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Abstract: Preparing a plan for reaction to a grave emergency is a significant first stage in disaster
management. A group of experts can do such preparation. Best results are obtained with group
members having diverse backgrounds and access to different relevant data. The output of this stage
should be a plan as comprehensive as possible, taking into account various perspectives. The group
can organize itself as a collaborative decision-making team with a process cycle involving modeling
the process, defining the objectives of the decision outcome, gathering data, generating options
and evaluating them according to the defined objectives. The meeting participants may have their
own evidences concerning people’s location at the beginning of the emergency and assumptions
about people’s reactions once it occurs. Geographical information is typically crucial for the plan,
because the plan must be based on the location of the safe areas, the distances to move people, the
connecting roads or other evacuation links, the ease of movement of the rescue personnel, and other
geography-based considerations. The paper deals with this scenario and it introduces a computer
tool intended to support the experts to prepare the plan by incorporating the various viewpoints and
data. The group participants should be able to generate, visualize and compare the outcomes of their
contributions. The proposal is complemented with an example of use: it is a real case simulation in
the event of a tsunami following an earthquake at a certain urban location.

Keywords: collaborative decision support; geographical information systems; emergency planning;
Dempster-Shafer theory

1. Introduction

Specialists agree that a disaster management process consists of four phases: preparedness,
mitigation, response and recovery [1]. Preparedness is the phase where specialists develop plans
for preparing the population and the environment to react as resiliently as possible against disasters
before they occur. A typical example for this phase would be to determine beforehand which could
be the evacuation routes for the population in case of a tsunami in a coastal region. In order to
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develop plans for procedures and actions that should be followed in the event of an emergency often
requires exploring, analyzing and evaluating georeferenced data, which means geography related
data becomes of fundamental importance. