
sensors

Article

Optimized CapsNet for Traffic Jam Speed Prediction
Using Mobile Sensor Data under Urban
Swarming Transportation

Hendrik Tampubolon 1, Chao-Lung Yang 2,* , Arnold Samuel Chan 2, Hendri Sutrisno 2

and Kai-Lung Hua 1

1 Department of Computer Science and Information Engineering, National Taiwan University of Science and
Technology, Taipei 106, Taiwan; D10715806@mail.ntust.edu.tw (H.T.); hua@mail.ntust.edu.tw (K.-L.H.)

2 Department of Industrial Management, National Taiwan University of Science and Technology,
Taipei 106, Taiwan; M10601803@mail.ntust.edu.tw (A.S.C.); D10701802@mail.ntust.edu.tw (H.S.)

* Correspondence: clyang@mail.ntust.edu.tw; Tel.: +886-2-2730-3621

Received: 30 October 2019; Accepted: 27 November 2019; Published: 29 November 2019 ����������
�������

Abstract: Urban swarming transportation (UST) is a type of road transportation where multiple
types of vehicles such as cars, buses, trucks, motorcycles, and bicycles, as well as pedestrians are
allowed and mixed together on the roads. Predicting the traffic jam speed under UST is very different
and difficult from the single road network traffic prediction which has been commonly studied in
the intelligent traffic system (ITS) research. In this research, the road network wide (RNW) traffic
prediction which predicts traffic jam speeds of multiple roads at once by utilizing citizens’ mobile
GPS sensor records is proposed to better predict traffic jam under UST. In order to conduct the
RNW traffic prediction, a specific data preprocessing is needed to convert traffic data into an image
representing spatial-temporal relationships among RNW. In addition, a revised capsule network
(CapsNet), named OCapsNet, which utilizes nonlinearity functions in the first two convolution
layers and the modified dynamic routing to optimize the performance of CapsNet, is proposed.
The experiments were conducted using real-world urban road traffic data of Jakarta to evaluate the
performance. The results show that OCapsNet has better performance than Convolution Neural
Network (CNN) and original CapsNet with better accuracy and precision.

Keywords: traffic jam prediction; urban swarming transportation; capsule network; convolution
neural network; smart city

1. Introduction

The term “smart city” has been defined by IBM [1] to indicate a smart city that utilizes information
and communication technology to analyze and integrate the data into core systems for running the
city. The key enabler of the smart city depends on the connected devices and how the collected data,
generated through the Internet of Things (IoT) sensors [2], is used. As the volume and variety of data
offered by the IoT keeps increasing exponentially, how to utilize the data and transform it to knowledge
for a smart city are crucial tasks for modern civilization.

A large amount of data collected from speed sensors or surveillance camera systems have been
used to monitor traffic conditions on roads in an intelligence traffic system (ITS) domain. The most
common detection technologies are loop detector, road-side cameras, and on-board equipment [3].
Lv, Yisheng, et al. utilized California’s freeway traffic detector station data to predict traffic flow [4].
Zhao, Chen also utilized Beijing’s ring road observation station, which is equipped with cameras,
induction coils, and velocity radars to make short-term forecasts of traffic volumes [5]. Similarly,

Sensors 2019, 19, 5277; doi:10.3390/s19235277 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5585-0094
https://orcid.org/0000-0001-9402-0608
https://orcid.org/0000-0002-7735-243X
http://dx.doi.org/10.3390/s19235277
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/23/5277?type=check_update&version=2

Sensors 2019, 19, 5277 2 of 18

closed circuit television camera (CCTV), laser detector, and loop detector data were utilized by Kim
and Hong to predict the traffic flow in Suwon city intersection roads in South Korea [6]. All of the
mentioned research works relied on data from fixed traffic detectors which are costly infrastructures of
a transportation system. Therefore, how to obtain less costly and more accurate traffic flow information
is an important issue in this research area.

Limited budgets for ITS implementation in developing countries where the transportation
infrastructure is relatively straggly hinders the detection of traffic conditions. Fortunately,
the telecommunication infrastructure in these developing counties comparatively prevails. The use
of smartphones, in fact, provides a sufficient source of traffic data by tracing the global positioning
system (GPS) information. For example, the government of Jakarta city, the capital city of Indonesia,
has taken advantage of the data feed of citizen’s smartphones to aggregate the data for traffic usage by
collaborating with Waze® [7], which is a popular navigation software installed on citizens’ smartphone.
Instead of having static positions of vehicles, the location information is dynamic, following the
smartphone’s location. Because the volume of signals from smartphones is huge, data preprocessing is
needed to generate some indication of traffic jam information.

Currently, traffic prediction has been developed to deal with challenges and concerns as
summarized in [8]. With respect to an urban road network, as mentioned in [8], the main challenges that
traffic prediction faces include: (1) A more complex road network (large scale) should be considered
due to the urban environment, (2) the model should include spatial-temporal (ST) characteristics of the
traffic network to describe the corresponding conditions among multiple roads, and (3) utilization of
artificial intelligence is still an emerging research area. How to specifically develop a deep learning
framework in this area is an important research topic.

Understanding, monitoring, and predicting traffic road conditions, such as the level of traffic
jam at certain times, are essential needs of urban transportation [9]. Over the past decade, there have
been many studies conducted on the traffic prediction model. Most of the existing models have
employed statistical, time series based, probabilistic, and neural network approaches according to
the reviews [8,10,11]. The following models (1) time series analysis model, (2) traditional machine
learning, and (3) deep learning based model, are summarized below.

(1) Time Series Analysis Model

Time series analysis approaches such as ARIMA [12] and sliding window ARIMA (SWARIMA) [9]
have been used to study the traffic conditions for the purpose of predictions. Traffic flow data recorded
from sensors are frequently noisy, and the short-term traffic prediction is considered as a nonstationary.
To deal with this issue, Xie et al. applied a Kalman filter (KL) to handle nonstationary for short-term
prediction [13]. In their work, wavelet decomposition analysis was utilized to reduce the noise.
Similarly, their model was applied to a relatively simple freeway road network. Yan et al. also proposed
a traffic flow prediction based on multivariate time series to understand the traffic patterns on the
freeway [14]. In their work on traffic volume, occupancy, and speed, multivariate traffic time series
were utilized and converted into a complex network structure.

Most of these approaches mainly focus on the following: (1) predicting traffic flow at a single
data point, (2) considering traffic data as a sequence, and (3) finding the patterns of the temporal
variation of traffic on one road segment. However, the road traffic condition actually can be propagated
among the road network as mentioned in [15]. This means that if one road is badly jammed, the traffic
is propagated to other nearby roads which causes the network effect. Because of this propagation
characteristic, the road network wide (RNW) traffic prediction which predicts traffic conditions of
multiple roads at once is needed, not only based on the time series data analysis, but also the network
structure of roads.

