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Abstract: The concept of Continuous Authentication is to authenticate an entity on the basis of
a digital output generated in a continuous way by the entity itself. This concept has recently
been applied in the literature for the continuous authentication of persons on the basis of intrinsic
features extracted from the analysis of the digital output generated by wearable sensors worn by
the subjects during their daily routine. This paper investigates the application of this concept to
the continuous authentication of automotive vehicles, which is a novel concept in the literature and
which could be used where conventional solutions based on cryptographic means could not be used.
In this case, the Continuous Authentication concept is implemented using the digital output from
Inertial Measurement Units (IMUs) mounted on the vehicle, while it is driving on a specific road path.
Different analytical approaches based on the extraction of statistical features from the time domain
representation or the use of frequency domain coefficients are compared and the results are presented
for various conditions and road segments. The results show that it is possible to authenticate vehicles
from the Inertial Measurement Unit (IMU) recordings with great accuracy for different road segments.
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1. Introduction

Authentication is an important function in security as it ensures that the identity of an entity is
recognized by a system whose services the entity would like to access. Authentication is usually
combined with other security functions like authorization where the entity, once authenticated,
is authorized to access specific services or data. The verification of the identity can be implemented
using different means including information known by the entity (e.g., login/password) based on what
the entity is (e.g., biometric features). This information can be provided only once at the beginning
of the interaction between the entity and the system or more than once either periodically or in a
continuous way. The latter methods are considered more robust than one time login against external
attacks because an attacker, who aims to impersonate the real entity, has to provide authentication
information more than once, which is considerably more difficult [1,2]. On the other side, the request
for an additional login/password after the initial login may negatively impact the usability of the
human-machine interface [3]. In this context, the concept of continuous authentication has been mostly
proposed in the literature for human authentication. It makes use of the physiological and behavioral
biometrics using built-in sensors and accessories. For example, the research results in the literature
have proven that persons can be uniquely identified by the way they use mobile devices [1,4], they type
on a keyboard [5] or perform different activities. Details on the literature results are provided in the
following paragraphs.
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Continuous authentication can be performed in the application scenarios where the entity must
access services to the system for a considerable amount of time and where the biometrics information
can be collected from the authentication system. For example, smart city application scenarios could
benefit from this approach [6]. Various techniques to implement continuous authentication for persons
have been proposed and validated by the research community in recent times. While continuous
authentication has been researched for human beings in recent years, there has been limited attention
to other entities especially in the transportation domain (e.g., a study on the identification of transport
modes rather than transport vehicles is Reference [7]). Details on the existing related work are
presented in Section 2.

Our Contribution

This paper proposes a proof of concept on the application of the continuous authentication
technique (used in the literature to identify human beings) to the road transportation domain and more
specifically to the problem of device identification where the device is actually a vehicle (i.e., a car in
this paper). This paper investigates the possibility of authenticating a car on the basis of its “biometrics”
derived from the way the car responds to the irregularities (e.g., potholes, bumpers) of the road surface.
The rationale is that the components (e.g., bumpers) of different cars provide a different response to
the same segment of the road surface. Such responses can be evaluated by using the digital output
provided by Inertial Measurement Units (IMU) and its components (e.g., accelerometers, gyroscope)
installed in a car in a similar way that continuous authentication is implemented for human beings
using wearable sensor or smartphones (which also contain IMUs). This paper presents the evaluation
results for the application of techniques derived from the literature on continuous authentication.
In particular, two different approaches are compared both from an identification accuracy and an
execution time point of view. The results presented in this paper show that each vehicle can be uniquely
identified with high accuracy by the analysis of the data collected by Inertial Measurement Unit (IMU)
accelerometers and gyroscopes while the car is driving. To the knowledge of the authors, it is the first
time that the concept of continuous authentication is applied to vehicles (i.e., car).

A potential scenario for the use of continuous authentication of vehicles (or cars as the two terms
will be used with the same meaning in the rest of this paper) is based on Intelligent Transport Systems
(ITS) applications, where the authentication of the vehicle is needed a number of times during the
vehicle trip like “insurance as you drive” or electronic tolling. The continuous authentication can
complement (as multi-factor) authentication based on cryptographic means or replace it when the
set-up of a Public Key Infrastructure (PKI) is too costly or complex to achieve. Then, the motivation
of the paper is to propose a different form of device (i.e., the car) identification and authentication
when a cryptographic mean cannot be applied or in case of the compromise of the cryptographic
system (e.g., PKI) and the presence of an invalid cryptographic information (e.g., certificate) in the
vehicle. In other words, this approach can be applied in all the cases where a cryptographic mean is
not available, either because it is not implemented or because it has been compromised. The authors
agree that, in the majority of the cases, a cryptographic solution is the primary solution because of
its proven effectiveness. In addition, it can be noted that there are also examples of regulations for
commercial vehicles were data is manipulated and tampered even if the cryptography authentication
is not compromised [8]. Because the form of authentication described in this paper is based on the
data analysis, it can mitigate such issues. The proposed approach is based on the consideration that
modern vehicles are increasingly equipped with a variety of sensors including IMU, which are used for
a variety of purposes but mostly to improve transportation comfort and driveability [9]. Many authors
have also proposed the use of smartphones mounted in the vehicle for easier accessibility to the data
generated by the built-in IMU [10].
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The deployment scenario is similar to the continuous authentication of a human-using behavioral
metric. In an initial training phase, data samples are acquired through remote communication by an
entity external (e.g., a cloud application) to the vehicle. Then, discriminating features are identified and
extracted from the data. In a subsequent phase, an authentication system (either based on the same
cloud application or connected to it) uses a smaller data subset and compares it against the training
model for identification. The two key performance metrics are (a) the identification accuracy and (b)
the processing time for authentication, which is proportional to the amount of the data, which must be
processed. Because IMU data ca have hundreds of samples per second, a dimensionality reduction
is necessary, while preserving the identification accuracy. In this paper, we used professional IMUs
to record the data (while driving) originating from accelerometers and gyroscopes with high sample
rates. In the subsequent analysis, the sampling rate is decreased to the rate commonly used by mass
market smartphones.

In this initial study, the focus is to investigate the capability of authenticating the vehicle (i.e., car)
in similar conditions and on the same road surface. In a practical application of this concept, different
variables can influence the classification accuracy including the driver, different loads in vehicle
(number of passengers), aging of the vehicle (e.g., tyre consumption) and different environmental
conditions (e.g., rain, sunny weather). Each of these variables can influence the application of the
method, but it is important to investigate the impact of each variable independently starting from a
baseline. We also note that there is already an extensive literature on the identification of the driver
and his/her driving style based on data collected by accelerometers (see References [7,11]) and it
was not the intention to repeat such specific analysis here. Then, the focus of this paper was to
establish a baseline where the most effective continuous authentication methods could be identified in
a quantitative way. Future developments will evaluate the impact of each of the variables (see also
Conclusions section).

