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Abstract: Amorphous ferromagnetic materials in the form of microwires are of interest for the
development of various sensors. This paper analyzes and argues for the use of microwires of two
basic compositions of Co71Fe5B11Si10Cr3 and Fe3.9(4.9)Co64.82B10.2Si12Cr9(8)Mo0.08 as stress/strain and
temperature sensors, respectively. The following properties make them suitable for innovative
applications: miniature dimensions, small coercivity, low anisotropy and magnetostriction, tunable
magnetic structure, magnetic anisotropy, and Curie temperature by annealing. For example, these
sensors can be used for testing the internal stress/strain condition of polymer composite materials
and controlling the temperature of hypothermia treatments. The sensing operation is based on the
two fundamental effects: the generation of higher frequency harmonics of the voltage pulse induced
during remagnetization in wires demonstrating magnetic bistability, and magnetoimpedance.

Keywords: amorphous microwire; low Curie temperature; annealing; current annealing; near-zero
magnetostriction; induced anisotropy; harmonics spectrum; magnetic bistability; magnetoimpedance

1. Introduction

Amorphous alloys based on 3D metals produced in the form of ribbons and wires are
excellent soft magnetic materials used in a large number of applications, including sensors [1–4].
The choice of composition depends on a particular application, but generally, the alloy includes
(Fe,Co,Ni)70–85(Si,B)15–30 where the metalloids Si and B help glass formation [5]. The addition of other
elements is also used, such as, for example, Cr and Mo to stabilize the amorphous structure [6–9].
Here, we consider microwires made of a number of alloy systems that have high potential for
the development of miniature mechanical stress and temperature sensors based on their tunable
magnetic properties. The wires are prepared by the modified Taylor-Ulitovskiy method [10,11],
and when quenched in water, they typically have an amorphous structure without crystalline phases.
Then, the residual magnetocrystalline anisotropy is small, and the magnetoelastic interactions often
play the deciding role in determining the overall magnetic anisotropy energy. This is the basis of
magnetic stress-sensing mechanisms with the use of amorphous materials [12–18].
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For many sensing applications, temperature stability is of primary importance, which demands
the use of materials with a high Curie temperature, Tc. However, for ambient temperature
measurements, low-Tc materials are sought after. Microwires made of amorphous CoFe-based
alloys with a higher addition of Cr or Ni have reduced values of Tc [6,14,19–21] and are suitable for
local temperate measurements.

In amorphous materials, the short-range ordering can be modified by various annealing
treatments [22,23]. This is important from the perspective of tuning the magnetic structure and
controlling the magnetic parameters such as uniaxial anisotropy, magnetostriction, and Curie
temperature [24–27]. In particular, annealing in the presence of a magnetic field forms the easy
anisotropy axis along the field if the annealing temperature is lower than the Curie temperature.
Simultaneously, the internal stress frozen-in during fabrication is relaxed, which eliminates the
temperature instability. For example, the current annealing of amorphous wires of Co-rich
compositions with moderate current intensities induces a circumferential easy anisotropy and
positive magnetostriction [24,28,29]. The application of tensile stress along the wire contributes to
long-range axial anisotropy and strongly affects the remagnetization process and magnetoimpedance.
Therefore, this magnetic configuration is desirable for stress/strain sensing with the use of microwires
and is in the focus of this work.

The current annealing of amorphous microwires in different modifications was intensively
used with the aim to establish a well-defined circumferential anisotropy [30,31]. This anisotropy
is the key to realize large and sensitive change in the complex-valued impedance in the presence
of a DC magnetic field known as the magnetoimpedance effect (MI) [32–34]. The relative change
in impedance (the MI ratio) in the range of 400%–600% was obtained. Since current annealing
relaxes the internal stresses, excellent temperature stability of the magnetic structure and MI was
demonstrated. However, for mechanical sensing applications, a balance between the induced anisotropy
and modifications in magnetostriction is crucially important. The desirable combination requires the
optimization of the alloy composition and annealing conditions. Thus, the required properties are
achieved in microwires of near-zero magnetostriction alloy of composition Co71Fe5B11Si10Cr3 with the
metal core diameter of about 25 microns by annealing with the current densities of 100–120 A/mm2.

All characteristic magnetic parameters including the saturation magnetization, anisotropy,
and magnetostriction decrease when the temperature approaches Tc [35–38]. Specific sensing
applications require good high-temperature performance. As the Curie temperature of FeCo-based
alloys is typically higher than 300 °C, these materials are suitable for such applications. On the
other hand, considering possible applications in miniature temperature sensors operating in the
industrial temperature range (room temperature–100 °C), microwires with a reduced and tunable Curie
temperature are needed [39]. CoFe-based amorphous alloys containing Cr have a reduced Tc, owing to
the antiferromagnetic coupling between Cr-Fe and Cr-Co atoms. With increasing Cr concentration,
the value of Tc initially drops by about 24–25 °C per at% of Cr, and an even stronger decrease takes place
if the Cr concentration is above 10% [6]. Here, we discuss the behavior of critical magnetic parameters
near the Curie temperature in amorphous microwires of composition Fe3.9Co64.82B10.2Si12Cr9Mo0.08

with a low TC of 62 °C. The wires have an axial anisotropy due to a positive magnetostriction. The easy
axial anisotropy is important to realize fast remagnetization even near Tc. It is also favorable for
temperature-dependent MI, although rather high frequencies of a few hundred megahertz are needed
to observe a monotonic drop in the impedance with increasing temperature toward Tc.