(2) Traditional Machine Learning Model

Sensors 2019, 19, 5277 3 of 18

In addition to the traditional time series analysis, machine learning models such as support vector
machine (SVM), neural network (NN), and deep learning (DL) network have been applied to the
traffic prediction domain for decades. Tang et al. proposed a fuzzy neural network model to predict
traffic speed by considering periodic characteristics [16]. In their work, k-means was employed to
extract periodic features of travel speed data that had been collected from three adjacent stations.
Then, a trigonometric regression was used to predict travel speed for multi-step ahead. Although the
proposed model performed well on single traffic road prediction, the model did not consider road
network perspective, as mentioned before.

Many SVM-based models have been widely employed for traffic prediction. For example, Zeng et al.
proposed AOSVR to deal with time efficiency of the traffic flow prediction [17], Saldana-Perez et al.
took advantage of social media data to characterize the traffic congestion and analyze crowd-sensed
data from a geospatial perspective [18]. Yan, H. and D.-J. Yu. proposed an improved SVM to classify
traffic jam conditions which was able to handle a negative effect of an outlier on the traffic data [19].
In their study, relatively small data were used, and therefore their model failed to deal with large-scale
traffic prediction.

Furthermore, Tang et al. proposed a hybrid model of SVM with several denoising techniques to
predict traffic volume at multiple ahead steps (2 min, 10 min, and 60 min time horizon) [20]. Empirical
mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), moving average (MA),
Butterworth (BW) filter, and wavelet (WL) were combined with SVM. According to their experiments,
obviously, EEMD outperformed as compared with other denoising techniques. Although the proposed
model performed well to predict multiple ahead steps traffic conditions, the spatial correlation between
the detectors was not considered in their study. Moreover, the predictive model only focused on the
freeway and not the urban environment.

(3) Deep Learning Based Model

Recently, more advanced approaches such as deep learning model have been applied to traffic
prediction due to their promising performance. For example, Kim et al. utilized the much deeper and
complex recurrent neural network (RNN) model to predict traffic speed [21]. Abbas et al. used long
short-term memory (LSTM) model, a type of RNN, for the short-term traffic prediction on the road [22].
In addition, LSTM has also been used for travel time prediction [23]. The RNN and LSTM models are
state-of-the-art and powerful for capturing temporal features in traffic. However, the spatial interaction
is not considered from the point of view of the road network, although the forecasting task is on a
single road in a relatively small region.

Realizing local dependencies of a network can improve the prediction. Song et al.’s work predicted
Seoul’s main road traffic speed on weekdays utilizing CNN and obtained better results than two
multilayered perceptron network [24]. Another research took advantages of both LSTM and CNN to
capture a spatial-temporal correlation to predict travel time [25]. Nevertheless, in the literature, few
studies have considered the RNW as a whole to exploit the correlation of spatial-temporal features
effectively and estimate the traffic interactions among the road segments on a large scale. Especially, for
urban roads, knowing the traffic condition in a whole road network, instead of a single road, can result
in better decision making by transporters.

To address this concern, Ma et al. proposed a novel approach to learn traffic data as image and
applied CNN to predict traffic speed on roads network wide instead of single road segment [26].
The model was evaluated on Beijing’s ring road network using traffic data from taxis’ GPS across
the city and achieved 42% accuracy improvement as compared with other algorithms such as KNN,
ANN, random forest, and least square methods. In addition, in studies by [27,28], CNN-based model
was also compared to traditional ANN. Their findings confirmed that deep learning based model
outperforms the traditional network (ANN), other machine learning methods, and statistical methods.

As evident in the literature, CNN has a drawback in the pooling operation which was addressed
in Sabour et al.’s work [29]. To tackle the limitation of CNN, Sabour et al. introduced a new type

Sensors 2019, 19, 5277 4 of 18

of neural network, called capsule network (CapsNet). A capsule is a group of neurons which has
different properties from the same entity. It is trained by dynamic routing instead of max-pooling
and has a different nonlinearity, namely squash. Since then, many research works applied CapsNet
to train the prediction model, including the traffic prediction problems. Extending what Ma et al.
has done, Kim et al., applied CapsNet to the traffic speed prediction problem [30]. In their work,
the max-pooling operator inside CNN was found to lead to information loss of the interaction among
road characteristics in urban transportation. Therefore, replacing the max-pooling operator with
routing by agreement algorithm in CapsNet improved the prediction result.

In this study, we develop a prediction model focusing on predicting traffic jam speed on urban
roads based on the information collected from citizens’ smartphones. In order to differentiate the urban
roads where this work focused from the free-flow and well-regulated road transportation, we introduce
the term “urban swarming transportation” (UST). Essentially, in UST, the lane marks on most of the
UST are not clear or even not existing. It means that all kinds of vehicles, pedestrians, and even animals
share the same road. The traffic light system on UST in some developing countries is insufficient or not
strictly followed by transporters. Figure 1 shows a typical example of the UST condition (the photo
was taken in west Jakarta). As shown in Figure 1, the UST roads are swarmed with all kinds of the
mentioned transporters. Note that the road in the picture is not “one-way” and all transporters can use
this bidirectional and narrow road.

In order to handle the traffic data collected from mobile phones, data preprocessing is needed to
map the traffic speed data originally with longitude and latitude, to the traffic measurement with the
road sections. In this study, two deep learning methods, CNN and its extension, CapsNet, are used to
train the prediction model to predict the traffic jam speed on the UST roads. Note that the CNN model
is the benchmark of our work for comparison purposes. In addition, optimized CapsNet (named
OCapsNet) architectures is proposed to change the ReLU nonlinearity at the first two layers of the
convolution step. Edgar Squash is applied to the capsule layer in the original CapsNet. We propose
the use of some strategies to tweak dynamic routing as mentioned in [31–33], and therefore obtain
better prediction performance.

Figure 1. An example of urban swarming transportation” (UST) condition (pictures taken by authors
on 24 August 2019, in Jl. Tanjung Duren Raya, West Jakarta, Indonesia).

The contributions of this paper are summarized as follows:

• We used traffic data recorded by mobile sensors such as GPS, instead of fixed detectors on the
road, as a cost efficiency for traffic prediction on urban roads under UST;

Sensors 2019, 19, 5277 5 of 18

• We proposed CapsNet-based traffic jam prediction as a comparable to CNN-based predictive
model to deal with the RNW condition which is the complex road network and spatial-temporal
traffic road characteristics under UST;

• We improved the performance of CapsNet by utilizing nonlinearity function in the convolution
layer of CapsNet to modify dynamic routing on the two-capsule layer of the original CapsNet.

This paper is organized as follows: Section 2 addresses the techniques used for traffic data
preprocessing. Section 3 describes the details of traffic jam speed prediction tools. Section 4 outlines
the experimental setup in deep learning methods and the experimental results. Finally, the conclusion
and future study directions are mentioned in Section 5.

