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Abstract: In the application of the wireless sensor and robot networks (WSRNs), there is an urgent
need to accommodate flexible surveillance tasks in intricate surveillance scenarios. On the condition
of flexible surveillance missions and demands, event coverage holes occur in the networks. The
conventional network repair methods based on the geometric graph theory such as Voronoi diagram
method are unable to meet the conditions of flexible surveillance tasks and severe multi-restraint
scenarios. Mobile robots show obvious advantages in terms of adaptation capacity and mobility
in hazardous and severe scenarios. First, we propose an event coverage hole healing model for
multi-constrained scenarios. Then, we propose a joint event coverage hole repair algorithm (JECHR)
on the basis of global repair and local repair to apply mobile robots to heal event coverage holes
in WSRNs. Different from conventional healing methods, the proposed algorithm can heal event
coverage holes efficaciously which are resulted from changing surveillance demands and scenarios.
The JECHR algorithm can provide an optimal repair method, which is able to adapt different kinds of
severe multi-constrained circumstances. Finally, a large number of repair simulation experiments
verify the performance of the JECHR algorithm which can be adapted to a variety of intricate
surveillance tasks and application scenarios.

Keywords: mobile robots; event coverage holes; multi-constrained circumstances; path plan; wireless
sensor and robot networks

1. Introduction

The research of event coverage hole repair is significant in wireless sensor and robot networks
(WSRNs) [1–4]. The conventional repair methods based on the geometric graph theory such as Voronoi
diagram method pay attention to the coverage hole repair problem in an one-fold unconstrained
scenario [5]. Nevertheless, in a real environment, it is indispensable to use different kinds of sensors to
heal event coverage holes on the basis of flexible surveillance demands [6]. Meanwhile, the repair
process is limited by different kinds of intricate restraints. In the method of healing the coverage
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holes, the conventional healing ways redeployed by humans and airplanes which throw many nodes
randomly [7,8]. WSRNs are frequently applied in the hazardous and severe scenarios. Redeployment
by humans will waste lots of effort and money, which is hazardous for humans [9]. Although the
nodes are scattered at random by airplanes to heal the coverage holes, the healing effectiveness cannot
be ensured [10], and the existing coverage holes cannot be healed. Moreover, unnecessary nodes will
cost many network resources. With the continuous improvement in robot technology, mobile robots
are widely used. Mobile robots are able to serve in the hazardous and severe scenarios and are fast
moving to an accurate place [11]. Therefore, we propose to apply mobile robots to accurately heal
event coverage holes in WSRNs.

Different from conventional coverage holes that resulted in sensor invalidation, the event coverage
holes usually resulted in the flexible surveillance missions. For example, a large conference center
will hold different competitions, conferences, or concerts. Different kinds and quantities of nodes are
required to be redeployed in diverse places of the stadium according to diverse events. While the
surveillance event changes, lots of coverage holes in the surveillance scenarios appear. Conventional
deployment approaches are deterministic deployments. The conventional strategy is merely able to
be used to an onefold scene [12]. If the surveillance events and demands vary, or the nodes break in
the surveillance scenarios, it will cost lots of effort and funds to redeploy and heal the networks. The
conventional strategy is unable to satisfy the realtime demands of the scenarios [13,14].

Repair conventional coverage holes only need one single kind of nodes. In order to adapt to
different surveillance scenarios and flexible surveillance demands, single kind of nodes is unable to
heal networks effectively and meet a variety of intricate surveillance demands.

Event coverage holes usually appear in hazardous and severe scenarios. When healing the
networks, it is restricted by kinds of severe restraints. Even if the surveillance scenario is consistent,
the network healing is restricted by lots of restraints according to various surveillance events [15]. For
example, in wild hill surveillance, there are different surveillance demands for the hill at different
periods. During the war, the hill can be monitored for war. In peacetime, hill fire surveillance and
poaching surveillance are conducted in the hill. With different surveillance tasks, under the condition
of limited sensor resources, the healing restraints of networks are also different. Under the task of
war surveillance, it is necessary to heal the network quickly and accurately. Therefore, the healing
of networks is restrained by severe time restraints and error restraints; in hill fire surveillance, it is
necessary to control the repair cost and to minimize the energy consumption of the networks. Therefore,
the healing procedure is limited by strict cost restraints and energy restraints; in poaching surveillance,
it is necessary to quickly identify poachers, accurately confirm the location of poachers, and control the
repair cost of the event coverage holes. Therefore, the healing of networks is restrained by severe time
restraints, error restraints, and cost restraints.

On the basis of these analyses, it is necessary to propose the reasonable healing strategies for
flexible surveillance demands. Our innovations are as follows:

• It is the first time that the healing issues of event coverage holes are put forward to flexible
surveillance demands. Diverse kinds of nodes are used to heal event coverage holes in
WSRNs effectively.

• For the first time, the multi-restraint surveillance scenarios are proposed to solve network healing
problems. Focusing on the intricate multi-restraint scenarios and restricted resources, we propose
an event coverage hole healing model with various restraints.

• For the first time, the mobile robots are used to heal coverage holes in WSRNs. The mobile robots
are applied to take different kinds of nodes to heal networks with a reasonable healing strategy.
On the basis of global repair and local repair, a joint event coverage hole repair algorithm (JECHR)
is proposed to distribute sensor resources and plan the optimal repair route in WSRNs.

The structure of the paper is organized as follows. Related works are elaborated in Section 2.
The healing model is presented aiming at multiple restraints in Section 3. The local event coverage
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hole repair algorithm is presented in Section 4. The global repair algorithm is presented in Section 5.
The joint repair algorithm is presented for WSRNs with multiple restraints in Section 6. In Section 7,
the network healing simulation experiments and performance comparisons are carried out. At last, the
conclusion is elaborated in Section 8.