The compositional adjustment of Tc within a required narrow range is difficult, but this may
be achieved by annealing causing the microscopic atomic rearrangements [23,40,41]. Typically, Tc

variations are less than 10% when temperatures are defined in Kelvin. However, in absolute values,
this can be within 10–15 degrees, which is sufficient for certain requirements on the temperature range.
In the case of biomedical applications, the Curie temperature of 40–60 °C would be of interest.

The paper is organized as follows. Section 2 gives the details of the experimental and technological
procedures used in this work. Section 3 provides a theoretical background of stress/temperature
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tunable static and dynamic magnetic properties. Section 4.1 analyzes the impact of mechanical stress on
the magnetization processes in glass-coated amorphous microwires of composition Co71Fe5B11Si10Cr3

before and after current annealing. In Section 4.2, the temperature-dependent magnetic properties
of amorphous microwires of composition Fe3.9(4.9)Co64.82B10.2Si12Cr9(8)Mo0.08 with low Tc values of
61–62 °C are considered. Section 4.3 introduces the sensing mechanism based on the fast remagnetization
and generation of a high harmonics spectrum. In Section 4.4, we discuss the impact of mechanical stress
on MI and the role of a particular magnetic configuration to realize the stress-MI effect. Here, we also
consider the MI change when approaching the Curie temperature. The main findings of the paper are
summarized in the Conclusion.

2. Materials and Methods

Microwires prepared by the Taylor-Ulitovisky method [10] in a glass coating are discussed in this
work. For stress-sensory applications, microwires with a low magnetostriction constant are of interest.
This is realized in CoxFey and CoxMny alloys with a high content of Co (x/y ≈ 14) [42,43]. Alloys with
Ni also have a low magnetostriction, but the saturation magnetization and the Curie temperature
are also reduced [44]. Considering this reasoning, glass-coated amorphous wires of composition
Co71Fe5B11Si10Cr3 (x/y ≈ 14.2) were chosen to realize stress-sensitive magnetic structures. A small
addition of Cr is helpful to stabilize the amorphous state [45]. The Curie temperature Tc is 637 K.
The wire dimensions were a total diameter of D ≈ 30 µm and a metal core diameter of d ≈ 25 µm.

Reduced values of Tc are achieved in alloys with a high content of Cr or Ni. To demonstrate
the temperature effects near Tc, the microwires of the Fe3.9(4.9)Co64.82B10.2Si12Cr9(8)Mo0.08 composition
with the Curie temperature in the range of 334.5− 345 K were chosen. The wire had a total diameter of
D ≈ 27 µm and a metallic core diameter of d ≈ 17.5 µm.

For property modification, the wires were annealed using furnace heating and Joule heating by DC
current. The latter is of interest for the formation of the induced anisotropy by a circular magnetic field
of the current. The sample length for current annealing was 15 cm, the passed current amplitude varied
in the range of 25–90 mA, and the flowing current time varied within up to 60 minutes. All the current
treatments were performed in the same ambient conditions. During current annealing, the temperature
control is of high importance, since the annealing temperature Tan should be sufficiently high to
ensure fast kinetics but not exceed the Curie temperature. One method to measure Tan is to make
a comparison between the dependences of the saturation magnetization on the temperature and
annealing current [23]. The value of Tan can be also found from modeling, considering the balance
between the supplied electric power and heat exchange [46]. We have recently proposed a direct
method of measuring the temperature during current annealing, which is based on using a reference
sample, the temperature of which is automatically set equal to the temperature of the annealed
microwire. The setup uses a precision operational amplifier with a bridge switching circuit and a
heating platform, as demonstrated in Figure 1.

The Curie and crystallization temperatures were determined from differential scanning calorimetry
(DSC) curves (by using DSC 204 F1 Netzsch instrumentation) with the help of standard IT application.
The crystallization temperature for the chosen alloys is in the range of Tcr = 773 − 793 K. For fast
analysis, the Curie temperature of the annealed samples was determined from the temperature behavior
of the AC magnetic susceptibility measured by an RLC meter at a frequency of 1 kHz. The samples
were placed in a thermally isolated camera, and the temperature at the sample position was measured
by a thermocouple.



Sensors 2019, 19, 5089 4 of 24

Sensors 2019, 19, x FOR PEER REVIEW 4 of 24 

 

 
Figure 1. Schematic diagram of a setup for current annealing with remote temperature control. 

The Curie and crystallization temperatures were determined from differential scanning 
calorimetry (DSC) curves (by using DSC 204 F1 Netzsch instrumentation) with the help of standard 
IT application. The crystallization temperature for the chosen alloys is in the range of 𝑇௖௥ = 773 −793 K. For fast analysis, the Curie temperature of the annealed samples was determined from the 
temperature behavior of the AC magnetic susceptibility measured by an RLC meter at a frequency of 
1 kHz. The samples were placed in a thermally isolated camera, and the temperature at the sample 
position was measured by a thermocouple. 

The hysteresis loops under the effect of applied stress of up to 1.2 GPa and temperature (up to 
80 ℃) were obtained by using the induction method with two differential detection/magnetization 
coils with an inner diameter of 3 mm each. The magnetization coil produced a magnetizing field 
with an amplitude of up to 1000 A/m and was driven by a current with a frequency of 500 Hz. The 
field magnitude was sufficient for remagnetizing the soft magnetic wires at this frequency. The 
external stress was applied by hanging the load at one end of the microwires, whilst the other was 
kept fixed. For elevated temperature measurements, the coil with the wire sample was placed in the 
thermal camera. 