2. Traffic Data Preprocessing

In this research, one year of traffic jam speed data on urban roads in the Jakarta metropolitan has
been used as a sample data of UST for studying. The data is collected by the governmental independent
smart city division of Jakarta named Jakarta Smart City (JSC). The traffic speed in any Jakarta area is
captured in every second interval from Waze mobile app. The measurement of 15 min and 5 min are
used to aggregate the traffic jam records. According to information described by JSC, traffic speeds
higher than 10 km/h can be considered as free flow (the traffic in Jakarta is extremely congested).
Therefore, the collected raw dataset only keeps the traffic jam records. It should be noted that five traffic
jam levels are associated with the traffic jam speed (lower than 10 km/h) of each record which comes
with longitude and latitude position. Table 1 shows examples of traffic jam speed data. The traffic
speed associated with each traffic jam level is categorized as follows:

• Level 0 interpreted as free flow (not recorded);
• Level 1 is 6.1 km/h to 8.1 km/h of traffic speed;
• Level 2 is 4.1 km/h to 6.1 km/h of traffic speed;
• Level 3 is 2.1 km/h to 4.1 km/h of traffic speed;
• Level 4 is bigger than 0.0 km/h to 2.1 km/h of traffic speed;
• Level 5 is 0.0 km/h which is denoted as blocked.

Table 1. Examples of traffic jam speed data (Jakarta City).

- Longitude Latitude Speed (km/h) Level Time

1 106.782318 −6.198835 2.91 3 2017-11-17 00:18:56
2 106.899734 −6.218775 1.32 4 2017-11-16 23:34:48
3 106.782875 −6.333290 3.44 3 2017-11-17 00:04:58
4 106.825172 −6.187048 2.31 3 2017-11-17 00:02:35
5 106.738623 −6.126845 3.53 3 2017-11-17 00:11:55
6 106.738625 −6.126846 3.51 3 2017-11-17 00:11:52

Four relevant attributes from the urban traffic jam data were chosen in this research. They are
time occurrence, traffic speed, longitude, and latitude of the traffic jam, as shown in Table 1. In order to
identify the traffic jam location on a certain urban road, the external road information offered by a
public traffic road database (OSM) is used [34].

The process of integrating datasets of traffic jam dataset (Table 1) and OSM is shown in Figure 2.
The first step is to extract the coordinate information (latitude and longitude), and traffic jam measure
from the dataset as a data point. Secondly, on the OSM, querying out 10 (or more, by setting) road
segments which are near to the data point, and connecting the starting and ending coordinates of each
found road segment as a line. Third, assuming each road centered with a line has a certain width, check
if the point lies on the road. If yes, the traffic measure of the point can be associated with the found
road segment. If no, then keep checking if the point can be associated with the other road segment.

Sensors 2019, 19, 5277 6 of 18

If one point does not lie on all found road segments, it means the coordinate of the point is too far from
the road and can be considered as a useless point.

Figure 2. The integration process of the traffic jam dataset and OSM dataset.

Every road section in the OSM database can be identified with an OSM ID. A single road with a
road name may have multiple OSM IDs to represent road sections if the road is very long. Every road
section can be broken into smaller road segments identified as Road ID. Adding OSM ID and Road ID,
the traffic jam record’s coordinates (longitude and latitude) can be located at the same road segment’s
nearby. Table 2 shows the example of the integrated traffic data with OSM.

Table 2. Examples of traffic jam data with OSM data integration (Jakarta City).

- OSM ID Road ID Speed (km/h) Level Time

1 560008540.0 9057 2.91 3 2017-11-17 00:18:56
2 28926412.0 9295 1.32 4 2017-11-16 23:34:48
3 513190960.0 9661 3.44 3 2017-11-17 00:04:58
4 513190965.0 102148 2.31 3 2017-11-17 00:02:35
5 459357692.0 192345 3.53 3 2017-11-17 00:11:55
6 459357692.0 192345 3.51 3 2017-11-17 00:11:52

In order to emphasize the research problem, eight main roads in the JSC dataset are chosen,
as listed in Table 3. These roads located in the central Jakarta City were used to represent typical
Jakarta’s urban traffic road with extremely jam-packed traffic conditions. It is noted that multiple
kinds of vehicles and pedestrian are allowed to commute on the chosen roads which show a typical

Sensors 2019, 19, 5277 7 of 18

representation of UST traffic condition roads existing in most developing countries. Examples of the
road sections (OSM ID) and the associated road segments (Road ID) are shown in Table 4.

Table 3. A list of 61 chosen roads for the experiment (Jakarta City).

- OSM ID Road Name

1 28809051 S. Parman Rd. (Target)
2 413471399 Other direction of S. Parman Rd.
3 566885184, 462712296 Tanjung Duren Timur Rd.
4 28225264, 560008540, 594403621 Tomang Raya Rd.
5 540317195,459357692 Tanjung Duren Raya Rd.
6 28926412, 566938121,497546919 Kyai Tapa Rd.
7 28931424 Kyai Tapa to S.Parman Turn
8 513190960, 513190965, 297913073, 28926394 Daan Mogot Rd.

Table 4. Examples of OSM ID and the associated Road ID (Jakarta City).

OSM ID Road ID

28809051 [27390, 56887, 73279, 73313, 85053, 88497, 149973, 153227, 153264]
413471399 [56883, 153273]
566885184 [74322, 74330]
462712296 [74328, 115865, 116279, 116282]
28225264 [27386, 37452, 37460, 152965, 155618, 259258]

In this study, a prediction model was developed to predict traffic flow on the selected road
segments which presents typical UST road conditions, as shown in Figure 3, while the information of
supplementary road segments is used as additional feed to the prediction. These supplementary roads
are chosen by considering target adjacency and representing the main road where spatially correlated
with each other. In this study, 2,131,584 rows of fifteen-minute interval data and 6,401,890 rows of
five-minute interval data were used. Using these interval data, two datasets are prepared for the
experiments. One smaller dataset contained 61 distinct road segments (Road ID) that represented eight
distinct selected roads, as shown in Figure 3a. Another larger dataset contained 2972 road segments on
5 × 5 km coverage area, as shown in Figure 3b. Examples of data features used in this work are shown
in Table 5.

Figure 3. Open street map Jakarta’s urban traffic road visualization: (a) Entire Jakarta’s urban traffic
road map (left) and the chosen Jakarta’s urban traffic 61 road segment on 8 main roads (right) and (b)
entire Jakarta’s urban traffic road map (left) and the chosen more complex Jakarta’s urban traffic road
5 × 5 km square area (right).

Sensors 2019, 19, 5277 8 of 18

Table 5. Data examples for experiment.