2. Related Works

In the study of conventional event coverage hole healing, it is common to use one single kind
of sensors to heal the networks. Faced with various surveillance demands, one-fold kind of nodes
cannot satisfy the surveillance demands in the networks. Sun presents a healing algorithm based
on event-driven policy to accomplish maximum event coverage region [16]. On the basis of the
above event-driven scheme, in [17], Sun presents an event-driven coverage control protocol (ECCP) to
enhance the event monitoring region. The above research is restricted to the application of one-fold
kind of nodes to heal networks. One-fold kind of nodes cannot satisfy various surveillance demands.
In [18], Alam presents an event coverage strategy to regulate the surveillance radius in real time. The
coverage strategy overcomes over-provisioning in the networks, extends lifetime and extendibility,
and improves surveillance capability in a cost-efficient method. The above coverage strategy is only
able to improve the event coverage performance provisionally that is not able to heal all the event
coverage holes in WSRNs.

The network healing is limited by various restraints in intricate scenarios [19–21]. In [22], Gao
first proposes the energy restraints in event coverage. Jiang presents a distributed and energy-saving
event k-coverage algorithm (DEEKA) aiming at intricate scenarios in the underwater sensor networks.
DEEKA algorithm first takes into account the impact of severe underwater scenarios on data acquisition
and transmission [23]. In practice scenarios, the networks are limited by various severe restraints.
In [24], Hasan takes into account the data transmission problem in multi-restraint scenarios.

Mobile robots are able to accomodate to hazardous and severe scenarios. In [25], Soares
first presents to apply mobile robots to acquire information in WSRNs. In [26], Guo presents a
high performance distributive two-hop coloring algorithm to set up collision-free communication
connections in WSRNs. In [27], the mobile robots are used to help relocate the location of the nodes.
On the basis of the above methods, in [28], Arezoumand uses spanning tree as a detection method to
assist robots in deploying the nodes.

In the research of WSRNs, planning path of multi-robots efficiently in terms of various surveillance
tasks is an urgent need to be addressed. Yuan first presents optimum robot path planning issue in
WSRNs [29]. In [30], Lee presents a distance-aware robot routing (DAR) method in WSRNs to select
the optimal routing for mobile robots by taking into account the features which are distinguished from
the packet routing. In [31], Imeson presents a new language in which uncontinuous route planning
issues for mobile robots are addressed. On the basis of the above method, in [32], Imeson proposes a
new method that simplifies the SAT-TSP language to the general TSP language in senior robotic route
planning issues. In [33], Trigui takes into account the issue of dispatching object positions visited by
mobile robots. In order to solve the above problem, a fuzzy logic algorithm is proposed to settle the
multi-target TSP aiming at multiple robot system. In [34], a bi-objective ant colony optimization (ACO)
algorithm on the basis of memetic method is presented to settle the multi-robot patrolling issues.

The research on event coverage hole healing, multi-restraint network scenario, WSRNs and
multi-robot system path planning are elaborated. On the basis of above analyses, mobile robots can
effectively adapt to intricate scenario in WSRNs. The current research is mainly aimed at the path
planning of multi-robot systems. It is not considered how to apply mobile robots to heal event coverage
holes in complex application scenarios. So, we put forward an event coverage hole healing model
and joint repair algorithm on the basis of global repair and local repair to heal event coverage holes in
multi-restraint WSRNs.
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3. The Event Coverage Hole Healing Model

3.1. Main Idea

Unlike the conventional coverage hole healing issue, the event surveillance is mainly used in
hazardous and severe scenarios. It is usually limited by diverse restraints when healing the event
coverage holes. The multi-restraint network healing problem is highly intricate. Therefore, the
multi-restraint network healing issue is translated into an unrestricted multi-objective healing issue.
By transformation, the unrestricted multi-objective healing issue is able to be settled by effective
multi-objective optimization algorithm. The above method is able to boost the efficiency of the solutions
and simplify the complexity of the issue.

3.2. Problem Formulation

Without loss of generality, the healing issue under multi-restraint is stated as follows:

max f (α) = f (α1,α2, . . . ,αn)

s.t. gi(α) = gi(α1,α2, . . . ,αn) ≤ 0 (i = 1, 2, . . . , p)
hi(α) = hi(α1,α2, . . . ,αn) = 0 (i = p + 1, . . . , q)

(1)

f (α) is defined as the coverage objective function. i denotes the quantity of restraint functions.
α = (α1,α2, . . . ,αn) ∈ T ⊂ Rn denotes diverse kinds of nodes where α = (α1,α2, . . . ,αn) ∈ T ⊂ Rn

denotes an n-dimensional decision variable. T = {αt ∈ Rn
|dt ≤ αt ≤ ut, t = 1, 2, . . . , n} denotes the object

space. dt ∈ R and ut ∈ R are the lower bound and upper bound of αt. gi(α) represents inequality
restraint function. Similarly, hi(α) represents equation restraint function.

The feasible region of the event coverage hole healing issue with equation restraints is smaller in
comparison to the object space. The equation restraints can be translated into inequality restraints.∣∣∣hi(α)

∣∣∣− λ ≤ 0 (i = p + 1, . . . , q) (2)

λ denotes the tolerability for translating the equation restraints into inequality restraints. λ
represents a small positive constant.

When figuring out the optimization issue with restraints, it is essential to balance the relation
between the objective function and the restraint violation degree. The restraint violation degree is
deemed as another objective function. The multi-restraint healing issue is translated into an unrestricted
multi-objective issue.

F(α) = ( f (α), V(α)) (3)

In Equation (3), F(α) denotes the multi-objective function by transformation. f (α) represents
the objective function of the multi-restraint healing issue before transformation. V(α) is the restraint
violation degree, namely, the amount of the restraint violation values. It can be seen from the healing
model, that the multi-restraint healing issue is translated into an unrestricted bi-objective issue.

4. Local Event Coverage Hole Repair Algorithm

4.1. Main Idea

The invasive weed optimization algorithm (IWO) is a random search algorithm that evolved
from the principle of weed evolution in nature. The IWO algorithm imitates the basic process of weed
invasion, proliferation, growth, reproduction, and competitive extinction, with strong robustness and
adaptability. The main feature of the IWO algorithm is that the weeds will gradually grow in specific
areas. In the end, the weeds will dominate, which is similar to the evolutionary process. The IWO
algorithm usually consists of four steps:
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1. Population initialization: A specific number of weeds are randomly and evenly distributed in the
n-dimensional search space.

2. Population reproduction: Each individual in the IWO algorithm will generate offspring in its own
specific area. Among them, the number of offspring generated by each individual is determined
by the confidence of individuals. The number of offspring will vary linearly with the confidence
of individuals.

3. Offspring spatial distribution: The offspring generated by individuals are randomly distributed
around the parent in a normal distribution to further enhance the regional search capability.

4. Individual selection: As the number of individuals in the population increases, the maximum
value of the population is finally reached. Therefore, it is necessary to propose a reasonable
selection mechanism to ensure the diversity of the population and to make the population evolve
in a better direction.

In the application of the invasive weed optimization algorithm, the offsprings generated by each
individual are dispersed around parents. If the offsprings are dispersed near by parents, this allocation
is able to accomplish favourable network healing effect. On the basis of the above analysis, we present
a local repair algorithm on the basis of IWO algorithm.

4.2. The Distribution Strategy on the Basis of Confidence

The IWO algorithm is adopted as the local repair strategy in the joint repair algorithm. In the
IWO algorithm, the quantity of offspring reflects the capability of parents. The conventional restricted
optimization algorithms are only inclined to feasible solutions. Lots of feasible solutions with poor
objective function value are reserved. Meanwhile, lots of infeasible solutions with small restraint
violation degree are ignored. On one hand, this leads to the feasible solutions with inferior objective
function values that generate many offspring. On the other hand, the excellent infeasible solutions
that can provide guidance for optimizing direction are fewer. In order to settle the above issues, a
distribution strategy based on confidence is presented to optimize the quantity of offspring. The
distribution strategy trades off the objective function and the restraint violation degree via confidence.
The confidence is confirmed via the proportion of feasible solutions. The confidence distribution
strategy is denoted as:

Con f id(α) = [γ fnorm(αk)
2 + (1− γ)Vnorm(αk)

2]
1/2

(4)

 fnorm(αk) =
f (αk)− f (α)min

f (α)max− f (α)min

Vnorm(αk) =
V(αk)−V(α)min

V(α)max−V(α)min

(5)

In Equations (4) and (5), γ represents the proportion of feasible solutions. fnorm(αk) and Vnorm(αk)

denote the normalized values of the objective function value f (αk) and the restraint violation degree
V(αk), separately. The number of offspring is: Num(Weed) =

⌊
Wmax − fk(Wmax −Wmin)

⌋
fk =

Con f id(αk)−Con f id(α)min
Con f id(α)max−Con f id(α)min

(6)

In Equation (6), Wmax is the maximum number of offspring, and Wmin is the minimum number of
offspring. bc represents rounding down.

4.3. The Polynomial-Based Distribution Function

During the process of local repair, finding methods to regulate the step factor efficiently is a
pressing need to be addressed. As a result, we present a polynomial-based distribution function
as the distribution operator. The distribution operator is applied to generate diverse distribution
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values in multiple dimensionalities in the decision space. Then these distribution values are applied to
generate offspring.

The distribution function on the basis of polynomial adopts the present value as the mean. The
variance is confirmed by the step length s of the IWO algorithm. The step length s determines the degree
to which the distribution vector deviates from the current vector. The polynomial-based distribution
function is denoted as:

PD(ε) =
1
2
(s + 1)(1− |ε|)s, ε ∈ (−1, 1) (7)

ε =

{
s+1
√

2η− 1, η < 0.5
1− s+1

√
2(1− η), η ≥ 0.5

(8)

In the Equations (7) and (8), ε represents the adjustment factor, ε ∈ (−1, 1). η denotes a random
number, η ∈ (0, 1). The final distribution vector is denoted as:

d = b + εϕmax (9)

In Equation (9), d represents the distribution vector. ϕmax denotes the maximum adjustment of
the deviation vector b.

In conclusion, if the step length s is large enough, the distribution vector is approaching to the
parent vector. So, applying the distribution function on the basis of polynomial as the distribution
operator is able to accomplish local repair effect in WSRNs.

4.4. The Selection Strategy on the Basis of Non-Dominated Sorting

When the population reaches the allowable maximum quantity, the individual with poor objective
function value will be removed. So as to select individuals more effectively during the local repair
process, the selection strategy on the basis of non-dominated sorting is used to rank individuals. The
selection strategy on the basis of non-dominated sorting is able to get rid of individuals with inferior
objective function value. Among the non-dominated individuals, each individual is distributed to the
non-dominated front of the different layers. The selection strategy of the IWO algorithm is defined as:

Definition 1. If the individuals are on different Pareto fronts, the individual at the higher Pareto front is selected.

Definition 2. If the individuals are on the same Pareto front, the individual with lower restraint violation degree
is selected.

By ranking, individuals with superior objective function value and low restraint violation degree
are retained and conduct to the next iteration. The local repair algorithm is denoted in Algorithm 1.

Algorithm 1 The Local Event Coverage Hole Repair Algorithm Based on IWO Algorithm.

1: Begin
2: Input: α = (α1,α2, . . . ,αn) ∈ T ⊂ Rn;
3: W = PD (α);
4: Wm = PM (W);
5: α′ = α∪Wm;
6: If α′ = α∪Wm exceeds the allowable maximum amount of the population, then α = SE(α′);
7: End if.
8: End

In Algorithm 1, W denotes the offspring; Wm represents the mutation offspring; α′ denotes the
merged new population; PD(α) represents the polynomial-based distribution function; PM(α) denotes
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the polynomial-based variation function; SE(α′) represents the selection function on the basis of
non-dominated sorting.