The Hewlett-Packard 8753E Vector Network Analyzer was used to measure the wire 
impedance in the frequency range between 1 and 500 MHz at room temperature. The wire length for 
impedance measurements was 11 mm. The impedance spectra were deduced from the S21 parameter 
(two-port measuring scheme) after making the calibration procedure with specially designed 
PCB-microstrip cells [47]. The sample was placed inside a Helmholtz coil that produced a slowly 
varying magnetic field up to 3000 A/m. In order to introduce a tensile stress during the S21 
measurement, the load was hung by a thread in the middle part of the wire. In this case, the stress is 
not uniform along the wire length, and the estimated average value was used for the quantization of 
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A high harmonics spectrum was calculated through a digital sampling of the induced voltage 
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Figure 1. Schematic diagram of a setup for current annealing with remote temperature control.

The hysteresis loops under the effect of applied stress of up to 1.2 GPa and temperature (up to
80 °C) were obtained by using the induction method with two differential detection/magnetization
coils with an inner diameter of 3 mm each. The magnetization coil produced a magnetizing field with
an amplitude of up to 1000 A/m and was driven by a current with a frequency of 500 Hz. The field
magnitude was sufficient for remagnetizing the soft magnetic wires at this frequency. The external
stress was applied by hanging the load at one end of the microwires, whilst the other was kept
fixed. For elevated temperature measurements, the coil with the wire sample was placed in the
thermal camera.

The Hewlett-Packard 8753E Vector Network Analyzer was used to measure the wire impedance
in the frequency range between 1 and 500 MHz at room temperature. The wire length for impedance
measurements was 11 mm. The impedance spectra were deduced from the S21 parameter (two-port
measuring scheme) after making the calibration procedure with specially designed PCB-microstrip
cells [47]. The sample was placed inside a Helmholtz coil that produced a slowly varying magnetic
field up to 3000 A/m. In order to introduce a tensile stress during the S21 measurement, the load was
hung by a thread in the middle part of the wire. In this case, the stress is not uniform along the wire
length, and the estimated average value was used for the quantization of its effect. For measuring the
impedance versus temperature, the change in temperature (from room temperature up to 370 K) was
made with a hot-air gun and measured by a standard thermocouple.

A high harmonics spectrum was calculated through a digital sampling of the induced voltage
signal measured during the wire remagnetization in the time domain and converting it into the
frequency domain using fast Fourier transforms. Experimentally, the amplitudes of the chosen high
harmonics (5th–15th) were measured with the help of a lock-in amplifier (lock-in nanovoltmeter
type-232B) and functional generators. In order to measure the effect of temperature on the harmonics
amplitude, a specially designed flat coil and vacuum chamber were used.
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Considering the effect of applied load exerting the force P to the whole wire with a layered
structure consisting of a metal core and a surface glass shell, the value of stress σ̂ex in the core needs
to be evaluated. The deformations in the inner metal core and the glass shell are assumed to be
independent; then, the Poisson ratios are the same. In this case, the force P imposes the following
tensile stresses in the core (σex, in) and shell regions (σex, out) [48]:

σex, in = EmC0, σex, out = EgC0. (1)

In Equation (4), Em and Eg are the Young modules, while the constant C0 is found from the definition
of the average stress σex:

σex =
4P
πD2 =

(
Emρ

2 + Eg
(
1− ρ2

))
C0, ρ =

d
D

. (2)

In amorphous alloys, the values of the Young modules depend on the microstructure [49] and differ
considerably for wires of similar composition. For example, the Em values of Co-rich amorphous wires
range between 130 and 150 GPa, and the Eg values for glass are within 50− 70 GPa. Stress estimation
in the metal core from Equations (4)–(5) was done with the use of the average values.

3. Theoretical Background

The soft magnetic properties of materials are largely required for applications in sensors based on
their magnetization or remagnetization in weak magnetic fields. From this perspective, amorphous
alloys are of great importance. The energy of magnetocrystalline anisotropy Ecr in amorphous
ferromagnetics is low, and the other contributions to the total anisotropy energy Em, such as
magnetoelastic Eme and magnetodipole Emd energies, can be also made small. In general, all these
terms may be needed for analyzing the magnetic structure. Additionally, the induced anisotropy Eu is
established by various annealing treatments to refine the magnetic structure. The total energy Em is of
the form:

Em = Ecr + Eu + Eme + Emd (3)

Ecr = − K(nk·m)2, Eme = −
3
2
λs(σ̂m)·m, Eu = −Ku(nu·m)2. (4)

Here, K, Ku and nk, nu are the magnitudes and directions of the averaged crystalline anisotropy
and induced anisotropy, respectively; m = M/Ms is the unit magnetization vector, Ms is the saturation
magnetization, λs is the saturation magnetostriction, and σ̂ is the stress tensor, which is composed of
internal stress σ̂in occurring during material processing and the applied load σ̂ex. If the parameter λs is
small in the range of 10−8

− 10−7, it is important to consider its stress dependence. A linear dependence
between λs and a tensile stress σa was experimentally established [27,43,47,48,50]:

λs(σa) = λs0 − βσa. (5)

In Equation (3), λs0 is the magnetostriction in the stress-free state, and the parameter β is positive
and rather small, residing in the range of (1− 6)× 10−10 /MPa. However, if λs0 is also small, the second
term in Equation (3) may be critically important: with increasing σa, the negative contribution to λs

increases, which may result in a sharp change in the direction of the easy anisotropy. The possibility of
transforming the type of magnetic anisotropy through changing the easy axis direction constitutes the
basis of the development of highly sensitive sensing elements with respect to mechanical stresses.

3.1. Stress-Sensitive Magnetic Configurations in Amorphous Microwires

The following magnetic configurations in amorphous microwires may be exploited for
stress-sensory applications:
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• In many cases, the use of a DC bias magnetic field may create stress-sensitive magnetization
reversal. This was exploited in wires with a negative magnetostriction and almost a circumferential
easy anisotropy [3]. The application of an axial magnetic field deviates the magnetization toward
the axis. The applied tensile stress strengthens the circular anisotropy and rotates the magnetization
back. However, for practical applications, the use of a bias field may not be desirable.

• The as-produced wires of Co-rich composition may have an axial easy anisotropy and small
magnetostriction (either positive or negative). In this case, the main contribution to the axial
anisotropy can be due to Co–nanocrystal clustering in an amorphous matrix that has a high
magnetic anisotropy, K = (4.2− 5.5) × 105J/m3 for HCP Co [51]. The application of the external
stress makes the magnetostriction larger in magnitude and negative according to Equation (5).
The contribution of the magnetoelastic anisotropy increases and changes the direction of the
anisotropy easy axis: it aligns closer to the circumference due to coupling between the negative
magnetostriction and axial stress σa. The change in the anisotropy easy angle with increasing σa

for this case is shown in Figure 2. If the wire has a strong internal stress, then a circumferential
anisotropy is observed without the applied stress, and thermal annealing forms the axial anisotropy
due to relaxation of the frozen-in stress.

• Annealing in the presence of a magnetic field forms in wires a certain combination of anisotropy
and magnetostriction due to atomic pair ordering, internal stress relaxation, and atomic
rearrangements [52,53]. The microscopic origins of the induced anisotropy and transformation in
magnetostriction are different, and their evolution during annealing may not correlate [24,27].
Recently, researchers demonstrated the possibility of inducing a circumferential anisotropy in
combination with a positive magnetostriction in Co-rich amorphous wires [16]. Depending on the
magnitude of the magnetostriction constant, the applied tensile stress may cause non-monotonic
change in the easy anisotropy angle, as shown in Figure 3 (Curve 1). For higher values of
magnetostriction, the application of tensile stress establishes the axial anisotropy (Figure 3,
Curve 2).
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Figure 2. In (a), schematic representation of various stress contributions to the easy anisotropy of
amorphous wire; in (b), dependence of the angle α between the easy axis n and the wire axis z on tensile
stress σa. Parameters used for calculation: λs0 = 2.5× 10−8, β = 0.9× 10−10MPa−1, and 2K

Ms
= 160 A/m.

In order to describe a smooth transformation in the easy angle α, a small torsion stress σt = 40 MPa
was introduced.
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3.2. Temperature-Sensitive Magnetic Configurations in Amorphous Microwires

Many FeCo-rich amorphous alloys have a high Curie temperature Tc above 300 °C [54], but the
magnetic structure of microwires produced from these alloys often experiences temperature variations
at much lower temperatures below 80 °C [38,46,55–59]. This temperature influence is related with
the internal stress relaxing and the corresponding transformation in the magnetoelastic anisotropy.
Upon heating, a circumferential magnetic anisotropy formed by coupling between the negative
magnetostriction and tensile stress transforms to an axial anisotropy if the sign of magnetostriction
changes to positive due to stress reduction (as follows from Equation (5) and demonstrated in Figure 2).
The hysteresis loop changes a shape from a flat loop to a rectangular loop. However, such stress relief
is not reversible and cannot be used in temperature sensors. Moreover, practical applications demand
high temperature stability.

A strong temperature dependence of the characteristic magnetic parameters is observed near the
Curie temperature, which is lowered by the addition of Ni and Cr in CoFe-based amorphous alloys.
The value of Tc is also adjusted by annealing due to chemical and topological short-range reordering.

According to a classical model that assumes unrestricted spin reorientation, the magnetization
varies with temperature obeying the Langeven law:

M(T)
M0

= cothx−
1
x

, x =
3Tc

T
M(T)

M0
. (6)

In Equation (6), all the temperatures are expressed in Kelvin, and M0 is the magnetization at
T = 0 K. When approaching Tc, M is proportional to (1− T/Tc)

κ. From Equation (6), it follows that the
critical exponent κ = 0.5, whereas its value in amorphous alloys is between 0.36 and 0.45. The other
magnetic parameters such as anisotropy and magnetostriction also decrease near Tc proportionally to
Mn, n = 2− 3 [60,61]. Then, the magnetization behavior and related effects demonstrate considerable
change near the Curie temperature.
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3.3. Magnetoimpedance (MI) Effect in Amorphous Microwires

Amorphous microwires are known to exhibit a large change in high-frequency impedance in
the presence of a DC magnetic field, which is known as the magnetoimpedance (MI) effect [62–64].
Since the magnetic configuration in wires modifies in response to other external stimuli (such as stress
and temperature), the impedance also depends on these factors. The impedance is defined by the
voltage Vw across a magnetic wire subjected to a high frequency current i. Considering the energy
balance, we have:

iVw =

∫
S
(e× h)ds. (7)

In Equation (7), the surface integral is over the wire, while e and h are the AC electric and magnetic
fields. The voltage across the wire Vw is found from Equation (7) using the impedance boundary
condition at the wire surface, which relates the axial electric field ez and circular magnetic field hϕ:

ez = ςzzhϕ. (8)

In Equation (8), ςzz is the diagonal component of the surface impedance tensor ς̂. Considering that
ςzz is constant along the wire surface and using the relationship hϕ = i/2πa, where a is the wire radius,
the voltage Vw in a wire of length l is expressed as:

Vw =
l

2πa
ςzzi. (9)

The calculation of ς̂ is based on the solution of the Maxwell equations for the fields e and h completed
by the relationship for the dynamic magnetization m = χ̂h. An analytical treatment is possible
considering that the magnetic susceptibility tensor χ̂ is of a magnetization rotational origin and is
spatially independent [34,65]. Useful expressions for ςzz valid in a wide frequency band are:

a) strong skin effect ( δm
a � 1, δm = δ0

√
µe f

, δ0 =
√

2/σωµ0)