The structure of this paper is as follows: Section 2 provides an overview of the related work
on continuous authentication in all domains, authentication of vehicles and on the use of IMU to
collect behavioral statistics in ITS. Section 3 describes the materials used in the experimental work.
Section 4 describes the adopted methodology to collect the data and to perform the authentication.
Section 5 provides the results of the implementation of the authentication where the impact of different
hyper-parameters was quantitatively evaluated. Section 6 summarizes and discusses the key findings
from the results and identify potential future developments.

2. Related Work

A very recent (2019) survey [12] reviews the techniques for continuous authentication using
Internet of Things devices. Another review provides an overview of the state of art on continuous
authentication using mobile devices [1]. Both surveys are specific to the problem of continuous
authentication of human beings on the basis of behavioral bio-metrics rather than explicit and single
phase authentication mechanisms like the password, a Personal Identification Number (PIN), or a secret
pattern on the display of the smartphone. Both reviews highlight the weaknesses of the traditional
approaches and the advantages of the continuous authentication approach. For example, passwords or
PINs can be forgotten or systems may be vulnerable immediately after the initial login. In addition,
some authentication mechanisms require the implementation of sophisticated Public Key Infrastructure
(PKI)s, which are also vulnerable to attacks. To overcome these issues, the biometrics and security
research communities have developed techniques for continuous authentication on mobile devices [1].
Most of these methods make use of physiological and behavioral biometrics, using built-in sensors
and accessories such as the gyroscope, touch screen, accelerometer, orientation sensor and pressure
sensor, to monitor and authenticate the identity of the user.

In this review of the state-of-the-art, we focus specifically on continuous authentication based
on accelerometers and gyroscopes as these components are also used in this paper for vehicle
authentication. This type of continuous authentication is based on the concept of identifying the
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gait of a human being while s(he) is performing a specific activity like walking, running or lifting
an object. The data needed to perform the continuous authentication are often measured using
the built-in components of a smartphone like accelerometers. Once the raw data are collected and
measured, discriminative features are extracted, which are then fed into a classifier to distinguish
users. This is a similar approach used in this paper. Various approaches are used in the literature
and it is quite common to use either (or both) time domain and frequency domain representations of
the recordings of the accelerometers and gyroscopes data. For example, the authors in Reference [13]
extract statistical features from sensor readings, which are then used for user classification using
a Support Vector Machine (SVM) machine learning algorithm. The statistical features used in [13]
are mean, standard deviation, kurtosis, skewness, entropy and so on, both in the time domain
and in the frequency domain. Then, from the methodology point of view, the approach used in
Reference [13] is very similar to this paper with the fundamental difference that this paper focuses
on vehicle authentication, which is a novel approach in the literature. In a similar way, the authors in
Reference [14] have used the accelerometer data from a smartphone attached to a pocket of a person
while walking. Each step was the gait, which could be used for authentication. An important element
in the methodology was the segmentation of the accelerometer recordings to identify the repeated
steps. Then, the identified segments were fed to a SVM classifier. The issue that persons are walking at
different speeds was mitigated using Dynamic Time Warping (DTW). The appropriate segmentation
of the recordings and the different speeds of the entity is also a problem addressed in this paper.
A similar approach was also used by the authors in Reference [15], where the main coefficients of the
frequency domain transform (based on FFT) of accelerometers data of walking persons were used for
person authentication. Instead of using the Fast Fourier Transform (FFT), the authors have applied the
Wavelet transform in Reference [16] in the context of a similar scenario of the previous papers: person
authentications through mobile phone built-in accelerometers. Another recent paper, which presents
continuous authentication of human beings using accelerometers recordings is Reference [17] which
focuses on passive and continuous user authentication by analyzing and recognizing the unique
characteristics of the physical activity patterns of human beings. A number of statistical features
were extracted from the sensors recording—mean, standard deviation, skewness, kurtosis, energy and
entropy in the time domain and frequency domain. Then, three machine learning algorithms (e.g., SVM,
Random Forests and Decision Trees) were used for classification and authentication. As we have
described in this section, there is an extensive literature on continuous authentication of human
beings using accelerometers and gyroscopes and extraction of statistical features. The novel approach
presented in this paper is to apply the techniques described above for the continuous authentication of
vehicles which has never been investigated in the literature.

Authentication of vehicles is mostly based on cryptography means [18] and it has been applied
to various interactions between vehicles and specific applications like the vehicle to the electric grid
infrastructures in Reference [19] or for C-ITS applications [20]. In many cases, the authentication and
authorization process is standardized as in the case of C-ITS domain [21–23]. Various cryptographic
architectures are proposed for vehicular networks including PKI or Identity-based cryptography.

The use of IMU and their digital output in ITS applications has received considerable attention
in recent years thanks to the increasing computing power of smartphones and their built-in IMU.
On the other side, no papers have used such data to implement the continuous authentication of
vehicles. The focus has been mostly on the estimation of the driver style (e.g., aggressive) using data
from accelerometers in Reference [24] or (in a similar way) the driving behavior as in Reference [25].
A paper that is mostly similar to ours is Reference [7] where the transport mode (e.g., vehicle, bicycle)
is identified on the basis of the digital output from IMUs, while this paper focuses on the identification
of the specific vehicle in a specific transport mode.

Then, we can conclude that the idea of using the concepts of continuous authentication of human
beings to vehicle is rather novel and it will be comprehensively explored in the rest of this paper.



Sensors 2019, 19, 5283 5 of 29

3. Materials

The goal of the experiment was to obtain cars’ driving characteristics under comparable driving
conditions. We planned an Experimental Lap (EL) (in the rest of this paper, the term EL and lap will be
used with the same meaning) inside the Joint Research Centre (JRC) area with conventional road rules
and realistic traffic. This lap had a length of 2065 m and average driving time of 182.5 s (see Figure 1).
To collect the measurements, every car had to drive this lap for at least twenty times in a row with
just a tiny stop between each other (from 2 to 10 s). We distinguish and label the three types of points
on the EL as follows—Orientation Point (OP) (e.g., any kind of left or right turn that we later used to
separate the smaller parts of the EL), Speed Bump (SB) (e.g., four big speed bumps spread through
the EL) and Road Feature (RF) (any roughness on the surface of the road, such as speed bump or
an asphalt joint). Examples of those points with their descriptions and Global Navigation Satellite
Systems (GNSS) positions are in Table 1. The disposition of the points is also marked in the map of the
EL (see Figure 1), the photo documentation of the most significant ones is shown in Figure 2 and a
description of the most significant points with the related latitude and longitude is provided in Table 1.
The EL starts at OP01 and continues in clockwise.

