEE Trans. Veh. Technol. 2019, 68, 5971–5980. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://tools.ietf.org/html/rfc8216
http://dx.doi.org/10.1109/TVT.2019.2910217
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Fine-Grained Video Encryption Service
	Cloud-Fog-Local Video Encryption Service Architecture
	System Architecture
	Key Management Scheme

	Fine-Grained Encryption Algorithm Based on NALU
	Massive Video Encryption Framework Based on Spark

	Experiments and Analyses
	Experiment Environment and Deployment
	Security
	Encryption Quality
	Brute-force Attacks
	Differential Attack
	Known-Plaintext Attack
	Interference Attack

	Encryption Efficiency
	Loss of Compression
	Fine-Grained Access Control

	Conclusions and Future Work
	References