- Road ID Weekday Week Num Time Speed (km/h) Level

1 307770 Wednesday 52 17:45:00 10 0
2 307770 Wednesday 52 18:00:00 6.340 1
3 307770 Wednesday 52 18:15:00 6.347 1
4 307770 Wednesday 52 18:30:00 6.856 1
5 307770 Wednesday 52 18:45:00 5.616 2

3. Traffic Jam Speed Prediction Model

In this study, we aim to propose a traffic jam prediction model that is based on the following
considerations: (1) traffic data recorded by mobile sensors such as GPS were used, instead of using fixed
detectors on the road, (2) spatial-temporal characteristics of data were used as input image, (3) RNW
prediction was conducted to capture the traffic conditions on the entire road network, instead of on a
single road, and (4) the CapsNet-based model as an extension of CNN was employed to understand the
ST traffic characteristic under UST. In order to achieve the motivation aforementioned above, the traffic
jam data are first transformed as an image which contains the traffic jam information of multiple time
steps, and feds into the model. The detailed approaches are introduced in the following section.

3.1. Converting Traffic Jam Speed as an Image

In order to fit the traffic data to the CapsNet network, we then consider the recorded traffic jam
speed as a pixel of the one-channel image with R-dimension. It also means a T x R matrix should be
constructed as denoted in Equation (1), where R is the number of total road segments and T is time
horizon representing the number of 5 min intervals. Assuming that VS is the input space passing to the
CapsNet network, the output VSOUT can be denoted in Equation (2) as an output matrix with L × R
dimension, where L is the number of time horizon to be predicted. Figure 4 illustrates one example of
converting traffic jam data into image.

VS =


VS11 · · · VS1R

...
. . .

...
VST1 · · · VSTR

, (1)

VSOUT = [VOUT1 . . . VOUTR, VOUTR+1 . . . VOUTLR]. (2)

Figure 4. The input of the network is considered as the images T × R, R is the total road segment,
and T is time horizon representing the number of 5 min intervals, and t represents every five min traffic
jam speed.

Sensors 2019, 19, 5277 9 of 18

3.2. CNN-Based Traffic Jam Prediction

In this research, CapsNet was the proposed method and CNN model was considered as a
benchmark to show how the traffic jam speed predictive model as an image perspective can be achieved.
To reduce the confusion, we skip the introduction of CNN. Detailed information about CNN can be
found in [35]. Here, we only address how the CNN network can be used to deal with traffic jam speed
prediction under UST.

Figure 5 depicts the CNN network structure followed by [26] which was used as a benchmark for
comparison. Note that the research work in [26] predicted traffic speed in Beijing ring road, but our
work not only predicted the traffic jam speeds which are relatively much slower, but also focused
on RNW traffic prediction with much more complicated road network topology, in Jakarta. Table 6
shows the parameter settings of the benchmark CNN. In this study, the same parameters adopted
in Alex-Net [35] were used, which were the same as in the previous work in [26]. As can be seen,
this model is a typical CNN where there are three pairs of convolutions layer with 256, 128, and 64
channels, 3 × 3 kernel, max-pooling of 2 × 2, and the flattening followed by the fully connected (FC)
layer. The stride of two is to capture and learn the traffic jam features, then reshaping to feed the
features into the FC layer. The parameters scale of the FC layers depends on the dimension of the
given input and the number of historical time step. For example, given the input 34,944 × 61 with 96
historical time steps used, then, the parameter scale of the FC layer is 703,485.

Figure 5. CNN-based traffic jam prediction framework [26].

Table 6. Network settings of CNN based on the work in Ma et al. [26].

Layer Names Parameters Nonlinearity

Input - - -
Layer 1 Convolution-1 256, 3, 3 ReLU
Layer 2 Max-Pooling-1 2, 2 -
Layer 3 Convolution-2 128, 3, 3 ReLU
Layer 4 Max-Pooling-2 2, 2 -
Layer 5 Convolution-3 64, 3, 3 ReLU
Layer 6 Max-Pooling-3 2, 2 -
Layer 7 Flatten - -
Layer 8 Fully Connected (FC) - -
Output - - -

3.3. CapsNet-Based Traffic Jam Prediction

One drawback of the CNN-based model is that the max-pooling operator only takes the maximum
value of the activation. This treatment ignores some of the information about spatial-temporal or the
road network. Because all road segments in the urban transportation network are related, a small

Sensors 2019, 19, 5277 10 of 18

change at a certain road segment may affect other road traffic conditions. To address this issue, CapsNet,
which uses road network images as inputs, can be applied. CapsNet enables the network to learn
and capture the relationship of traffic jam information at certain times and spaces which presents the
characteristics of the urban transportation, especially under UST condition.

Unlike CNN, CapsNet works differently where a capsule represents a group of neurons as it
activates the neurons by squash nonlinearity. The network is trained using dynamic routing by
agreement. The differences of CapsNet and the traditional neural network are summarized as follows:

• Either the input or output of CapsNet is a vector operation where traditional network uses a scalar;
• Before passing to the next layer, CapsNet first transforms its input into its predicted vector

so-called affine transformation where traditional network does not have this mechanism;
• After weighted sum multiplies its input, squashing is used to activate the magnitude of the vector,

followed by routing to determine which capsule its input should be sent to by coupling coefficient.

There are four layers in the CapsNet model, namely, convolution layer, primary capsule layer,
traffic jam capsule, and reconstruction layer. In the convolution layer, a standard convolution and the
filter size was applied. Used the standard nonlinearity ReLU written as:

ReLu (s) =
{

s, s > 0
0, s ≤ 0

. (3)

As for the affine transformation of û j|i given in Equation (4), where wi j is the weight learned in
back propagation and ui is its input, and the coupling coefficient of ci j is calculated by the softmax
function as denoting in Equation (5). Then the input layer of the parent capsule in the next layer is
calculated by Equation (6). The affine transformation was done before the primary capsule layer.

û j|i =wi jui, (4)

ci j =
exp(bi j)∑
k exp(bik)

, (5)

s j =
∑

i
ci jû j|i. (6)

The nonlinearity function, so-called squash, given in Equation (7) is carried out to calculate the
output vector of the network, Equation (8), where the value is between 0 to 1 which is considered as a
probability of the object being present. The more an object is likely to be present the higher the value is
yielded, and vice-versa. In the last capsule layer, the loss is calculated for each capsule k. The loss
function is denoted in Equation (9) which is similar to marginal loss function in SVM.

Squash =

∣∣∣∣∣∣S j
∣∣∣∣∣∣2

1 +
∣∣∣∣∣∣S j

∣∣∣∣∣∣2 S j∣∣∣∣∣∣S j
∣∣∣∣∣∣ , (7)

V j = Squash
(
s j
)
, (8)

Lossk = Tkmax
(
0, m+

− ||Vk||
)2
+ λ(1− Tk) max(0, ||Vk|| −m−)2, (9)

where Tk = 1 if and only if a digit classes k is present, m+ = 0.9, m− = 0.1, λ= 0.5 down-weighting of the
loss for absent digit classes, s j= input matrix multiplication before passing to activation, û j|i = prediction
vector, and ci j = coupling coefficient set by dynamic routing iteratively [29].

Equation (10) is the update function of the log probabilities.

bi j = bi j + v jû j|i. (10)

Sensors 2019, 19, 5277 11 of 18

Despite its capability to tackle the CNN limitation, CaspNet suffers severe computational time
with respect to more complex data. Therefore, a modification of squash nonlinearity is adopted as
in [30]. Thus, the nonlinearity will be more responsive to small shift and the function is given in the
following Equation (11).

EdgarSquash = 1−
1

exp||S j ||

S j∣∣∣∣∣∣S j
∣∣∣∣∣∣ . (11)

Since the target of our model is traffic jam speed, which is one type of regression problem, then,
the loss function is threated as mean squared error (MSE). Therefore, CaspNet in this research, replacing
the loss function by MSE described in Equation (12).

MSE
(
p̂vk, pvk

)
=

∑R

k=1

(
p̂vk − pvk

)2
, (12)

where pvk is the true probabilities associated with an image and p̂vk is the calculated probabilities
results of the network. In this work, the typical CapsNet setting is shown in Table 7. The performance
of this CapsNet is compared with CNN and the optimized version of CapsNet, which are addressed in
the following section.

Table 7. Network settings of CapsNet.

Layer Name Parameters Nonlinearity

Input - - -
Layer 1 Convol-1 32, 3, 3 ReLU
Layer 2 Convol-2 32, 3, 3 ReLU

Layer 3 Primary Capsule
(128,3,3)

Capsule: 8 Squash
Layer 4 Traffic-Jammed Capsule Capsule 16 Squash
Output - - -

3.4. Optimized CapsNet (OCapsNet)

In fact, training CapsNet as described in the previous subsection is time consuming. Xi, E., S. Bing,
and Y. Jin, attempted to validate the effectiveness over complex data such as CIFAR10 [29] by increasing
the number of primary capsule, stacking more capsule layer, ensembling averaging, modifying the
reconstruction loss, and customizing the squash nonlinearity. Their result suggested that ensembling
averaging can improve the efficiency, and the number of convolution layers of CapsNet is suggested to
be two. Stacking more capsule layer does not influence the result significantly.

Gagana, B., H.U. Athri, and S. Natarajan, investigated the changing of nonlinearity in the
convolution layer of CapsNet and tested on MNIST and CIFAR10. Their result shows that Leaky ReLU
and variant ReLU, e-swish outperform constantly over the ReLU [32]. Another work by Malmgren [33]
surveyed and performed a comparative study of dynamic routing of the CapsNet. Wang and Liu
proposed a novel optimization of dynamic routing where the loss function was seen as a clustering-like
loss function [31].

On the basis of a literature study, in this work, the optimized CapsNet (called OCapsNet)
particularly for traffic jam prediction was proposed. Basically, OCapsNet changes the ReLU nonlinearity
as advised in the work by [32] to the leaky ReLU due to its consistency of the performance. The Leaky
ReLU function can be denoted as follows:

Leaky ReLu (s) =
{

s, i f s > 0
0.01s, otherwise

. (13)

The training process in the proposed OCapsNet is illustrated in Figure 6. The format of the input
data is tensor (T, R, 1). First, the input data are convolved using conv2D and Leaky ReLU as the
activation function into several feature maps ui, which is highlighted in blue line, where i is the number

Sensors 2019, 19, 5277 12 of 18

of feature maps. The feature maps are fed into the primary layer and transformed into the prediction
vectors û j|i, where j is the number of the prediction vectors and j

∣∣∣i represents the connectivity of the
prediction vector û j|i and feature map ui through affine tranformation, with wi j as the weights. Then,
the prediction vectors û j|i expresses how much the primary capsule i redound to capsule j.

Secondly, a product of û j|i and ci j expresses the agreement between capsules i and capsule j is
employed to get a single primary capsule i’s prediction to the class capsule at the traffic jam caps layer
where ci j is the coupling coefficient. The higher the agreement is the more relevant the two capsules
are. Thus, increasing the agreement will also be increasing the coupling coefficient.

Figure 6. The illustration of training process of the proposed OCapsNet.

Next, a weighted sum s j is computed to get the candidates for the squashing function v j where
the squash to keep the of the output from the capsule is between 0 and 1 as a likelihood. The output
from one capsule layer needs to route to the next capsule layer at particular iteration. This routing
mechanism is done by dynamic routing (DR), as described in the originally proposed Algorithm 1,
and ci j is updated by finding the dot product v jû j|i given in the Equation (5).

Algorithm 1 DR (Sabour et al., 2017 [29])

1. Procedure DR
(
û j|i, r , l

)
2. For caps i in layer l and caps j in layer (l + 1) : bi j ← 0
3. For r iterations do
4. For all caps i in layer l : ci ← so f tmax (bi) (Equation (5))
5. For all caps j in layer (l + 1) : s j ←

∑
i

ci jû j|i (Equation (6))

6. For all caps j in layer (l + 1) : v j ← Squash
(
s j
)

(Equation (7))

7. For all caps i in layer l and caps j in layer (l + 1) : bi j ← bi j + v jû j|i (Equation (10))

8. Return v j

However, Algorithm 1 has a limitation on the cosine of the angle between two pose vectors is used
to measure their agreement. The cosine saturates at 1, which makes it less sensitive to the difference
between a quite good agreement and a very good agreement. In fact, the routing procedure can be seen
as clustering-like such as the soft k-means algorithm, as discussed in [31]. Therefore, similar approach
is carried out in our dynamic routing called modified dynamic routing (MDR) given in Algorithm 2 in
this research.

Sensors 2019, 19, 5277 13 of 18

Algorithm 2 MDR (Similar with [31])

1. Procedure MDR
(
û j|i, r , l

)
2. For r iterations do

3. For all caps i in layer l and caps j in layer (l + 1): bi j =
1
α 〈o j|i, s j〉 , ci j =

exp(bi j)∑
k exp(bik)

4. For all caps j in layer (l + 1) : ŝ j =
∑

ci jo j|i = , s j = ŝ j/
∣∣∣∣∣∣ŝ j

∣∣∣∣∣∣
5. For all caps i in layer l and caps j in layer (l + 1) : w j =

||
∑

ci jo j|i||

1+ maxk ||
∑

cikok|i|

6. Return w js j

The objective function of the MDR algorithm can defined as follows:

Min

L(C, S) = −
∑
i

∑
j

ci j o j|i, s j + α
∑
i

∑
j

ci j log ci j

,

s.t.
∑

j ci j = 1, ci j > 0, ‖s j‖ ≤ 1
(14)

where o j|i = 1∣∣∣∣∣∣Ti j
∣∣∣∣∣∣F Ti jµi j and

∣∣∣∣∣∣Ti j
∣∣∣∣∣∣F is Frobenius norm of Ti j. α = 1 .