ςzz =
1− j
σδ0

(√
µe f cos2 θ+ sin2θ

)
, µe f = 1 + χ (10)

b) weak skin effect ( a
δ0
� 1 but can be a

δm
≈ 1 )

ςzz =
km J0(kma)
σJ1(kma)

+
2

27

(
a
δ0

)4µ2
3

σa
(11)

km =
1− j
δ0

√
µ1, µ1 = 1 + χ cos2 θ, µ3 = 1 + χ sinθ cosθ. (12)

Here, σ is the DC conductivity, θ is the angle between the static magnetization and the wire axis,
µ0 is the permeability of vacuum, χ is the susceptibility parameter composed of the components of
the tensor χ̂ and has a meaning of the circular susceptibility in the coordinate system with the z-axis
directed along the static magnetization, J0, J1 are the Bessel functions of the first kind of orders 0 and
1, respectively. Expressions (10)–(12) demonstrate that the surface impedance and high frequency
voltage in magnetic wires depend on the direction of the static magnetization. Certainly, the condition
of an essential skin effect a/δm ≈ 1 is needed, so the frequency should be sufficiently high. On the
other hand, the frequency is limited by the requirement that χ > 1. In soft magnetic amorphous
microwires (with a diameter of about 10–20 microns), the skin depth becomes about the wire radius at
MHz frequencies, and the parameter χ is relatively high up to a few GHz. Therefore, the MI effect
remains large in a very wide frequency band [66–68]. Pulse current excitation with the duration of few
nanoseconds was proposed to realize MI at megahertz frequencies for applications in field sensors [69].
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At GHz frequencies, the wires with a length satisfying the antenna resonance condition may behave as
magnetically tunable antennas owing to the MI effect, and may be interrogated remotely by microwave
irradiation [70].

4. Experimental Results and Discussion

4.1. Stress-Sensitive Magnetization Processes in Glass-Coated Amorphous Microwires of Composition
Co71Fe5B11Si10Cr3

For many sensing applications, extremely soft magnetic properties are of interest. As discussed
in Section 2, glass-coated amorphous wires of composition Co71Fe5B11Si10Cr3 possess near-zero
magnetostriction and are of interest to realize stress-sensitive magnetic structures. Figure 4 demonstrates
the transformation in the hysteresis curves in as-prepared wire in the presence of the applied tensile
stress [50]. Initially, a perfect rectangular loop is seen, implying that the anisotropy easy axis is along
the wire. The loop starts to incline when sufficiently high stress (> 450 MPa) is applied, overcoming
the axial anisotropy. Considering the stress dependence of the saturation magnetic field, it is deduced
that the magnetostriction is small but negative in the order of −2× 10−8, and the parameter β is about
0.9× 10−10 MPa−1. In the presence of the tensile stress, the easy anisotropy direction deviates from
the wire axis toward the circumference caused by the increased contribution of the magnetoelastic
anisotropy (compare with Figure 2b).
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microwires in the as-prepared state.

A small magnitude of the magnetostriction in the as-prepared state suggests that the internal
stress relaxation due to annealing may result in larger and positive λs. Then, current annealing is used
to simultaneously induce a circumferential anisotropy. The intensity of the annealing current should
be chosen such that the annealing temperature is sufficiently high to allow fast kinetics of structural
relaxation but smaller than the Curie temperature. For the considered alloy, the optimal annealing
temperature is in the range of 200–250 °C, which corresponds to the current density of 100–120 A/mm2

for the metal core diameter of 25 µm. The change in the magnetostriction due to annealing may
be larger than that predicted by Equation (5), accounting for stress relaxation. Other mechanisms
include modifications in atomic coordinations. Thus, after annealing by the DC current of 100 A/mm2,
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the magnetostriction becomes λs = 5× 10−8 and further increases after annealing with a higher current
density of 120 A/mm2.

The change in the hysteresis loops due to current annealing is shown in Figure 5. It is
clearly seen that annealing with a moderate current density of 100–120 A/mm2 forms a good
circumferential anisotropy, since the loop becomes inclined with a small remanence/saturation ratio.
Annealing with larger current densities does not change the hysteresis shape but only reduces the
coercivity in comparison with that seen for as-prepared wires. This is because the temperature
during annealing exceeds the Curie temperature, and the induced anisotropy does not form. If the
current density (90 mA or 183 A/mm2 in the considered case) corresponds to temperatures close to the
crystallization temperature the loop becomes inclined, but this is caused by the change in the sign of
the magnetostriction due to the formation of a nanocrystalline state.
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Figure 5. Effect of current intensity during annealing on the hysteresis loops of glass-coated amorphous
Co71Fe5B11Si10Cr3 microwires (50 mA corresponds to a current density of 102 A/mm2 for the wire
diameter of 25 microns).

The established magnetic configuration responds sensitively to the application of the tensile stress
as shown in Figures 6 and 7. The combination of positive magnetostriction and tensile stressσex enhances
the axial easy anisotropy, which is evident from a gradual increase in the remanence/saturation ratio.
In the case of Figure 6 (Ian = 50 mA), sufficiently high σex > 500 MPa causes the reverse transformations,
and the loop becomes inclined when the stress exceeds this value. Therefore, the anisotropy easy-axis
tends toward circumference. Such stresses are sufficient to change the magnetostriction sign according
to Equation (5), and σex coupled with a negative magnetostriction strengthens the circumferential
anisotropy. For higher Ian = 60 mA (Figure 7), the magnetostriction gets larger values due to annealing,
so the external stress up to very high values—more than those of the GPa—cannot change the sign
of the magnetostriction. In this case, the loop becomes a perfectly rectangular shape. The observed
transformation in the anisotropy easy-axis corresponds to the modeled results of Figure 3.
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4.2. Temperature-Dependent Magnetic Properties of Amorphous Microwires with Low Tc