Figure 1. Map of the Experimental Lap (EL) with marked points and the most important segments.

Table 1. Description and GNSS position of points recognised in the EL.

Name Description GPS Lat. GPS Lon.

SB01 sequence of ten rumble strips in the right driving lane 45.811832 8.627199
SB02 speed bump before the roundabout OP02 45.811845 8.627569
SB03 speed bump after the roundabout OP03 45.811883 8.628583
SB04 speed bump in front of the Visitor’s center 45.808842 8.632676

RF06 small road fix only in the center of the road 45.811370 8.632282
RF15 long road patch through both driving lanes 45.809502 8.628149

For the IMU, we used the microelectromechanical system based motion tracker supplied by Xsens
with the model number MTi− 100− 2A8G4 (Xsens Technologies B.V., Enschede, The Netherlands).
This sensor device is designed to measure the three axis acceleration and rate of turn in 2000 Hz sample
rate and three axis magnetic field in 100 Hz sample rate. The IMU was mounted using a strong double
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sided foam tape at the same spot and orientation for every car. For details see Figure 3. We decided
to place the sensor on the top of car’s dashboard in the middle of the car. No measuring tools were
used and the alignment was fully empirical. The x-axis of the IMU was always pointing towards
the driving direction and z-axis in the vertical direction. The car position was also recorded using
the GNSS receiver with the antenna mounted on the car’s roof. The set used for this experiment
consisted of twelve different cars. The specifications of the vehicles are listed in Table 2 and the photo
documentation of those cars is in Figure 4. The same driver and co-driver were present in every car
during the experimental data collection (i.e., driving the car) to minimise the potential bias of the
driver. We highlight that half of the used vehicles were of the same model (Panda Active). The choice
of such datasets with a predominance of vehicles of the same model and brand was intentional. While,
this aspect is not quite relevant in the continuous authentication of human beings (because each human
being is unique), this aspect is quite relevant in device authentication as discussed in the related
literature [26], where it is discussed how intra-model classification is more difficult than inter-model
classification (because components of the same model are the same or similar). To clarify—intra-model
classification is when the devices are of the same model and brand (e.g., mobile phones of brand/model
Sony Experia or Fiat Panda as in this scenario), while inter-model classification is when devices are
of a different brand and/or models. We wanted to target the most difficult problem of intra-model
classification rather than inter-model. This is why we have used a majority of vehicles of the same
brand and mostly of the same model.

Figure 2. Photo documentation of the most significant points detected on the EL.

Table 2. Order and specifications of used cars.

Car Manufacturer Model Gen. Version

1 Fiat Automobiles Panda 2nd Active
2 Fiat Automobiles Panda 2nd Active
3 Fiat Automobiles Panda 2nd Active
4 Fiat Automobiles Panda 2nd Active
5 Fiat Automobiles Panda 2nd Active
6 Fiat Automobiles Panda 2nd Active

7 Fiat Automobiles Punto 2nd 3-door
8 Fiat Automobiles Doblo 1st Facelift
9 Fiat Automobiles Tipo 3rd Hatchback

10 Mitsubishi Colt 6th CZ3
11 Škoda Auto Octavia 3rd Estate
12 Mazda Motor Corp. Mazda3 4th Hatchback



Sensors 2019, 19, 5283 7 of 29

X

Y

Z

ϕ
Roll

ψ

ϴ

Yaw

Pitch

RPY angles

“body frame”

+ψ

East

“world frame”

North

Up

Z

X

Y

ENU coordinates

Figure 3. Alignment and orientation of IMU used during measurements.

Figure 4. Photo documentation of the cars set used in this paper.

4. Methodology

4.1. Workflow

A pictorial description of the methodology workflow is provided in Figure 5, where each step is
described in detail in the following subsections.
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Figure 5. Methodology workflow.

4.2. Data Collection

The first step is to collect the data from each vehicle. As described in the Section 3, the same driver
was used for all the recordings. The driving was performed in different environmental conditions
(e.g., sunny days, rainy days) always on the same loop for 20 times. The data were recorded from
the Xsens IMU with a sample rate of 2000 Hz, which is much higher than the sample rate available
in commercial smartphones. For this reason, the sample rate was decimated to a lower sample rate
as described in the Section 5. The car was driven at different speeds in the EL because of the varying
traffic conditions.

4.3. Synchronization and Laps Extraction

The second step is to synchronize the data recordings and to extract the identified laps. To facilitate
this step, each lap driving was performed in the following way—the car was stationary on OP01 at the
beginning of each lap with a running engine for 10 s. This initial Background Noise Window (BNW)
segment was used for laps synchronization and extraction. To compute an overall motion of the car
the Kalman filter is used to estimate three dimensional angular velocity from the gyroscope sampled
to 20 Hz. The variance computed from the BNW is used as a filter parameter for the noise reduction.
Then the computed angular velocity is normalized to only one dimension and the one-dimensional
convolution is applied. The convolution matrix is normalized to 20 elements long (due to the 20 Hz
down-sample frequency). The start and end of each lap is calculated using the value of the angular
velocity, when it is less than the threshold for the specific time defined above. The output of this
procedure is a time table with starting and ending times of each lap. A description of the pseudo
algorithm is shown in Algorithm 1. The visualization of the synchronization and laps extraction for
the first two laps is shown in Figure 6.
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Algorithm 1: Detect laps and compensate different alignment for one car.

Function veloMean(data):
delta = ∑

(a,b)∈{(x,y),(x,z),(y,z)}
abs(a− b);

return mean(norm(data), delta);
Function bound2lap(bound):

start = detectStarts(bound);
ends = detectEnds(bound);
return timetable(start, ends);

Input:
data = IMU raw data at 2000 Hz
bnw = BNW part of IMU raw data

Main:

velo = downsample(data, 20Hz);
vari = variation(bnw);
velo = kalmanFilter(velo,vari);
velo = veloMean(velo);
convoMat = [ ( 1

20 )1, ( 1
20 )2, . . . , ( 1

20 )20 ];
convo = convolution(velo, convoMat);
thres = mean(velo) + std(velo);
bound = convo < thres;
lapsTimetable = bound2lap(bound);
quater = findQuaternionRot(bnw, vari);
quater = mean(quater);
data = quaternionRot(data, quater);
return data, velo, lapsTimetable;

Figure 6. Detailed representation of the first two laps after synchronization. This plot shows that the
proposed synchronization and laps extraction approach does not lose data between the laps (area
highlighted with a green colour).
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4.4. Segments Extraction

In the following step, the different road segments are extracted from each lap. The goal is to
divide the entire lap in specific segments on which the classification process for vehicle continuous
authentication is performed. The issue is already known in literature for continuous authentication
of persons [13,14] and it is obviously based on the consideration that the speed of the car will never
be exactly the same across laps in a similar way to a person walking or moving at different speeds.
A possible solution to the different cars’ speed problem across laps is to re-sample the laps records to
have the same number of data points. The result of such a squeezing effect is similar to the case in
which every car has the same speed pattern in every lap. It is important to divide the lap into many
smaller parts similar for every car and to squeeze them separately. For detecting those parts we took
advantage of the shape of the EL with many curves. Every one of them and also the readings between
them are considered as a separate parts.