Figure 7 illustrates prediction framework of the proposed OCapsNet. Table 8 shows the network
settings of OCapsNet.

Figure 7. OCapsNet-based traffic jam prediction framework.

Table 8. Network settings of the proposed OCapsNet.

Layer Name Parameters Nonlinearity

Input - - -
Layer 1 Convol-1 256, 1, 1 Leaky ReLU
Layer 2 Convol-2 32, 3, 3 Leaky ReLU

Layer 3 Primary Capsule
(128,3,3)

Capsule: 8 Edgar_Squash
Layer 4 Traffic Jam Capsule Capsule 16 Squash
Output - - -

In short, OCapsNet model can be summarized as follows: (a) In the first two convolution layers
use Leaky ReLU rather than standard ReLU, (b) in the primary capsule layer and traffic jam capsule
layer apply the modified dynamic routing, (c) investigate Edgar Squash, and (d) finally, perform the
prediction at the last layer where using the MSE loss.

4. Experimental Results

4.1. Experimental Settings

In this study, two datasets were used to evaluate the prediction performance. The first dataset
contained traffic jam records from 61 road segments with 15 min interval historical data and the second

Sensors 2019, 19, 5277 14 of 18

dataset contained 5 min interval historical data from 2972 road segment, 5 × 5 km region of West Jakarta.
These two datasets represent the simple and the more complex dataset, respectively. Each dataset is
divided into 70% for training while 30% for validation and testing. We then normalize the data using
minimum and maximum standardization.

In this study, we used TensorFlow deep learning library running under python 3.7. and the
computational resources as follows: Processor: i9-9900k 3.6 Ghz, RAM 32 Gb, and GPU NVIDIA®RTX
2080 Ti installed. ADAM optimizer [36] is being used in our implementation with initial learning rate 0.001.

In our experiments, there were four different prediction tasks. These different tasks are conducted
to evaluate the performance of the proposed model on different problem complexity. Task 1, Task 2, and
Task 3, considered as relatively simple prediction problems in terms of simple road topology, has the
prediction tasks on the selected 61 road segments with 15 min interval by considering the previous
96, 24, and 12 observations as the features, respectively. Task 4 represents the more complex problem
which has larger input images with 28 road segments in 5 × 5 km square area (larger geographic
area) with 5 min interval and 12 previous observations as the features. The tasks are described as
the following:

• Task 1, 15 min prediction using 24 hours (t-96) historical traffic jam data on 61 road segments;
• Task 2, 15 min prediction using 6 hours (t-24) historical traffic jam data on 61 road segments;
• Task 3, 15 min prediction using 3 hours (t-12) historical traffic jam data on 61 road segments;
• Task 4, 5 min prediction using hourly (t-12) historical traffic jam speed data on 28 roads segments

in a 5 × 5 km square area.

Root mean square error (RSME), mean absolute error (MAE), and mean absolute percentage error
(MAPE) are used to evaluate the prediction performance. The smaller RSME is the better result is,
as well as MAE and MAPE. Let VSt and V̂St be the actual traffic jam speed and the predicted traffic jam
speed at time t, and let M be the number of total observations, then the performance measurements
can be calculated as in Equations (15)–(17).

RMSE =

√∑M
t=1

(
VSt − V̂St

)2

M
, (15)

MAE =

∑M
t=1

∣∣∣VSt − V̂St
∣∣∣

M
, (16)

MAPE =
∑M

t=1

∣∣∣VSt − V̂St
∣∣∣

VSt
× 100%. (17)

As previously mentioned, there are four prediction tasks in this experiment. In general, each task
can be divided into the following two groups according to their prediction area: (1) predictions on
the selected 61 road segments and (2) prediction on 5 × 5 km square area. The two groups have a
different number of total observations M, i.e., 34,944 observations in group 1, and 105,120 observations
in group 2.

Because different sets of activation function can produce different results [29]. Here, four sets
of activation functions were tested on the proposed OCapsNet model to determine which activation
should be used. Table 9 shows that evaluation results under one month of traffic data for 28 road
segments on the selected 5 × 5 km square area. The best results are indicated in asterisks in Table 9.
As can be seen, the Leaky ReLU, Edgar Squash, and Squash are the best for convolution layer, primary
capsule layer, and traffic jam capsule layer, respectively. These setting are used for the four prediction
tasks and the results are presented in the following section.

Sensors 2019, 19, 5277 15 of 18

Table 9. Performance with the different activation function of OCapsNet.

Convol Primary Caps Traffic Jam Caps MAPE RMSE MAE

ReLU Squash Squash 13.351 0.448 0.519
Leaky ReLU Squash Squash 14.529 0.567 0.643

* Leaky ReLU Edgar Squash Squash 12.529 0.421 0.45
Leaky ReLU Edgar Squash Edgar Squash 13.567 0.439 0.551

* The activation function settings which are then used for the four prediction tasks.

4.2. Experimental Results

Table 10 shows the summarized results on the prediction tasks. Please note that the reported
results in Table 10 are the average of MAPE, RMSE, and MAE. The “t-96”, “t-24”, and “t-12” indicate
the number of time intervals in the input image. For example, t-96 has 96 historical data points in
15 min intervals. It also means t-12 has fewer historical data points used for training.

As can be seen, CNN has better result on Task-1 which has more historical data points for training.
This result is not surprising because CNN requires more data to maintain the good prediction quality.
When the data point in time horizonal is fewer, CapsNet based network outperforms CNN. Particularly,
OCapsNet can produce the better results than the original CapsNet.

Table 10. Performance comparison on four selected tasks.

Task CNN CapsNet OCapsNet

MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE

Task-1 (t-96) * 29.56 1.707 1.272 30.46 1.749 1.307 29.74 1.709 1.274
Task-2 (t-24) * 29.42 1.702 1.282 29.28 1.701 1.266 29.15 1.670 1.218
Task-3 (t-12) * 29.84 1.748 1.296 33.72 1.673 1.473 29.25 1.603 1.294
Task-4 (t-12) ** 13.99 1.166 0.592 13.15 1.009 0.497 12.52 1.049 0.450

* Performance comparison on 61 road segments of the selected 8 UST Roads (see Table 3). ** Performance on the
selected 28 road segments in a 5 × 5 km square (see Figure 3b)

Figure 8 plots all of prediction errors (unit is kilometer/hour) generated by CNN, CapsNet,
and OCapsNet. Obviously, CNN has a much wider distribution of errors (standard deviation is 0.17)
although the average of error is near zero. On the contrary, the error distributions of CapsNet and
OCapsNet are much compact and their standard of the errors are 0.12, and 0.14, respectively. However,
the average error of the original CapsNet is lower and shifted from zero. From Figure 8, we can also
conclude the proposed OCapsNet has better prediction on traffic jam speed under UST.