4.5. The Complexity Analysis of the Local Repair Algorithm

During the local repair process, when the number of new populations exceeds the upper limit of
the population, each individual needs to be compared. So it takes a lot of time. When the population is
NP, the maximum allowable quantity of the offspring is Wmax. Then, after the population is merged
in step 5, the population increases to NP ∗Wmax. Based on the selection strategy of non-dominated
sorting, the number of comparisons between individuals is (NP ∗Wmax)

2. In summary, the upper limit
of the complexity of the local repair algorithm is O[(NP ∗Wmax)

2].

5. Global Event Coverage Hole Repair Algorithm

5.1. Main Idea

The differential evolution (DE) algorithm is a population-based global search algorithm. The DE
algorithm identifies the optimization orientation via the distance and orientation of individuals in the
population. The differential evolution algorithm is mainly implemented by the following steps:

1. Population initialization: Randomly and uniformly initialize individuals in a population in the
search space.

2. Mutation operation: DE algorithm implements individual variation through differential strategy,
which is also an important indicator different from genetic algorithm.

3. Crossover: Introducing crossover operators can enhance population diversity.

ei, j =

{
wi, j i f rand(0, 1) ≤ Pco or j = jrand
αi, j else

(10)

Pco is the cross probability, Pco ∈ [0, 1]. jrand is a random integer, jrand ∈ [1, 2, . . . , n].
4. Select Operator: In the differential evolution algorithm, the properties of the selection operator

are as follows:

Property 1: For each individual, αi(g + 1) must be better than αi(g);
Property 2: The algorithm will eventually converge to an optimum (possibly local optimum);
Property 3: Mutation and crossover operations help to jump out of local optimum to reach

global optimum.
The differential evolution (DE) algorithm identifies the optimization orientation via the distance

and orientation of individuals in the population. So, the distance between individuals is crucial for
the variation in DE algorithm. In the optimization space, the location of the individual provides
the information about the current optimization capabilities of the algorithm. When there is a
long distance between individuals, the distance information between individuals can provide more
optimization space; when the distance between individuals is very close, the distance information
between individuals can provide a better solution for the local space. Therefore, in the differential
evolution algorithm, the weighted distance difference between individuals has the ability to optimize
and provide the direction of the optimization. Meanwhile, the cross process makes sure that helpful
vector information generated in the variation process is able to be retained. In [35], it has been proved
that the variation mechanism "DE/rand/1" is always able to evolve to the feasible domain interval and
the optimal solution direction. The "DE/rand/1" mechanism can be expressed as:

wk = αs1 + Z(αs2 − αs3) (11)

In Equation (11), {s1, s2, s3} ∈ rand[1, n], Z is the regulatory factor. wk is the variation vector
generated based on the "DE/rand/1" mechanism.
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5.2. The Global Repair Strategy

When using differential evolution algorithm to deal with multi-constraint network healing issue, it
is essential to consider not only feasible solutions but also infeasible solutions. During the optimization
procedure, superior infeasible solutions is also able to direct the optimization orientation of the
algorithm, for instance the infeasible solutions near the periphery. Therefore, the selection mechanism
of the differential evolution algorithm in the global optimization process is defined as:

Definition 3. When the generated test vector ek is a feasible solution, the test vector ek will compare the objective
function value with all feasible solutions in the population. When the objective function value of ek is better than
all feasible solutions, the individual αk with the smallest objective function value among all feasible solutions is
replaced by ek.

Definition 4. When the generated test vector ek is an infeasible solution, then the test vector ek will be
compared to all infeasible solutions in the population. According to Pareto dominance, when there is no infeasible
solution to dominate ek, then all non-dominated solutions will be sorted according to the non-dominated sorting
algorithm [36]. After sorting, the last individual αk is compared to ek again. When the restraint violation degree
of αk is greater than ek>, then replace αk with ek.

The global repair strategy takes into account not only the feasible solutions but also the infeasible
solutions when solving the optimization issue. During the optimization procedure, superior infeasible
solutions is also able to provide guidance for the optimization orientation of the algorithm, for
instance the infeasible solution close to the periphery. Though two non-dominated infeasible solutions
are unable to be compared during the global optimization procedure when settling the restricted
optimization issue, the algorithm is still inclined to select the infeasible solution with low restraint
violation degree.

The global repair algorithm on the basis of DE algorithm is denoted in Algorithm 2.

Algorithm 2 The Global Event Coverage Hole Repair Algorithm Based on DE Algorithm

1: Begin
2: Input: α = (α1,α2, . . . ,αn) ∈ T ⊂ Rn;
3: For k = 1: n do;
4: Select s1, s2, s3 ∈ ([1, n] − k) randomly;
5: wk = Mt(αs1 ,αs2 ,αs3 , Z);
6: ek = Co (wk,αk, Pco);
7: Select (ek,αk);
8: End for.
9: End

In Algorithm 2, wk denotes the variation vector generated by "DE/rand/1" mechanism; Z represents
the regulatory factor; ek denotes the test vector generated by binomial crossover operator; Pco ∈ [0, 1]
represents the crossover probability; Mt (α) denotes the variation operator; Co (α) represents the
crossover operator.

5.3. The Complexity Analysis of the Global Event Coverage Hole Repair Algorithm

During the global repair process, time is mainly consumed in the loop operation. Set the population
n = NP. When the population are all feasible solutions, according to the repair mechanism based on
global optimization, individuals need to compare NP times. When the population are all infeasible
solutions, according to the repair mechanism based on global optimization, the infeasible solutions
need to be sorted again. These infeasible solutions need to be compared NP2 times in each sorting
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process. The above infeasible solutions also need to be compared NP times after sorting. Therefore, the
upper limit of the complexity of the global repair algorithm is O(NP2 + NP) = O(NP2).

6. Joint Event Coverage Hole Repair Algorithm

6.1. The Novelty of The Joint Event Coverage Hole Repair Algorithm

• The multi-restraint network healing problem is highly intricate. Therefore, the multi-restraint
network healing issue is translated into an unrestricted multiple target healing issue. By
transformation, the unrestricted multiple target healing issue is able to be settled by effective
multi-objective optimization algorithm, which is able to boost the efficiency of the solutions and
simplify the complexity of the issue.