To detect turns, the z-axis of angular velocity is used. It is negative during the right turn,
positive during the left turn and very close to zero when the car drives straight. One dimensional
convolution is applied. The turns are detected separately in every lap of current car to minimize the
potential speed biases between those laps. The threshold is set on the sum of median and one fourth
of standard deviation of the velocity in the current lap. Every velocity value between the negative
threshold and the positive threshold is considered as a turn. This method also detects many smaller
turns which are invalid for the next usage. The second level of detection is applied to erase those small
turns. For every turn, the area between its velocity and threshold is computed. If this area is smaller
than the length of this threshold, it is marked as a false turn and erased. The output of this procedure
is a time table with the starting times of each detected segment for each lap. We were able to detect
sixteen of them. For more information, see Figure 7. For the description of the pseudo algorithm, see
Algorithm 2.

Figure 7. An example of the segments identified in a lap of the first car. The first plot shows
the convoluted z-axis of the axial velocity with its positive (right turn) and negative (left turn)
threshold. The Operational Point (OP) positions from Figure 1 are marked above in form of text
arrows. The detected turns are shown at the second subplot (1 means turn and 0 means straight
drive). The vertical gray lines separates different segments which are individually marked by
yellow rectangles with alphabetical letters. Those letters represents segment names and stands for:
A-Start, B-StartTurn, C-FastFirstBump, D-PreRound, E-RoundOne, F-SecodBump, G-RightCurve,
H-WindowOne, I-CrossOne, J-VisitBump, K-CrossTwo, L-WindowTwo, M-LeftCurve, N-WindowThree,
O-RoundTwo, P-WindowFour. The orange rectangles identify the seven segments used for the machine
learning classification. The last subplot shows the z-axis of the acceleration with the identified EL road
landmarks from the Figure.
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Algorithm 2: Detect laps parts for one car.

Input:
data = compen. data from Algorithm 1
velo = z-axis of velo from Algorithm 1
laps = lapsTimetable from Algorithm 1

Main:

bound = Null · [size(velo)];
velo = downsample(velo, 20Hz);
convoMat = [ ( 1

20 )1, ( 1
20 )2, . . . , ( 1

20 )20 ];
velo = convolution(velo, convoMat);
for lap in laps do

tmp = velo.lap;
thres = median(tmp) + 1

4 std(tmp);
thresRA = max(tmp) - thres;
turns = -thres < tmp < thres;
turns = removeRA(turns, thresRA);
for turn in turns do

area = curvesArea(turn, ± thres);
thresArea = size(turn) · ± thres;
if area < thresArea then

turns = removeTurn(tun);
end

end
turns = removeTime(tuns, last10s);
bound.lap = turns;

end
partsTimetable = bound2part(bound, laps);
return partsTimetable;

4.5. Segments Records Re-Sampling

For every segment, its longest occurrence is found between records of every car and its every
lap. This maximal segment is used as a reference and re-sampled directly to the desired frequency.
Then the algorithm executes throughout the rest of the segment occurrences (for all cars and laps)
and re-sample them with individually computed sample rates so that it will match the length of the
already re-sampled reference segment. Because the longest segment was chosen as the reference,
the computed sample rate are always higher than the desired sample rate. For the description of the
pseudo algorithm, see Algorithm 3. The sample rate of our measurements (i.e., 2000 Hz) determined
the lower and upper frequency boundaries of re-sampling approach. We found that frequencies below
50 Hz were not enough to hold usable data quality for classification. On the contrary, frequencies
above 500 Hz were too high for down-sampling only and required up-sampling for some particular
segments. In addition, we note that a sample rate above 500 Hz is unrealistic for most of the mobile
phones available in the market.
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Algorithm 3: Squeeze separately data parts of all cars to lowest desired frequency.

Input:
f req = lowest desired output frequency in Hz; cars = list of cars
data = compensated data from Algorithm 1 merged for all cars
partsTimetable = partsTimetable from Algorithm 2 merged for all cars
lapsTimetable = lapsTimetable from Algorithm 1 merged for all cars

Main:

for part in partsTimetable do
maxPartSize = findGlobalMaximalPartSize(partsTimetable,part);
for car in cars do

for lap in lapsTimetable do
f reqResa = ( f req · maxPartSize) / size(data.car.lap.part);
data.car.lap.part = resample(data.car.lap.part, f reqResa,’MEAN’);

end
end
minPartSize = findGlobalMinimalPartSize(partsTimetable,part);
for car in cars do

for lap in lapsTimetable do
if minPartSize < size(data.car.lap.part) then

data.car.lap.part[from minPartSize + 1 to end] = null;
end

end
end

end
return data;

4.6. Description of the Classification Techniques

After the alignment and synchronization, the classification of the vehicles is performed using
two different techniques. The first technique is based on the extraction of statistical features and it is
presented in Section 4.6.1. The second technique is based on the application of the FFT transform and
the analysis is conducted in the spectral domain representation and it is described in Section 4.6.2.

4.6.1. Statistical Features Approach

To perform dimensionality reduction, statistical features are applied to each segment.
Such statistical features are commonly applied to time series classification and in particular for
continuous authentication as described in the related work in References [13,17]. The list of applied
statistical features is shown in Table 3.

Table 3. Statistical Features used for dimensionality reduction.