Figure 8. Boxplot of predicted traffic jam speed errors in km/h for Task-4.

Sensors 2019, 19, 5277 16 of 18

5. Conclusions

In this work, a framework for the RNW traffic jam speed prediction under UST condition is
proposed using mobile sensor data and a deep learning CapsNet-based network, called OCapsNet.
In order to capture the characteristics of the spatial-temporal urban road networks, the data
preprocessing on mapping the data point in traffic speed dataset with the OSM was developed.
Then, the images representing the road speeds in a certain area were generated in every 5 min interval
and 15 min interval. The generating images are the inputs of the deep learning network to predict
the traffic jam speeds on the road network at a particular time horizon. In addition, to improve the
prediction accuracy, the optimized CapsNet was proposed which performs as follows: (1) replaces the
ReLU function by the Leaky ReLU function at first two convolution layers of CapsNet, (2) simplifies
the dynamic routing with fewer searching loops, and (3) applies Edgar Squash function as a new
activation function in Capsule layer.

The experiments were conducted to evaluate the prediction performance based on the real-world
data from JSC. The performances of the original CNN and CapsNet were compared with the proposed
OCapsNet. The results show that OCapsNet outperforms CNN (our benchmark) and the original
CapsNet in terms of smaller MAPE, RMSE, and MAE when fewer historical data points are fed into the
model. The compact error distribution also indicates that OCapsNet has better precision on prediction.

Although the prediction result is promising, the proposed model still has a limitation of suffering
severely loner time for training. How to improve the MAPE from 30% to a better result under
complex road network of UST instead of on single freeway is still an open question. In addition,
the dynamic routing step can be further improved by considering EM routing or other routing
mechanism. In addition, it would be interesting to see if the combination of OCapsNet with LSTM
can improve the model as it can fully capture the temporal interaction of the traffic road condition.
Last but not least, it would be worth considering more features, such as weather, traffic event, and other
traffic information represented to the channel of the image to be included for image-basis input of the
deep learning model.

Author Contributions: Conceptualization, C.-L.Y.; data curation, A.S.C. and H.S.; formal analysis, H.T.; funding
acquisition, C.-L.Y. and K.-L.H.; investigation, H.S.; project administration, K.-L.H.; software, A.S.C.; supervision,
H.T.; validation, H.T.; visualization, H.T.; writing—original draft, C.-L.Y.; writing—review and editing, C.-L.Y.

Funding: This research was funded by the Ministry of National Science and Technology (MOST) of Taiwan
to the National Taiwan University of Science and Technology under MOST-106-2221-E-011-106-MY3, MOST-
106-2218-E-011-008-MY2, and MOST-108-2218-E-011-026. In addition, this study is financial supported by the
“Center for Cyber-Physical System Innovation” from The Featured Areas Research Center Program within the
framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. We would also
like to thank Wang Jhan-Yang Charitable Trust Fund for their funding support.

Acknowledgments: We thank Budhi Wiboro’s help on contacting with Jakarta Smart City for data collection and
collaboration. We also appreciate Jakarta Smart City’s data sharing for this research work.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Su, K.; Li, J.; Fu, H. Smart city and the applications. In Proceedings of the 2011 International Conference on
Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 1028–1031.

2. Hashem, I.A.T.; Chang, V.; Anuar, N.B.; Adewole, K.; Yaqoob, I.; Gani, A.; Ahmed, E.; Chiroma, H. The role
of big data in smart city. Int. J. Inf. Manag. 2016, 36, 748–758. [CrossRef]

3. Wan, J.; Liu, J.; Shao, Z.; Vasilakos, A.; Imran, M.; Zhou, K. Mobile crowd sensing for traffic prediction in
internet of vehicles. Sensors 2016, 16, 88. [CrossRef] [PubMed]

4. Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.Y. Traffic flow prediction with big data: a deep learning approach.
IEEE Trans. Intell. Transp. Syst. 2015, 16, 865–873. [CrossRef]

http://dx.doi.org/10.1016/j.ijinfomgt.2016.05.002
http://dx.doi.org/10.3390/s16010088
http://www.ncbi.nlm.nih.gov/pubmed/26761013
http://dx.doi.org/10.1109/TITS.2014.2345663

Sensors 2019, 19, 5277 17 of 18

5. Zhao, Z.; Chen, W.; Wu, X.; Chen, P.C.; Liu, J. LSTM network: a deep learning approach for short-term traffic
forecast. IET Intell. Transp. Syst. 2017, 11, 68–75. [CrossRef]

6. Kim, Y.-J.; Hong, J.-S. Urban traffic flow prediction system using a multifactor pattern recognition model.
IEEE Trans. Intell. Transp. Syst. 2015, 16, 2744–2755.

7. Waze. Free Driving Directions, Traffic Reports & GPS Navigation App by Waze. Available online:
https://www.waze.com (accessed on 4 February 2019).

8. Vlahogianni, E.I.; Karlaftis, M.G.; Golias, J.C. Short-term traffic forecasting: Where we are and where we’re
going. Transp. Res. Part C 2014, 43, 3–19. [CrossRef]

9. Jia, R.; Jiang, P.; Liu, L.; Cui, L.; Shi, Y. Data driven congestion trends prediction of urban transportation.
IEEE Internet Things J. 2018, 5, 581–591. [CrossRef]

10. Suhas, S.; Kalyan, V.V.; Katti, M.; Prakash, B.A.; Naveena, C. A comprehensive review on traffic prediction
for intelligent transport system. In Proceedings of the 2017 International Conference on Recent Advances in
Electronics and Communication Technology (ICRAECT), Bangalore, India, 16–17 March 2017; pp. 138–143.

11. Nagy, A.M.; Simon, V. Survey on traffic prediction in smart cities. Pervasive Mob. Comput. 2018, 50, 148–163.
[CrossRef]

12. Guo, X.; Deng, F. Short-Term Prediction of Intelligent Traffic Flow Based on BP Neural Network and ARIMA
Model. In Proceedings of the 2010 International Conference on E-Product E-Service and E-Entertainment,
Henan, China, 7–9 November 2010.