• The proposed method effectively balances the relationship between the objective function and the
restraint violation degree by deeming the constraint violation degree as another objective function.

• The joint event coverage hole repair algorithm (JECHR) combines local repair and global repair to
heal event coverage holes effectively. In the JECHR algorithm, the IWO algorithm is used for local
optimization to make sure the astringency of the optimization procedure. Diversity is a significant
index of the population. The DE algorithm is used for global repair to make sure the diversity
of repair strategies. The IWO algorithm enables each individual to explore the circumambient
information deeply and provide the information to the DE algorithm, facilitating the DE algorithm
to accomplish a broader global optimization. The DE algorithm is able to take full advantage of
the information shared by the IWO algorithm to seek individuals with superior objective function
values. The superior individuals which are sought are provided in the IWO algorithm for more
detailed local optimization.

6.2. Joint Event Coverage Hole Repair Algorithm

In Algorithm 3, the local healing procedure is conducted before the global healing. So, individuals
that have been locally optimized are able to share the information needed for global optimization.

The procedure of the JECHR algorithm is denoted in Algorithm 3.

Algorithm 3 The Joint Event Coverage Hole Repair Algorithm

1: Begin
2: Initialize j = 1;
3: Input α1 ∈ T ⊂ Rn;
4: F(α1) = ( f (α1), V(α1)) ;
5: While repair quality is not satisfied, do;
6: α j = LR (α j, F j);
7: F(α j) = ( f (α j), V(α j));
8: [α j, F j] = GR (α j, F j);
9: j = j + 1;
10: End while.
11: End

In Algorithm 3, F(α) denotes the objective function value after transformation; LR (α) represents
the local repair algorithm; GR (α) represents the global repair algorithm.

7. Performance Evaluation

In the simulation experiment, the performance of the JECHR algorithm is validated by healing
event coverage holes in multi-constraint networks. Five mobile robots take five different kinds of
sensors setting out from the base point to heal the networks in an optimal route. According to various
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restraints in four cases, the amount of sensors that are carried by each mobile robot in each case is
also different.

7.1. Environment Settings

In the simulation experiments, five kinds of sensors are applied. These five different kinds of
sensors are smoke sensors, camera sensors, laser sensors, RFID sensors, and infrared sensors. They
have various repair time, repair cost, repair energy and repair error depending on their own attributes.
Each mobile robot carries one kind of sensor. The parameters of various sensors are listed in Table 1.

In order to compare the performance of the event coverage hole repair algorithm in
multi-constrained environment, the parameters of different sensors are decided by the properties of the
sensors. There is no related work in event coverage hole repair under multiple restraints. In practice,
applying smoke sensors to repair event coverage holes is the fastest. Therefore, the repair time of the
smoke sensor is set to 1, which is the smallest of all sensor repair time. In practical applications, it is
most accurate to use the camera sensor to repair the event coverage holes. Therefore, the repair error
of the camera sensor is set to 5, which is the smallest of all sensor errors. The energy consumption of
the RFID sensor is very low. Therefore, the repair energy of the RFID sensor is set to 10, which is the
smallest of all sensor repair energy. The infrared sensors are susceptible to unrelated heat sources,
resulting in low accuracy. Therefore, the repair error of the RFID sensor is set to 35, which is the largest
of all sensor repair errors. In practical applications, there will be many types of smoke sensors, camera
sensors, laser sensors, RFID sensors, and infrared sensors, whose parameters may not be the same as
the sensor parameters set in the experiment. It can be seen from the performance comparison of the
algorithms that the performance of algorithms do not depend on the sensor parameter setting.

7.2. Experimental Evaluation

During the healing process, the event coverage hole repair algorithms not only need to satisfy the
restraints of repair time, repair cost, repair energy, and repair error, but also need to heal event coverage
holes in the optimal path. Next, the influence of the number of mobile robots on event coverage hole
repair is tested. In the performance comparison experiment, the JECHR algorithm is compared with
the MOACO [37], iMOGA [38], and SOS-SA [39] algorithms in the same experimental environment.
The relationship between the repair path distances under different number of event coverage holes,
repair time restraints and repair error restraints is compared.

The simulation experiments on event coverage hole repair are carried out in four different
experimental cases to test the repair performance under different restraint conditions. Each case
is subject to different repair restraints. The experimental parameters are presented in Table 2. The
different experiment conditions are set to evaluate the performance of the proposed algorithm in a
variety of multi-constraint environments, which are subject to diverse repair time, repair cost, repair
energy, and repair error restraints. The experiment conditions are set according to the parameters
of sensors in Table 1. The experiment conditions are set to test whether the proposed algorithm can
reasonably allocate sensor resources in multi-constraint environments. In practical applications, the
event coverage hole repair process will face a variety of multi-constraint environments. The experiment
conditions in the manuscript are part of multi-constraint environments in practical applications.
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Table 1. The parameters of sensors.

Symbol Meaning T/s C En/J Er/CM

α1 Smoke Sensor 1 20 20 20
α2 Camera Sensor 4 8 15 5
α3 Laser Sensor 3 12 25 15
α4 RFID Sensor 2 16 10 10
α5 Infrared Sensor 5 4 30 35

In Table 1, the abbreviation denotes as follows: T: repair time (T/s); C: repair cost (C); En: repair energy (En/J); Er:
repair error (Er/CM).

Table 2. The parameters of the experiments.

Case T/s C En/J Er/CM Dis/M

1 106 512 685 505 64.9636
2 154 320 930 910 79.0432
3 90 576 745 655 92.5246
4 99 540 630 530 99.6317

In Table 2, the abbreviation denotes as follows: T: repair time restraints (T/s); C: repair cost restraints (C); En: repair
energy restraints (En/J); Er: repair error restraints (Er/CM); Dis: total repair distance (Dis/M).