Feature Id Feature Description

1 Variance
2 Skewness
3 Kurtosis
4 Shannon Entropy
5 Wavelet Spectral Shannon Entropy
6 Wavelet Spectral Log Entropy
7 Permutation Entropy with Embedding dimension 3
8 Permutation Entropy with Embedding dimension 4
9 Aproximate Entropy
10 Distribution Entropy
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A brief description of the statistical features is provided here. Variance, Skewness and Kurtosis
are moments of different levels of a specific quantitative measure of the shape of a function.
Variance (second central moment) is the expectation of the squared deviation of a random variable
from its mean. Skewness (third moment) is a measure of the asymmetry of the probability distribution
of a real-valued random variable about its mean. Kurtosis (fourth moment) is a measure of the
tailedness of the probability distribution of a real-valued random variable. The entropy state function
is simply the amount of information (in the Shannon sense) that would be needed to specify the full
microstate of the system and it can be used as a statistical measure of randomness. The Wavelet
Spectral Shannon Entropy is the Shannon entropy calculated in the spectral representation of the IMU
recording transformed using the wavelet transform. The Wavelet Spectral Log Entropy is the entropy
calculated using a logarithmic scale on the spectral representation of the IMU recording transformed
using the wavelet transform. The Permutation Entropy (PE) was initially proposed in Reference [27]
and it has been applied in many domains from healthcare, to analyze EEG recordings [28], to the
detection of mechanical faults [29]. PE [27] is a complexity measure for a time series x of T elements
and an embedding dimension D ≥ 2. The time series is embedded to a D-dimensional space
Xt = {x(t), x(t + 1), ..., x(t + D − 1)}, with t ranging from 1 to T − D + 1. Given an ordinal set
RD = {r1, r2, ..., rD}, where r1 < r2 < ... < rD, there are D! permutations πi, with i ranging from
1 to D!. Then, Xt is mapped to πi, so that {x(t), x(t + 1), ..., x(t + D − 1)} 7→ {r1, r2, ..., rD} and
{x(t) ≤ x(t + 1) ≤ ... ≤ x(t + D − 1)}. Probabilities pi of each πi are calculated as the number of
occurrences of each πi out of the size of the dimensional space T − D + 1. The permutation entropy of
order D is then calculated with the formula PE = −∑D!

i=1 pi × log pi, while the normalised permutation
entropy is NPE = PE/log(D!). As the embedding dimension D ≥ 2 is an important factor, two values
of it has been used in our evaluation. Higher values are not considered because of the limitation on the
size of the segments, which are imposed by the equations described above. Lower values are also not
significant. Approximate entropy (ApEn) is a recently developed statistic quantifying regularity and
complexity, which appears to have potential application to a wide variety of relatively short (greater
than 100 points) and noisy time-series data (as in this case, because IMU recordings can be noisy).
Distribution entropy (DistEn) is also a recent entropy measure, which has been developed based upon
the probability density of vector-to-vector distances in state space. Further details on Distribution
Entropy are presented in Reference [30].

It is not known a priori which features are more relevant for classification and a feature selection
process is adopted. An additional reason to reduce the number of features used for classification
is related to the curse of dimensionality in machine learning. Because a small dataset (20 paths for
12 vehicles) is used in this analysis, a limited number of features should be used for classification
to avoid the curse of the dimensionality [31]. In this paper, we adopt the rule of thumb described
in Reference [32] which states that there should be at least 5 samples for dimension. In this case,
we adopt a number of features in the range of 4 to 6 (20 samples for each car divided by 5 is equal
to 4). Experimental evaluation also shows that the use of all the features decreases the accuracy
(e.g., 0.818 using all features against 0.832 with the 4 best features with sample rate of 250 Hz and
Gyroy). Because of its simplicity and time efficiency, in this paper, we adopt the RelieFF algorithm,
which is part of the family of wrapper feature selection algorithms. The RelieFF algorithm [33] is based
on the estimate of the quality of attributes according to how well their values distinguish between
instances that are near to each other. The estimate can be implemented using the K-Nearest Neighbors
(KNN) algorithm. Further details are presented in Reference [33].

4.6.2. Spectral Domain Approach

The other technique is based on the transformation of the signal from the IMU recording in the
frequency domain using the FFT. Then, the frequency domain representation is divided in segments
(i.e., frequency bands) with a number N f req, which is one of the hyper-parameters identified in
the Section 5. The Root Mean Square (RMS) of each frequency band is calculated to obtain N f req
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features. This approach is similar to the continuous authentication approaches for human beings,
which are described in the related work in References [13,17]. The rational for this approach in vehicle
authentication is that the main components of a vehicle (e.g., tyres, absorbers and wheels) will have
smoother or harder reactions to road irregularities depending on the vehicle model. The smoother or
harder response corresponds respectively to a lower occupation of the frequency bands or a higher
occupation of the frequency bands. This can be seen from Figure 8, which shows the amplitude
frequency representation with N f req = 6 of each vehicle for the same segment I using a sample rate
of 500 Hz and Gyroy. It can be seen from the Figure that the first 6 vehicles (all Pandas) have a
similar distribution of the amplitude coefficients, while the other vehicles have a different distribution.
In more detail, the amplitude of the second frequency component is only slighter less than the first
frequency component, while there is wide gap between the amplitude of the first and second frequency
components in the vehicle number 12, which is of a completely different brand and model and more
importantly of a different class—sport car. On the other side, the frequency response can depend
by many different factors including the speed of the vehicle and how it can change from one lap to
another. Then, the goal is to identify the optimal hyper-parameters, which can optimize the vehicle
classification regardless of the vehicle speed. Note that the frequency representation of a time series is
complex and it is not known a priori which components of the time series representation are useful for
classification. As shown in the results Section 5, the magnitude component of the frequency domain
representation is much more relevant for classification than the phase component. Because of these
reasons, the amplitude component of the FFT transform is used. It could be argued that other spectral
representations apart from the one based on FFT could also provide a good classification accuracy.
This paper has also used a wavelet based representation but the results are slightly worse than the
frequency domain representation as shown in Section 5.

4.7. Machine Learning

The authors of this paper used different machine learning algorithms to produce the results shown
in Section 5. Considering that it is a small subset of data, only shallow machine learning algorithms
have been used. A brief description of the algorithms is provided here.

• K-Nearest Neighbors (KNN) classifies a data sample (called a query point) based on the labels
of the near data samples. Different functions can be used to determine how near or distant
are the nodes. The most common function is the euclidean distance but other distance metrics
can be used like the Mahalanobis or Minkowski distance. The advantage of the KNN is that
it is computationally efficient and it does not need high computational power in the training
phase, while the classification phase could be more computational intensive than other algorithms.
Apart from the distance metric, the K parameter must also be optimized.

• Decision Trees, where the algorithm iterates through the input data by using the features
properties to reach a specific category, which is more similar to the labeled data.
The implementation of decision trees is usually very simple and fast if the data is well structured.
An additional advantage is that they performs well even with high dimensional datasets.
The disadvantages are the long training time and that the orders of the features in tree nodes
have adverse effect on performance. In this paper, the maximum number of splits is the
hyper-parameter, which must be optimized. Because individual decision trees tender to overfit,
ensemble methods are also used. In particular, we have used the Random Forest algorithm
(bagged decision trees) and the Ada Boost algorithm as well. The Ada Boost algorithm has been
used in combination with the Decision Tree.
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• SVM is a supervised algorithm, which learns to classify the data points (e.g., originating from the
observables), from the labeled training samples (e.g., the reference fingerprints). SVM separates
the labeled set in two areas on a multi-dimensional surface by using a separating function,
which can be of different types—linear, Radial Basis Function (RBF), polynomial, sigmoidal are
the most common. Because the multi-dimensional surface is divided in two areas, SVM is a binary
classifier and it can be directly used to distinguish between two mobile phones or for validation
(to validate that the claimed identity of a mobile phone). The extension of SVM to multi-classifier
identification has been proposed by various authors. In this paper the OneVsOne approach is
used. The RBF kernel is used and the RBF scaling factor γ must be optimized together with the C
factor of the SVM algorithm.