To realize temperature-dependent magnetic properties in the moderate range from the room
temperature 50 to 80 °C, amorphous microwires with a reduced Curie temperature are of interest.
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The wires of the amorphous alloy system Fe3.9Co64.82B10.2Si12Cr9Mo0.08 having Tc values of 62 °C
were chosen considering their rectangular hysteresis, which preserves its shape up to Tc, as shown in
Figure 8 [71]. This behavior is related with relatively large and positive magnetostriction (λs ≈ 5× 10−7),
so some internal stress relief is not critical. A well-defined axial anisotropy exists for any temperature
T < TC, which is quite important for applications based on fast magnetization switching.
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Figure 8. Magnetization loops of glass-coated Fe3.9Co64.82B10.2Si12Cr9Mo0.08 microwires for different
temperatures, including near TC = 62 °C obtained by the induction method. The loops are normalized
by the saturation value at room temperature. The wire had the total diameter of 27.3 µm and the
metallic core diameter of 17.7 µm.

It is known that the Curie temperature of amorphous alloys can be changed by annealing within a
few percent due to chemical and topological short-range restructuring. Taking the Curie temperature
in K, the variation in absolute values can be of the order of tens of degrees. For high-TC alloys, this
variation is not of practical interest. If TC is close to the room temperature, its fine control by annealing
could be of huge technical importance. The change in the Curie temperature in the considered wire
is demonstrated in Figure 9a [25]. The observed behavior differs from that previously reported [22].
Typically, there is a maximum TC value for a certain annealing temperature corresponding to the
intermediate stable equilibrium. The observed minimum may be explained by antiferromagnetic
coupling between Cr and Fe, Co. Anyhow, the observed variation is from 53 to 68 °C, which is quite
high in absolute values for the considered temperature range but constitutes just about 5% in relative
change expressed in Kelvin.
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Figure 9. Effect of annealing on the Curie temperature and hysteresis loops for amorphous
Fe3.9Co64.82B10.2Si12Cr9Mo0.08 microwire (in as-prepared state Tc = 61.5 °C). In (a), Tc vs. annealing
temperature for different annealing times; in (b), the hysteresis curves in the as-prepared state and after
annealing with a high annealing temperature of 500 °C.

Annealing causes structural relaxation, which may change the micromagnetic structure. In the
case of wires with a rectangular hysteresis, this change is not critical and typically only results in some
increase in coercivity, as shown in Figure 9b.

Other alloy systems may also have low Curie temperatures, for example, with a high content of
Ni such as Fe5Co27.4B12.26Si12.26Ni43.08 having a Tc value of 48 °C. The magnetostriction of this alloy is
small and negative, so the wires have a flat hysteresis. In this case, annealing not only adjusts the Curie
temperature but also induces an axial anisotropy, so the hysteresis loop changes the shape and becomes
rectangular. Therefore, in general, controlling Tc by annealing has to be done with care, considering a
possible modification in the magnetic structure.

4.3. Fast Remagnetization for Sensory Applications

Magnetic materials that have a rectangular hysteresis have the ability to generate a sharp voltage
pulse when remagnetized with a low frequency magnetic field. For practical applications, they should
have a low coercivity (or switching field), so the amplitude of the AC field used for remagnetization
can be made small. Amorphous microwires of some FeCo alloys have a rectangular hysteresis with
the coercivity smaller than 25 A/m [72]. As we demonstrated in previous sections, the hysteresis
parameters at optimized magnetic, mechanical, and thermal parameters may be regulated by the
external stimuli such as mechanical stress and temperature. Then, a voltage signal with a controllable
amplitude and duration can be generated. The frequency spectrum of this signal contains higher
harmonics of the excitation frequency, and their amplitudes are tunable by the same external action.
Since high-frequency signals can be detected with excellent sensitivity using lock-in techniques, this
constitutes the basis for the development of miniature and wireless sensing elements.

Figure 10 demonstrates the voltage pulse generated from remagnetizing the as-produced
microwires of the composition Co71Fe5B11Si10Cr3 along with the amplitudes of high harmonics.
The magnetic behavior of this wire is characterized by a rectangular hysteresis, as shown in Figure 4.
The application of a tensile stress high enough to change the easy anisotropy direction tilts the hysteresis
curves, and the harmonics amplitudes decrease with increasing σex; moreover, higher harmonics
decrease faster [73] (Figure 10b). This means that the ratio of harmonics amplitudes can be used as
sensing parameter, which may not depend on a particular technical configuration.
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With an increasing fundamental frequency of excitation and wire length, the harmonics’ amplitudes
increase, which is important for sensor design as these dependences are not linear, as shown in Figure 11.
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The microwires annealed by a DC current (100–120 A/mm2 in this case) have a flat hysteresis as a
result of the induced circumferential anisotropy. They restore a rectangular loop after application of
the tensile stress (Figure 7). In this case, the harmonics’ amplitudes sensitively increase. Figure 12
compares the behavior of the chosen harmonics amplitude (11th in this case) versus the applied stress
in as-prepared and current annealed microwires. In the latter, almost a linear dependence versus
σex is seen in the range of small values of stress, whilst the harmonic spectrum of the as-prepared
wire do not show noticeable changes for such stresses. The harmonic spectrum of the wire annealed
with the current density of 122 A/mm2, on the other hand, does not depend on higher stresses above
300 MPa. Annealing with a lower current density may induce a very similar anisotropy but smaller
magnetostriction. In this case, the harmonics’ amplitudes may show a maximum and decrease with the
application of higher stresses, similar to that seen in an as-prepared wire (compare with the hysteresis
loops shown in Figure 6). Therefore, for particular applications, specific annealing conditions have to
be chosen.