Figures 1–4 perform the effect and path of network healing in four multi-constraint scenarios.
Figure 1a, Figure 2a, Figure 3a, and Figure 4a demonstrate four different event coverage hole distribution
in the networks. The circles in the figure represent the position of the event coverage holes. Figures 1b,
2b, 3b and 4b demonstrate the healing scheme and path for four multi-constraint cases. Five mobile
robots that take five type of sensors set out from the base point synchronously. Each mobile robot takes
one kind of sensor to heal forty event coverage holes in the network. The various colored paths in
Figures 1b, 2b, 3b and 4b denote the healing path of five mobile robots.

In practical applications, event coverage holes will occur after monitoring tasks or monitoring
demands change. Event coverage holes can occur anywhere in the surveillance area based on different
monitoring tasks and demands. The location of the event coverage holes is random. Therefore, the
location of the event coverage holes is set to appear randomly to test whether the proposed algorithm
can meet the practical application demands. The event coverage hole repair algorithm needs to
accommodate the event coverage holes that may occur anywhere in the surveillance area. In the
experiments, the position coordinates of the forty event coverage holes are randomly generated in the
surveillance area to test whether the proposed algorithm can repair the event coverage holes under
any location distribution.

In [40], the authors consider the problem of planning paths for unicycle robots with dynamic
model. In practical applications, it is not possible for all the robots to turn into any headings. In the
experiment, we simplify the robots to be points, which are only suitable for robots that can move in all
directions. When healing event coverage holes in four cases, it is required to satisfy multiple repair
restraints synchronously. In Figure 1, the first case for the repair error restraints is the most rigorous
in four cases. Besides, the healing procedure of the networks is not merely subject to rigorous error
restraints, but also restricted by repair time, cost, and energy restraints. Thus, the camera sensors,
which have less repair error during the healing process of networks, are more used, with a total of
11; in Figure 2, the second case for repair cost restraints is the severest of the four cases. The healing
process of the event coverage holes is not only subject to severe error restraints, but also restricted
by the other three repair restraints. Thus, the infrared sensors that have lower repair cost are more
applied, with a total of 20; in Figure 3, the third case for the repair time restraints are the most rigorous
of the four cases during the network healing procedure. At the same time, repair cost, energy, and
error restraints also need to be satisfied. Thus, the smoke sensors, that have less repair time, are most
applied, with a total of 15; in Figure 4, the repair energy restraints are the most rigorous of the above
four cases. It must also satisfy the other three restraints.Therefore, the RFID sensors with less energy
consumption are most applied.
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Figure 1. Case 1: The network repair performance and path applying mobile robots and diverse kinds
of sensors in multi-constraint environment.
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Figure 2. Case 2: The network repair performance and path applying mobile robots and diverse kinds
of sensors in multi-constraint environment.
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Figure 3. Case 3: The network repair performance and path applying mobile robots and diverse kinds
of sensors in multi-constraint environment.
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Figure 4. Case 4: The network repair performance and path applying mobile robots and diverse kinds
of sensors in multi-constraint environment.

During the healing procedure, the global repair algorithm on the basis of DE algorithm is applied
to make sure the diversity of the healing mechanism. The local repair algorithm on the basis of the IWO
algorithm ensures the astringency of the healing process. Thus, the JECHR algorithm on the basis of DE
algorithm and IWO algorithm is able to heal the networks effectively in multi-constraint environment.

The relationship between the repair path distance by mobile robots and the optimization process
in the four multi-restraint cases is shown in Figure 5. It indicates that in the initial stage of the
optimization process, the repair route distance of the event coverage holes decreases rapidly. As the
repair process continues, the distance of the repair route decreases slowly and tends to be stable finally.
In the optimization process, the repair distance of event coverage holes declines steadily. There is no
problem of trapping into local optimum and continuous oscillation. The global repair algorithm on the
basis of DE algorithm is able to optimize the global repair route quickly in the initial stage. At the
same time, the local repair algorithm on the basis of IWO algorithm is able to prevent the optimization
process from trapping into local optimum and make sure the astringency of the optimization process.
In Figure 5a, the first case is optimized after 1915 times. The repair distance of the event coverage holes
is 64.9636 m; in Figure 5b, the second case is optimized after 1361 times. The repair distance of the
event coverage holes is 79.0432 m; in Figure 5c, after 1795 optimization processes, the repair distance of
the third case is 92.5246 m; in Figure 5d, the fourth case passes through 3216 optimization processes.
The repair distance is 99.6317 m.
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Figure 5. Cont.
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Figure 5. Four cases of the optimization process of the event coverage hole repair route by mobile
robots in multi-constraint environment.

Next, in order to verify the effect of the amount of mobile robots on the event coverage hole
repair performance, three, four, and eight mobile robots are applied to heal forty event coverage holes
respectively, as shown in Figures 6–8.

Figures 6–8 indicate that the repair path distance gradually increases as the number of mobile
robots in the networks increases. While, the optimization times are also rising. This is due to all mobile
robots need to set out from the base point. Compared with moving from repaired event coverage
holes to the unrepaired event coverage holes, setting out from the base point and returning to the base
point add extra distance which leads to an increase in repair path distance. During the process of
healing networks, mobile robots are subject to multiple restraints. The repair strategy need to weigh
the relationship between multiple restraints and repair paths. Therefore, the distance of the repair path
by each mobile robot is not relatively balanced. In Figures 6–8, according to different distribution of
event coverage holes in the network, the mobile robots select the optimal starting point as the base
point on the basis of the total repair path distance.
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Figure 6. The event coverage hole repair performance and route using three mobile robots.
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Figure 7. The event coverage hole repair performance and route using four mobile robots.
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Figure 8. The event coverage hole repair performance and route using eight mobile robots.

As the number of mobile robots in the network increases, the complexity of path planning increases
rapidly, which eventually leads to an increase in optimization times. In practical applications, different
kinds of sensors are needed to heal the network. On the basis of the characteristic and number of
sensors, multiple mobile robots are needed to heal event coverage holes in the network. Although the
total repair distance of mobile robots increases, the repair performance and repair speed of multiple
mobile robots will be greatly improved, especially for the application scenarios that have strict demands
for real-time repair.