Two main classification metrics are used—(a) the confusion matrices where each row of the matrix
represents the instances in a predicted class while each column represents the instances in an actual
class and (b) the identification accuracy, which is the sum of the true positive plus the true negatives
divided for the total number of samples.
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Figure 8. Amplitude of the components (N f req = 6) in the frequency representation for each of the
12 vehicles using Gyroscope Y and the 500 Hz sample rate.

5. Results

5.1. Hyper-Parameters to Optimize

This section describes the results of the methodology proposed in the previous sections using
the two main different techniques—the first technique based on the use of statistical features and
the second technique based on the frequency domain (i.e., spectral approach). Both techniques were
applied to the segments of the path driven by the vehicles. Various hyper-parameters are present in
the analysis and they are further described here:

• the specific segment of the path driven by the vehicle. Each segment described in Figure 1 has its
own characteristics and it is interesting to evaluate how the characteristics of each segment may
impact the vehicle classification. The analysis is conducted on the seven segments identified in
Figures 1 and 7.

• the IMU component and the direction element (X, Y, Z). An initial selection is based on the
consideration that only directions which are directly related to the surface of the road can be used
for vehicle authentication as the other directions are biased by the latitudinal and longitudinal
movements of the vehicle (e.g., when turning a bend). Then, the optimal directions would be
Accelerometer in the Z direction (i.e., the vertical direction) and the Gyroscope in the X and Y
directions (the horizontal directions).

• the sample rate of the IMU recordings on which the feature extraction or the spectral domain
is applied.
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• another relevant choice in the features-based approach is the selection of the statistical features.
Because it is a small dataset (20 paths for 12 vehicles), a limited number of features should be
used for classification to avoid the curse of the dimensionality [31]. In this paper, a wrapper
feature selection approach is used based on the RelieFF algorithm [33] to select the optimal subset
of features.

• in the spectral (i.e., frequency domain) based approach, there is also the need to select a limited
number of features (i.e., the spectral bands). In this case, the selection is on the number of bands.
As shown in the subsequent sections, the RelieFF approach is also used for a large number of
frequency bands.

• the hyper-parameters used in the machine learning algorithms used to perform the classification
must also be optimized (e.g., K in the KNN algorithm).

The comparison of the hyper-parameters will be described for each technique—statistical
features Section 5.2 and spectral domain Section 5.3.

5.2. Statistical Features Approach

Here we provide the results for the application of the statistical features approach. As mentioned
before, one of the hyper-parameters (common to both to the features approach and the spectral
approach) is the choice of the component and the direction.

Figure 9 shows a comparison of the different components (e.g., accelerometers and gyroscopes)
and directions (e.g., Z, Y) for the application of the statistical features approach on the basis of
different sample rates. The SVM machine learning algorithm was used. As discussed before, only the
Accelerometer in the Z direction (Accz in the rest of this paper), the Gyroscope in the X direction
(Gyrox in the rest of this paper) and the Gyroscope in the Y direction (Gyroy in the rest of this paper)
are considered. As discussed before, the direction has been adjusted from the initial recordings to be in
the direction of travel of the vehicle. Figure 9 shows that the highest classification accuracy is obtained
by using Gyroy, which is reasonable, because the pitch of the vehicle is more strongly stimulated by
irregularities in the road surface. Figure 9 also shows that the accuracy improves with the increase of
the sample rate. This result may be explained by the consideration that a higher sample rate provides
more details and more discriminating power in the application of the features or the spectral transform
with the machine learning classification. Evidence from studies on device identification in general
supports this hypothesis [26]. As the classification is higher with Gyroy, the subsequent results are
based on Gyroy.

In the rest of this section, it is discussed more in detail how the statistical features were selected to
produce the results of Figure 9.

As discussed in the methodology Section 4, the approach based on the statistical features uses
the 10 features described in Section 3, but a subset of features is selected using the RelieFF algorithm,
where the best four features are selected. The number four was chosen because it was found out that
other features do not contribute significantly on the basis of the weight ranking and to avoid the curse
of dimensionality because of the small sampling set.

The histogram in Figure 10 shows the occurrences of the best four ranked features of RelieFF
across all the best seven selected segments and the different samples rates (i.e., for each segment and
each sample rate the highest four ranking features are selected) for Gyroy. The histogram shows that
the most relevant features are—feature 1 (Variance), feature 8 (Permutation Entropy with M = 4) and
feature 9 (Approximate Entropy).

A visual representation on how the features identified from Figure 10 are relevant for the
classification of the specific vehicles is shown in Figure 11, where a scatter plot for three selected
features mentioned above (i.e., Variance, Permutation Entropy and Approximate Entropy) is shown.
The scatter plot is based on Gyroscope Y with a sample rate of 500 Hz. Each of the points shown in the
scatter plot of Figure 11 represents each of the EL for each vehicle.
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Figure 9. Comparison of different elements and directions of the IMU with feature based approach
(sample rate in Hz).

Figure 10. Histogram of the features across all the segments and sample rates.

Figure 12 shows the detail on the accuracy obtained foreach segment using Gyroy and SVM
with optimized hyper-parameters (γ = 23 and C = 27). The average values across segments are
also indicated with a transparent bar for each sample rate. The Figure 12 provides two significant
results—the first is that the sample rate greatly impacts the classification accuracy. a higher sample rate
provides more discriminative value than a lower sample rate as the identification accuracy increase
steadily with the sample rate from 50 Hz to sample rate equal to 250 Hz. Then, an even higher sample
rate does not improve the identification accuracy. This is an important result, because it shows that
there is no need to use very high sample rates, which would not be practical for a deployment of
continuous authentication using smartphones (i.e., current mass market smartphones have a sample
rate around 100 Hz–200 Hz). The second result is that the choice of the segment can impact the
identification accuracy. The Figure shows that the identification accuracy can vary greatly among the
different segments and these results for the statistical features approach (a similar analysis is provided
below for the spectral approach) can provide an insight into which road segments can be preferred
in this authentication approach. For example, it can be seen that the segment III provides across all
the sample rates a lower identification accuracy than the other segments. If we compare the results
in Figure 12 with the results in Figure 7, it can be seen that segment II provides in general a higher
identification accuracy (especially with sample rates at 150 Hz and 200 Hz) which can be related to a
higher variance of the accelerometer in the Z direction due to the presence of irregularities of the road
surface including the speed bump SB03. Then, we can conclude that the presence of irregularities on
the road surface or a greater road roughness can provide a higher identification accuracy. This also
means that smooth surfaces like a highway may provide a lower identification accuracy. Segment III,
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which does not provide a high classification accuracy, does not have specific road surface irregularities
(see the map in Figure 1) and it could be considered similar to the Highway case.