13. Xie, Y.; Zhang, Y.; Ye, Z. Short-term traffic volume forecasting using Kalman filter with discrete wavelet
decomposition. Comput. Aided Civ. Infrastruct. Eng. 2006, 22, 326–334. [CrossRef]

14. Yan, Y.; Zhang, S.; Tang, J.; Wang, X. Understanding characteristics in multivariate traffic flow time series
from complex network structure. Phys. A Stat. Mech. Appl. 2017, 477, 149–160. [CrossRef]

15. Wang, Z.; Lu, M.; Yuan, X.; Zhang, J.; Van De Wetering, H. Visual traffic jam analysis based on trajectory data.
IEEE Trans. Vis. Comput. Graphics 2013, 19, 2159–2168. [CrossRef] [PubMed]

16. Tang, J.; Liu, F.; Zou, Y.; Zhang, W.; Wang, Y. An Improved Fuzzy Neural Network for Traffic Speed Prediction
Considering Periodic Characteristic. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2340–2350. [CrossRef]

17. Zeng, D.; Xu, J.; Gu, J.; Liu, L.; Xu, G. Short Term Traffic Flow Prediction Based on Online Learning SVR.
In Proceedings of the 8th Workshop on Power Electronics and Intelligent Transportation System Guangzhou,
China, 2–3 August 2008; pp. 616–620. [CrossRef]

18. Saldana-Perez, M.; Torres-Ruiz, M.; Moreno-Ibarra, M. Geospatial modeling of road traffic using a
semi-supervised regression algorithm (July 2019). IEEE Access 2019. [CrossRef]

19. Yan, H.; Yu, D.-J. Short-Term traffic condition prediction of urban road network based on improved SVM.
In Proceedings of the 2017 International Smart Cities Conference (ISC2), Wuxi, China, 14–17 September 2017;
pp. 1–2.

20. Tang, J.; Chen, X.; Hu, Z.; Zong, F.; Han, C.; Li, L. Traffic flow prediction based on combination of support
vector machine and data denoising schemes. Phys. A Stat. Mech. Appl. 2019, 534, 120642. [CrossRef]

21. Kim, Y.; Wang, P.; Mihaylova, L. Structural Recurrent Neural Network for Traffic Speed Prediction.
Proceedings of ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Brighton, UK, 12–17 May 2019; pp. 5207–5211.

22. Abbas, Z.; Al-shishtawy, A.; Girdzijauskas, S.; Vlassov, V. Short-Term Traffic Prediction Using Long Short-Term
Memory Neural Networks. In Proceedings of the 2018 IEEE International Congress on Big Data (BigData
Congress), San Francisco, CA, USA, 2–7 July 2018; pp. 57–65.

23. Duan, Y.; Lv, Y.; Wang, F.Y. Travel time prediction with LSTM neural network. In Proceedings of the IEEE
Conference on Intelligent Transportation Systems, Rio de Janeiro, Brazil, 1–4 November 2016; pp. 1053–1058.
[CrossRef]

24. Song, C.; Lee, H.; Kang, C.; Lee, W.; Kim, Y.B.; Cha, S.W. Traffic speed prediction under weekday using
convolutional neural networks concepts. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium
(IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1293–1298.

25. Wei, W.; Jia, X.; Liu, Y.; Yu, X. Travel Time Forecasting with Combination of Spatial-Temporal and Time Shifting
Correlation in CNN-LSTM Neural Network; Springer: Cham, Switzerland, 2018; pp. 297–311.

26. Ma, X.; Dai, Z.; He, Z.; Ma, J.; Wang, Y.; Wang, Y. Learning traffic as images: A deep convolutional
neural network for large-scale transportation network speed prediction. Sensors (Switzerland) 2017, 17, 818.
[CrossRef] [PubMed]

http://dx.doi.org/10.1049/iet-its.2016.0208
https://www.waze.com
http://dx.doi.org/10.1016/j.trc.2014.01.005
http://dx.doi.org/10.1109/JIOT.2017.2716114
http://dx.doi.org/10.1016/j.pmcj.2018.07.004
http://dx.doi.org/10.1111/j.1467-8667.2007.00489.x
http://dx.doi.org/10.1016/j.physa.2017.02.040
http://dx.doi.org/10.1109/TVCG.2013.228
http://www.ncbi.nlm.nih.gov/pubmed/24051782
http://dx.doi.org/10.1109/TITS.2016.2643005
http://dx.doi.org/10.1109/PEITS.2008.134
http://dx.doi.org/10.1109/ACCESS.2019.2942586
http://dx.doi.org/10.1016/j.physa.2019.03.007
http://dx.doi.org/10.1109/ITSC.2016.7795686
http://dx.doi.org/10.3390/s17040818
http://www.ncbi.nlm.nih.gov/pubmed/28394270

Sensors 2019, 19, 5277 18 of 18

27. Liu, Z.; Li, Z.; Wu, K.; Li, M. Urban traffic prediction from mobility data using deep learning. IEEE Netw.
2018, 32, 40–46. [CrossRef]

28. Yang, D.; Li, S.; Peng, Z.; Wang, P.; Wang, J.; Yang, H. MF-CNN: Traffic Flow Prediction Using Convolutional
Neural Network and Multi-Features Fusion. IEICE Trans. Inf. Syst. 2019, 102, 1526–1536. [CrossRef]

29. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing Between Capsules. In Proceedings of the
NIPS'17, 31st International Conference on Neural Information Processing Systems, Long Beach, CA,
USA, 4–9 December 2017; pp. 3859–3869.

30. Xi, E.; Bing, S.; Jin, Y. Capsule Network Performance on Complex Data. ArXiv 2017, arXiv:1712.03480, 1–7.
31. Kim, Y.; Wang, P.; Zhu, Y.; Mihaylova, L. A Capsule Network for Traffic Speed Prediction in Complex Road

Networks. In Proceedings of the 2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn,
Germany, 9–11 October 2018; pp. 1–6.

32. Gagana, B.; Athri, H.U.; Natarajan, S. Activation Function Optimizations for Capsule Networks.
In Proceedings of the 2018 International Conference on Advances in Computing, Communications and
Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 1172–1178.

33. Malmgren, C. A Comparative Study of Routing Methods in Capsule Networks; Linköping University: Linköping,
Sweden, 2019.

34. OpenStreetMap. OpenStreetMap Indonesia. Available online: https://openstreetmap.id/en/dki-jakarta/

(accessed on 4 February 2019).
35. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.

In Proceedings of the NIPS'12 25th International Conference on Neural Information Processing Systems,
Lake Tahoe, Nevada, USA, 3–6 December 2012; pp. 1097–1105.

36. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, USA, 7–9 May 2015.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MNET.2018.1700411
http://dx.doi.org/10.1587/transinf.2018EDP7330
https://openstreetmap.id/en/dki-jakarta/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Traffic Data Preprocessing
	Traffic Jam Speed Prediction Model
	Converting Traffic Jam Speed as an Image
	CNN-Based Traffic Jam Prediction
	CapsNet-Based Traffic Jam Prediction
	Optimized CapsNet (OCapsNet)

	Experimental Results
	Experimental Settings
	Experimental Results

	Conclusions
	References