7.3. Comparison with the MOACO, iMOGA and SOS-SA Algorithms

In this section, for purpose of verifying the performance of the JECHR algorithm, the proposed
algorithm is compared with the MOACO algorithm and the latest iMOGA, SOS-SA algorithms under
different number of event coverage holes [37–39,41]. The representation of the candidate solutions for
each method (JECHR, MOACO, iMOGA, SOS-SA) is listed in Tables 3–6. The parameters used in each
method under comparative study are listed in the in Tables 7–10.
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Table 3. The representation of the candidate solutions in terms of the distance and the number of event
coverage holes.

Algorithm/Number 10 15 20 25 30 35 40 45 50 55

JECHR 52 62 66 74 76 82 84 86 89 91
MOACO 78 92 98 102 116 121 136 141 167 182
iMOGA 71 76 81 86 93 104 114 126 151 166
SOS-SA 61 69 75 79 82 86 89 102 109 125

Table 4. The representation of the candidate solutions in terms of the distance and the number of event
coverage holes.

Algorithm/Number 60 65 70 75 80 85 90 95 100

JECHR 94 98 101 105 109 114 128 129 132
MOACO 207 222 246 262 277 291 306 313 319
iMOGA 181 195 225 233 251 275 294 301 309
SOS-SA 136 145 171 197 209 228 251 262 268

Table 5. The representation of the candidate solutions in terms of the distance and the repair
time restraints.

Algorithm/Repair Time Restraints 50 100 150 200 250 300 350 400 450 500

JECHR 45 62 72 88 102 127 139 147 155 158
MOACO 53 86 137 199 257 289 315 336 351 359
iMOGA 49 75 121 177 238 279 311 334 350 357
SOS-SA 44 69 84 129 189 238 271 293 307 313

Table 6. The representation of the candidate solutions in terms of the distance and the repair
error restraints.

Algorithm/Repair Error Restraints 100 200 300 400 500 600 700 800 900 1000

JECHR 30 34 36 42 49 50 58 69 83 91
MOACO 27 45 61 73 91 115 142 178 194 223
iMOGA 29 42 52 62 78 99 119 160 180 199
SOS-SA 24 39 41 48 58 79 93 120 136 154

Table 7. The parameters of the JECHR algorithm in the comparative experiments.

Symbol Meaning Parameters

Wmax Maximum Number of Offspring 3
Wmin Minimum Number of Offspring 0
Pint Initial Population 30

Pmax Maximum Population 80
Z Regulatory Factor 0.8

Pco Crossover Probability [0.8, 1]
PD Polynomial Distribution index 100
PV Polynomial Variation index 1
Pm Mutation Probability 1/n

In Table 7, n represents the decision vector dimension.
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Table 8. The parameters of the MOACO algorithm in the comparative experiments.

Symbol Meaning Parameters

α Relative Importance of Pheromone Trail 1
β Relative Importance of Heuristic Information 2
ρ Pheromone Evaporation Rate 0.2
q0 Relative Importance of Exploration versus Exploitation 0.98
n Number of Ants 10
m Number of Iterations 100
η Heuristic Information 1/di j

In Table 8, di j represents the distance between the city i and j.

Table 9. The parameters of the iMOGA algorithm in the comparative experiments.

Symbol Meaning Parameters

α Left Spreads of LR-fuzzy Variables 0.95
β Right Spreads of LR-fuzzy Variables 0.95

Pmax Maximum Generation 1000
Gmax Max-Popsize 100
γ Permissible Probability Levels 0.9

K1 Weights of Mean 0.5
K2 Weights of Variance 0.5

Table 10. The parameters of the SOS-SA algorithm in the comparative experiments.

Symbol Meaning Parameters

K Benefit Factor 1
P Population Size 50

mmax Maximum Iteration 1000
Tint Initial Temperature 0.025
Cr Cooling Rate 0.99

As Figure 9 shows, in the initial stage, as the number of event coverage holes continues to increase,
the repair path distances of the four algorithms increase rapidly. When the number of event coverage
holes in the network exceeds 90, the repair path distance growth of the SOS-SA algorithm and the
JECHR algorithm tends to be flat. This is due to when the amount of event coverage holes in the
network is small, the density of event coverage holes is low. Mobile robots need to move longer
distances to heal event coverage holes in the network. As the amount of event coverage holes increases,
the density of event coverage holes in the network increases gradually. Finally, the network tends to
be saturated. The SOS-SA algorithm and JECHR algorithm continuously optimize the repair path,
which gradually slows down the growth of the repair path distance. The repair effect of the JECHR
algorithm is obviously superior to the MOACO, iMOGA, and SOS-SA algorithms. The performance of
the MOACO algorithm is the worst. In the changing network environment, the parameters α and β of
the MOACO algorithm cannot be adaptively adjusted according to different network environment.
Therefore, the solving speed is slow. The quality of solutions are poor. The SOS-SA algorithm is based
on simulated annealing algorithm, which is a greedy algorithm essentially. Therefore, its parameters
are difficult to control. There is no guarantee that it can converge to the optimum solution once. The
SOS-SA algorithm usually takes multiple attempts to get the optimum solution that is likely to trap
into local optimum. The iMOGA algorithm is a multi-objective genetic algorithm, which has a certain
dependence on the initial population selection. In the mean time, the multi-objective genetic algorithm
is prone to premature phenomenon. The algorithm has limited search ability for new space and is easy
to converge to local optimum. Therefore, when there are plenty of event coverage holes in the network,
it is impossible for iMOGA algorithm to provide an optimal repair solution for the network.
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To verify the performance of the JECHR algorithm in the face of different restraints, the JECHR
algorithm is compared with the MOACO algorithm and the latest iMOGA, SOS-SA algorithms under
different single repair time and repair error restraints. Currently, there is no related work in event
coverage hole repair under multiple restraints.Sensors2019, 19, x FOR PEER REVIEW 18 of 18 
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Figure 9. The JECHR algorithm is compared with MOACO, iMOGA, and SOS-SA algorithms under
different number of event coverage holes.