Figure 11. Scatter plot based on the three main features derived from the RelieFF algorithm.
Gyroscope Y direction at 500 Hz and Segment I.

The results, shown in the previous figures, confirm that it is possible to obtain a significant
classification accuracy—higher than 80% in the case of a sample rate of 200, 250 and 500 Hz for SVM
and Gyroy. On the other side, it will be demonstrated in the subsequent sections that it is possible to
obtain an even higher classification accuracy using the spectral approach whose results are presented
in Section 5.3.

As discussed in the Section 4, different machine learning algorithms are used to produce the
results. A comparison of the results using the Gyroy data are provided in Figure 13. Each of the machine
learning algorithms have been optimized in relation to their hyper-parameters. The optimized ML
parameters are—SVM with γ = 23 and C = 27, KNN with Euclidean Distance and K = 1 and Decision
Trees with maximum number of splits = 3. The Random Forest and Ada Boost algorithms (based on
the Decision Tree) have also been optimized using the auto-optimization function of Matlab. Figure 13
shows that SVM has a better performance accuracy than the other machine learning algorithms,
in particular KNN and the Decision Tree. Random Forest and Ada Boost performs better than the
Decision Tree but less than SVM. The result is consistent for all the sample rates. Similar results are
obtained for Accz and Gyrox but they are not presented to avoid an excessive length of this paper.

Figure 12. Comparison of the different segments and different sample rates (sample rate in Hz) for the
features approach.
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Figure 13. Comparison of machine learning algorithms with feature based approach (sample rate in
Hz). Gyroscope Y direction. Results are based on the average across all segments.

As the identification accuracy may not provide a comprehensive view of the false positive or false
negative, confusion matrices are provided for Gyroy at different sample rates. In all confusion matrices,
the SVM algorithm was used.

The confusions matrices are shown in Figure 14a–c (respectively at 100, 200 and 500 Hz) for Gyroy

and they are calculated for Segment I (similar results are obtained for the other segments) for the
sample rate and IMU components indicated in the figure. They confirm the previous results on the
identification accuracy where smaller sample rates decrease the identification accuracy and provide
more insights on how the specific vehicles are classified. In particular, the confusion matrices show
that the first 6 vehicles (e.g., of the same model Fiat Panda) are more difficult to classify with high
accuracy as the number of False Positive and False Negatives is relevant. It is also noted that the 7th
car (e.g., Fiat Punto) is of the same brand and it shares similar features of the Panda (e.g., age and
vehicle class).

We have also calculated the time needed to process the data, perform the training and testing for
a specific segment (i.e., segment II) for the statistical features approach. This evaluation is useful for
a practical application of this technique. We present the result for the Ada Boost algorithm (based
on the Decision Tree) as this algorithm had the longest computational time among all the algorithms.
The results are presented in the bar stacked in Figure 15a for the training phase and in the bar stacked
in Figure 15b for the testing phase for different sample rates. We note that the calculation of the
statistical features require the larger portion of the processing time, while the selection feature with
RelieFF is negligible (it can be detected with difficulty in the figures). Obviously, the computational
time increases with the sample rate as a greater sample rate means a higher number of sample to be
processed by the feature extraction process. The time needed to identify and authenticate a car is
only few seconds on the computing platform used to perform the computation—a laptop with Intel
I7-8550U with a clock at 1.8 GHz with 16 GB of RAM. A more powerful computing platform would be
able to considerably reduce this processing time. Taking in consideration that the optimal sample rate
for the accuracy was 250 Hz, the identification time would be approximately 2 s in the optimal case.
Similar considerations are repeated for the spectral approach in the next section with a much shorter
time-frame because of absence of a feature extraction process.
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(a) Confusion Matrix with Gyroscope Y direction at 100 Hz.

(b) Confusion Matrix with Gyroscope Y direction at 200 Hz.

(c) Confusion Matrix with Gyroscope Y direction at 500 Hz.

Figure 14. Confusion Matrices with Features approach. The Y axis represents the True classes and the
X axis represents the Predicted classes (a–c).
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Figure 15. Time needed to execute the statistical features approach (sample rate in Hz). (a) Time needed
to execute the training phase using the statistical features approach and the Ada Boost algorithm;
(b) Time needed to execute the testing phase using the statistical features approach and the Ada
Boost algorithm.

5.3. Spectral Approach

As described in the methodology Section 4 the spectral approach (i.e., in the frequency domain)
is based on the application of the FFT to the IMU recordings. Then, the frequency representation is
divided in an equal number of frequency bands and the total amplitude power is calculated for each
band. The obtained values (i.e., the coefficients) are used for classification. As in the case of the features,
the dimensionality reduction is significant: Srate− > N f req (e.g., from 200 Hz to 6 coefficients).

In this approach, the hyper-parameter is the number of coefficients in the spectral domain. Then,
the optimal value of N f req must be identified but N f req cannot be large because of the curse of the
dimensionality, then it is decided that N f req is limited to 6. On the other side, a feature selection
process as in the feature approaches can be used with a value of N f req greater than 6. Figure 16 shows a
comparison of different values of N f req using Gyroy for different values of the sample rates, where only
a limited set is used when N f req is greater than 6. It can be seen that the optimal performance curve
is obtained for N f req. We note that a value of N f req = 7 was also used to make a comparison (thus
contrary to the rule defined above), but it can be seen that there is no significant improvement of
N f req = 7 against N f req = 6. The use of higher numbers than N f req = 7 (N f req = 12, N f req = 16
and N f req = 20 in combination with RelieFF shows that the identification accuracy is worst than
with N f req = 6. By comparison, the results obtained in the previous section for the feature approach,
it can be concluded that a higher accuracy is obtained by using the spectral approach than the feature
approach. Two potential explanations are possible. One explanation is related to the physical response
of the vehicle against irregularities in the road as different vehicles types have different automotive
suspension components (e.g., coil springs and control arms), which produce a different frequency
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response on the same road segment. This can be a more distinguishing factor for vehicle types than
the designed statistical features used in the feature approach. The second aspect is that the selected
features in the feature approach are derived from the research literature on continuous authentication
of human beings, which may not be fully appropriate to the continuous authentication of vehicles.
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Figure 16. Comparison for different values of with spectral approach (sample rate in Hz). Gyroscope
Y direction. Results are based on the average across all segments.

The results are obtained using the Gyroy direction and by averaging the results across the
7 segments selected in the study. A more detailed study for the different segments is shown is
provided in Figure 17 for N f req = 6, which confirms the previous results.

Figure 17. Comparison of the different segments and different sample rates for the spectral approach
(sample rate in Hz).