Sensors 2019, 19, x FOR PEER REVIEW 15 of 24 

 

With an increasing fundamental frequency of excitation and wire length, the harmonics’ 
amplitudes increase, which is important for sensor design as these dependences are not linear, as 
shown in Figure 11. 

The microwires annealed by a DC current (100–120 A/mm2 in this case) have a flat hysteresis as 
a result of the induced circumferential anisotropy. They restore a rectangular loop after application 
of the tensile stress (Figure 7). In this case, the harmonics’ amplitudes sensitively increase. Figure 12 
compares the behavior of the chosen harmonics amplitude (11th in this case) versus the applied 
stress in as-prepared and current annealed microwires. In the latter, almost a linear dependence 
versus 𝜎௘௫  is seen in the range of small values of stress, whilst the harmonic spectrum of the 
as-prepared wire do not show noticeable changes for such stresses. The harmonic spectrum of the 
wire annealed with the current density of 122 A/mm2, on the other hand, does not depend on higher 
stresses above 300 MPa. Annealing with a lower current density may induce a very similar 
anisotropy but smaller magnetostriction. In this case, the harmonics’ amplitudes may show a 
maximum and decrease with the application of higher stresses, similar to that seen in an as-prepared 
wire (compare with the hysteresis loops shown in Figure 6). Therefore, for particular applications, 
specific annealing conditions have to be chosen. 

It is important that the designed stress-sensitive harmonics spectrum do not show variations 
with temperature. As the wires were pre-annealed by current, we can expect temperature-stable 
behavior. This is confirmed by examining the hysteresis loops of the annealed wires at elevated 
temperatures, which are given in Figure 13. Neither stress-free nor loaded wires reveal noticeable 
changes in the hysteresis loops for temperatures up to 80 ℃. 

 
Figure 12. Effect of tensile stress on the amplitude of 11th harmonics of glass-coated amorphous 
Co71Fe5B11Si10Cr3 microwires in an as-prepared state and after current annealing at 60 mA (122 
A/mm2) for 60 min (compare with the change in the hysteresis curves shown in Figure 7). 

  
Figure 13. Effect of temperature on hysteresis loops of glass-coated amorphous Co71Fe5B11Si10Cr3 

microwires after current annealing (at 60 mA (122 A/mm2) for 60 min). In (a), without stress; in (b), 
with stress of 480 MPa (the stress was constant while the temperature was changing). 

Figure 12. Effect of tensile stress on the amplitude of 11th harmonics of glass-coated amorphous
Co71Fe5B11Si10Cr3 microwires in an as-prepared state and after current annealing at 60 mA (122 A/mm2)
for 60 min (compare with the change in the hysteresis curves shown in Figure 7).

It is important that the designed stress-sensitive harmonics spectrum do not show variations with
temperature. As the wires were pre-annealed by current, we can expect temperature-stable behavior.
This is confirmed by examining the hysteresis loops of the annealed wires at elevated temperatures,
which are given in Figure 13. Neither stress-free nor loaded wires reveal noticeable changes in the
hysteresis loops for temperatures up to 80 °C.
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microwires after current annealing (at 60 mA (122 A/mm2) for 60 min). In (a), without stress; in (b),
with stress of 480 MPa (the stress was constant while the temperature was changing).
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For amorphous microwires that preserve the rectangular hysteresis in the vicinity of the Curie
temperature, the harmonics’ amplitudes decrease sharply when approaching the Curie temperature,
as shown in Figure 14. The most sensitive temperature range of the spectrum variation is near the Curie
temperature where the magnetization starts to drop. In the case of a Fe3.9Co64.82B10.2Si12Cr9Mo0.08

microwire having TC = 61.5 °C, this range is within 55–61 °C. Since the Curie temperature can be
fine-tuned by annealing and alloy composition, this temperature range is adjustable to suit particular
applications. Thus, for composite curing, higher temperatures in the range of 150–200 °C are needed,
and for biomedical applications such as controlling the temperature at hyperthermia treatments,
a narrow temperature range of 40–45 °C is of interest.
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Figure 14. Harmonic spectrum vs. temperature of glass-coated amorphous
Fe3.9Co64.82B10.2Si12Cr9Mo0.08 microwire having TC = 61.5 °C in an as-prepared state.

The temperature range where the harmonic spectrum varies with increasing temperature may be
widened using a number of wires with different Curie temperatures. Figure 15 demonstrates a near
linear decrease in the amplitude of the chosen harmonics with increasing temperature in the range of
40–75 °C.
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Figure 15. Effect of temperature on amplitude of 11th harmonics of a branch of five wires with different
Tc (1: Fe3.9Co64.82B10.2Si12Cr9Mo0.08 as-cast with TC = 61.5 °C, 2: same composition, annealed at 350 °C
for 5 min with TC = 55 °C; 3: same composition, annealed at 500 °C for 5 min with TC = 66 °C; 4:
Fe4.9Co64.82B10.2Si12Cr8Mo0.08 as cast with TC = 69 °C; and annealed at 500 °C for 25 min with TC = 78 °C).
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4.4. Magneoimpedance for Sensory Applications

As it follows from Equations (9)–(12), the high-frequency voltage Vw or the complex-valued
impedance Z = Vw/i depend on the direction of the static magnetization and the magnetic susceptibility.
In many cases, when the temperature is far from the Curie temperature, the main contribution to the
impedance change comes from the change in the magnetization direction (angle θ). A magnetic field H
applied along the wire changes the angle θ if the easy anisotropy is circumferential. This configuration
is known to result in the most sensitive MI: Z has a minimum at H = 0, and it increases sharply as the
angle θ approaches zero (wire is magnetized by H along the axis). For axial anisotropy, the impedance
has a maximum at H = 0, and it decreases slowly with increasing H as there is no change in the
magnetization direction, so the impedance follows a week dependence of χ(H). Therefore, we can
expect the transformation in the Z(H) plot if the type of the easy anisotropy changes due to the
application of a mechanical stress.