As Figure 10 shows, the repair time restraint continues to increase. More and more sensors
need to be deployed to heal the event coverage holes in the network. Mobile robots need to move
longer distances to repair the network. The repair effect of the JECHR algorithm is superior to the
MOACO, iMOGA, and SOS-SA algorithms. The MOACO algorithm converges slowly and is likely
to trap into local optimum. In the mean time, the ant colony algorithm needs a long optimization
time. In the optimization process, the MOACO algorithm is prone to stagnation, which cannot find
a better solution. The performance of the SOS-SA algorithm is greatly influenced by the repair time
restraint. The SOS-SA algorithm is based on simulated annealing algorithm which is also a greedy
algorithm essentially. The simulated annealing algorithm has poor global optimization ability, which
is susceptible to parameters. The iMOGA algorithm is easy to premature, which has limited search
ability for new space. It is prone to converge to local optimum. Therefore, when there are many event
coverage holes that need to be repaired in the network, the iMOGA algorithm is likely to trap into
local optimal solution. The repair path cannot be further optimized. The JECHR algorithm applies
the DE algorithm for global repair to make sure the diversity of the healing strategy. Meanwhile,
the IWO algorithm is used for local optimization to make sure the astringency of the optimization
procedure. Therefore, the JECHR algorithm can heal the event coverage holes with the shortest repair
path distance under different repair time restraints.

As Figure 11 shows, as the error restraints increase, more and more sensors need to be deployed
to heal the event coverage holes in the networks. Then, mobile robots need to move longer distances to
complete the network repair. The repair path distance of the JECHR algorithm is obviously superior to
MOACO, iMOGA, and SOS-SA algorithms. The MOACO algorithm converges slowly and is likely to
trap into local optimum. In the optimization process, the MOACO algorithm is prone to stagnation
which cannot find a better solution. The iMOGA and SOS-SA algorithms are affected by the error
restraint greatly. The iMOGA algorithm has a certain dependence on the initial population selection.
In the meantime, the multi-objective genetic algorithm is prone to premature and easily converges to
the local optimal solution. The global optimization ability of the SOS-SA algorithm is poor. Meanwhile,
it is susceptible to parameters. The JECHR algorithm can be adapted to different repair error restraints.
Moreover, conventional penalty function technique cannot effectively weigh the size of the penalty
factor. The JECHR algorithm can effectively overcome the problem that the penalty factor has function
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dependence and poor generality. Therefore, the JECHR algorithm can effectively overcome the impact
of increased network repair error on the repair path distance.

Sensors2019, 19, x FOR PEER REVIEW 18 of 18 

 

 
Figure 9. The JECHR algorithm is compared with MOACO, iMOGA, and SOS-SA algorithms under 
different number of event coverage holes. 

As Figure 10 shows, the repair time restraint continues to increase. More and more sensors 
need to be deployed to heal the event coverage holes in the network. Mobile robots need to move 
longer distances to repair the network. The repair effect of the JECHR algorithm is superior to the 
MOACO, iMOGA, and SOS-SA algorithms. The MOACO algorithm converges slowly and is likely 
to trap into local optimum. In the mean time, the ant colony algorithm needs a long optimization 
time. In the optimization process, the MOACO algorithm is prone to stagnation, which cannot find 
a better solution. The performance of the SOS-SA algorithm is greatly influenced by the repair time 
restraint. The SOS-SA algorithm is based on simulated annealing algorithm which is also a greedy 
algorithm essentially. The simulated annealing algorithm has poor global optimization ability, 
which is susceptible to parameters. The iMOGA algorithm is easy to premature, which has limited 
search ability for new space. It is prone to converge to local optimum. Therefore, when there are 
many event coverage holes that need to be repaired in the network, the iMOGA algorithm is likely 
to trap into local optimal solution. The repair path cannot be further optimized. The JECHR 
algorithm applies the DE algorithm for global repair to make sure the diversity of the healing 
strategy. Meanwhile, the IWO algorithm is used for local optimization to make sure the astringency 
of the optimization procedure. Therefore, the JECHR algorithm can heal the event coverage holes 
with the shortest repair path distance under different repair time restraints.  

 

Figure 10. The JECHR algorithm is compared with MOACO, iMOGA, and SOS-SA algorithms under 
different repair time restraints. 

As Figure 11 shows, as the error restraints increase, more and more sensors need to be 
deployed to heal the event coverage holes in the networks. Then, mobile robots need to move 
longer distances to complete the network repair. The repair path distance of the JECHR algorithm is 
obviously superior to MOACO, iMOGA, and SOS-SA algorithms. The MOACO algorithm 

10 20 30 40 50 60 70 80 90 1000

50

100

150

200

250

300

350

The Number of Event Coverage Holes

D
is

ta
nc

e/
M

 

 

MOACO
iMOGA
SOS-SA
JECHR

50 100 150 200 250 300 350 400 450 5000

50

100

150

200

250

300

350

400

Time/S

D
is

ta
nc

e/
M

 

 

MOACO
iMOGA
SOS-SA
JECHR

Figure 10. The JECHR algorithm is compared with MOACO, iMOGA, and SOS-SA algorithms under
different repair time restraints.
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8. Conclusions

In this paper, a joint event coverage hole repair algorithm on the basis of global repair and local
repair is presented to apply mobile robots to heal event coverage holes in WSRNs. The differential
evolution algorithm is applied for global repair to make sure the diversity of the healing mechanism.
The invasive weed optimization algorithm is used for local repair to make sure the astringency of
the optimization procedure. The JECHR algorithm efficiently solves the healing issue of the event
coverage holes by applying mobile robots in multi-constraint environment. In the end, the simulation
experiments demonstrate that the proposed JECHR algorithm is able to heal the event coverage holes
effectively in intricate multi-constraint environment.
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