In a similar way to the features approach, a comparison was made among the main IMU
components and directions and the results are presented in Figure 18, which confirms the result
of the features approach, as the best identification accuracy is obtained with Gyroy. The results are
obtained by averaging the results across all segments, using SVM withe optimized values of the
machine learning hyper-parameters.
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Figure 18. Comparison of different elements and directions of the IMU with spectral approach (sample
rate in Hz). Results are based on the average across all segments.

In comparison to the feature based approach, another hyper-parameter to select is the amplitude
or phase component as the FFT provides complex values. An evaluation using Gyroy, N f req = 6
and averaged on all segments for different sample rates is shown in Figure 19. It can be seen that
the amplitude component is much more significant than the phase component. The reason is that
the amplitude part is directly related to the frequency response of the mechanical components (i.e.,
coil springs and wheels) of the vehicle while the phase is not (e.g., the reaction of vehicle to a bumper
is mostly related to the speed of the vertical acceleration).
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Figure 19. Comparison of magnitude and phase components in the spectral approach using N f req = 6
for the Gyroscope Y direction (sample rate in Hz). Results are based on the average across all segments.

It could also be imagined that other transforms rather than the FFT transform could give better
classification results. This hypothesis is evaluated in Figure 20 where a wavelet based transform
(i.e., based on a Daubechies wavelet of order 10) is compared against the frequency domain approach
for different sample rates, Gyroy and N f req = 6 both for wavelet and frequency domains representations.
In both cases, the amplitude component of both transforms have been used. The result in Figure 20
shows clearly that the FFT based approach is significantly better than the wavelet based approach.
Different wavelets have also been used with similar results.
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Figure 20. Comparison of spectral and wavelet approaches (sample rate in Hz). Gyroscope Y direction
at 500 Hz. Results are based on the average across all segments.

All the previous results are obtained by using the SVM machine learning algorithm. As in
the feature based approach, a comparison is performed among the SVM, KNN and Decision Tree
algorithms and the results are shown in Figure 21. The results are created by averaging the classification
accuracy results for all the segments. It can be seen that SVM outperforms KNN, Decision Tree and the
related ensemble methods like Random Forest and AdaBoost. The optimized ML parameters are: SVM
with γ = 24 and C = 28, KNN with Euclidean Distance and K = 1 and Decision Trees with maximum
number of splits = 5. The Random Forest and Ada Boost algorithms (based on the Decision Tree) have
also been optimized using the auto-optimization function of Matlab.
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Figure 21. Comparison of machine learning algorithms with spectral based approach (sample rate
in Hz). Gyroscope Y direction at 500 Hz and N f req = 6. Results are based on the average across
all segments.

As in the case of the feature based approach, confusion matrices are presented in the rest of this
section. The confusion matrices are calculated by averaging the results across all the segments for the
sample rate and IMU component indicated in the respective figure.

Figure 22a–c show the confusion matrices using the spectral approach with Gyroscope Y for
Segment I (similar results are obtained for the other segments) and with an IMU recording sampled
respectively at 100 Hz, 200 Hz and 500 Hz. The confusion matrices confirm the previous Figures
obtained for the identification accuracy. As in the case of the feature based approach, the first 6 vehicles
(i.e., of the same Panda model) are more difficult to distinguish than the other vehicles as expected
because they have similar mechanical features.
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(a) Confusion Matrix with Gyroscope Y direction at 100 Hz.

(b) Confusion Matrix with Gyroscope Y direction at 200 Hz.

(c) Confusion Matrix with Gyroscope Y direction at 500 Hz.

Figure 22. Confusion Matrices with Spectral approach. The Y axis represents the True classes and the X
axis represents the Predicted classes.

As in the previous case of the statistical feature approach, we have also calculated the time needed
to process the data, perform the training and testing for a specific segment (i.e., segment II) for the
spectral approach. We present the result for the Ada Boost algorithm (based on the Decision Tree) as
this algorithm had the longest computational time among all the algorithms. The results are presented
in the bar stacked Figure 23a for the training phase and in bar stacked Figure 23b for the testing phase
for different sample rates. In comparison to the statistical feature approach, the processing time is
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much lower and it is possible to perform an identification and authentication in less than a second
(0.4 s for sample rate at 250 Hz).
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(a) Time needed to execute the training phase using the spectral approach and the
Ada Boost algorithm
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Figure 23. Time needed to execute the spectral approach (sample rate in Hz). (a) Time needed to
execute the training phase using the spectral approach and the Ada Boost algorithm. (b) Time needed
to execute the testing phase using the spectral approach and the Ada Boost algorithm.

6. Discussion and Conclusions

The results presented in the previous section confirmed that the continuous authentication
approach already proposed for human beings on the basis of their gait and IMU data can also
be applied to vehicles as the spectral approach provides an identification accuracy higher than
90% and even higher than 95% for some specific road segments. The results are obtained using
extensive measurements campaigns with 12 different vehicles on tens of kilometers of road. Even if
the data were collected at a high sample rate using professional IMU, the analysis was performed
with lower sample rates, which are obtainable with modern mobile phones (e.g., 200 Hz). The same
driver was used to collect the recording in all the vehicles to avoid the introduction of the bias
of the driver. We highlight that the proposed approach for continuous authentication of vehicles
was derived from the approaches (e.g., statistical features or spectral approaches) already defined
in the literature for continuous authentication of human beings. A comprehensive analysis and
optimization of the hyper-parameters were performed on the dataset to select the optimal values,
approaches and algorithms. Such optimization can be useful for future research activities by the
research community. The results show that the spectral approach provides a higher identification



Sensors 2019, 19, 5283 27 of 29

accuracy than the feature approach and we recommend its use. Future developments may take in
consideration more sophisticated time-frequency representation even if the amount of data to be
analyzed will be higher. The presented approach is based on a strong dimensionality reduction from
the initial IMU recording, which make it suitable for practical applications as only a small subset of
data (e.g., 6 amplitude values in the spectral domain) for a road segment of hundreds of meters must
be sent to the remote authentication system.

A complementary point of view is that the identification of vehicles can also generate a privacy
threat. Then, a complementary research activity would be to investigate techniques to remove the
discriminating features used to identify the vehicle, but still preserve the information needed for traffic
applications (e.g., road surface maintenance, traffic analysis).

Future developments will investigate the combination of data from different components and
directions to obtain a higher identification accuracy. The application of de-noising techniques to
improve the quality of the recorded data could also be used to improve the classification accuracy but
it must be ensured that the application of de-noising algorithms does not remove the discriminating
characteristics of the vehicle. Finally, the entire dataset is made available to the research community to
perform additional studies in this area.

Future extensions of this paper will also investigate the impact of different variables on
the identification and authentication accuracy. For example, if the same vehicle has different
numbers of passengers or if the driver is different as the driving style can impact the continuous
authentication approach.
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