Figure 16 demonstrates how the impedance plots for an as-prepared Co71Fe5B11Si10Cr3 wire with
an axial anisotropy transform when the wire is subjected to the tensile stress [28]. This transformation
is consistent with the change in the hysteresis loops (compare with Figure 4).
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Figure 16. Effect of tensile stress on magnetoimpedance in as-prepared amorphous Co71Fe5B11Si10Cr3

microwires. Real part of the impedance R(H) is given. Frequency is 50 MHz.

Initially, the impedance has a maximum at H = 0 and with increasing σex values, it splits into two
peaks, which reflects the change in the easy anisotropy direction (from axial to circumferential) as the
magnetostriction becomes negative. Then, for small fields, the impedance monotonically decreases
with increasing σex, although the sensitive change in Z occurs for higher stresses, as shown in Figure 17.
When measuring the impedance, the load was applied in the middle of the wire, and the imposed
stress is nonuniform along the length. On the other hand, a uniform stress was applied to the wire
during the hysteresis loop measurements. This difference explains some quantitative disagreement,
but the trend in the impedance and hysteresis loop transformations under the effect of tensile stress is
consistent. The largest variation in impedance occurs when no external field is applied: the relative
change is nearly 100% in the range of 200–600 MPa. The application of the field increases the insensitive
range with respect to σex, since the axial field helps to hold the magnetization along the axis.
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Figure 17. Real part of impedance vs. tensile stress for as-prepared amorphous Co71Fe5B11Si10Cr3

microwires with an external field as a parameter. Frequency is 50 MHz.

The impedance of current annealed wires versus stress behaves in an opposite manner [16] (see
Figure 18). Owing to the induced circumferential anisotropy, the impedance has a minimum at zero field
and two symmetrical maxima when the field is about the anisotropy field (H = ±Hk). It is seen that the
values of Hk found from the impedance plots are considerably higher than its values estimated from the
hysteresis curves (which can be taken as the saturation field). In particular, a large difference is noticed for
the wire annealed with a higher current of 60 mA (122 A/mm2). Since the impedance characteristics at
MHz frequencies are determined by the properties of the surface layer, this observation implies that the
induced anisotropy is strongly nonuniform and is much larger at the surface.
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Figure 18. Effect of tensile stress on magnetoimpedance (MI) of glass-coated amorphous
Co71Fe5B11Si10Cr3 microwires after current annealing: (a) at 50 mA (102 A/mm2) for 60 min and (b) at
60 mA (122 A/mm2) for 60 min. Frequency is 50 MHz.

The application of σex forces the impedance maxima to merge since the current annealing also
changes the magnetostriction, which becomes large and positive. Then, the application of a tensile
stress contributes to the axial anisotropy; therefore, the impedance versus field plots tend to have
a single peak. In the case of a moderate annealing current, higher stresses may still change the
magnetostriction sign, and the impedance behavior changes again: the two peaks in Figure 18a are
seen at larger Hk values.
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A strong change in impedance can be expected near the Curie temperature Tc where both the
magnetization and effective anisotropy decrease. Owing to the decrease in M and HK, the ferromagnetic
resonance frequency fres = γ

√
HK(HK + M)/2 (γ is the gyromagnetic constant and HK is the effective

anisotropy field) decreases near Tc and the dispersion region of χ̂ shifts to lower frequencies; therefore,
the high-frequency properties are suppressed [69]. However, at low frequencies, the initial susceptibility
χin ≈M/HK increases when a temperature is approaching Tc, since the effective anisotropy K̃ ∝Mn

and n > 2. Then, at lower frequencies, the impedance may initially increase near Tc but eventually will
drop as the resonance frequency tends to zero. A non-monotonic behavior of the impedance when
approaching Tc was observed in [71] for frequencies lower than 100 MHz. For higher frequencies,
the susceptibility decreases with temperature following the decrease in fres, and the impedance
experiences a monotonic decrease, as demonstrated in Figure 19. It is seen that there is a very weak
dependence on the magnetic field, since the magnetic susceptibility at high frequencies depends weakly
on changing the field. Figure 20 shows the impedance versus temperature plots.
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5. Conclusions

We investigated the performance of ferromagnetic amorphous microwires as mechanical stress
and temperature sensors utilizing the effects of fast remagnetization and magnetoimpedance. The wires
of composition Co71Fe5B11Si10Cr3 in as-prepared and current-annealed states are used to demonstrate
a strong influence of the tensile stress on the magnetization process, as well as the generation of a high
harmonics spectrum and magnetoimpedance. The stress effect is enhanced after current annealing,
owing to a competition between the induced and magnetoelastic anisotropies. The wires with a low
Curie temperature, for example, of composition Co23.67Fe7.14Ni43.08B13.85Si12.26 (Tc = 61–62 °C) which
can be fine-tuned by annealing, demonstrate a rectangular hysteresis even for temperatures very
close to the Curie temperature. The existence of well-defined axial easy anisotropy up to the Curie
temperature is important to realize temperature-sensitive fast remagnetization and magnetoimpedance.
At high frequencies beyond the frequency of the ferromagnetic resonance, the impedance monotonically
decreases when approaching Tc: at a frequency of 300 MHz, the impedance decreases almost twice in a
narrow temperature range of 50–60 °C.
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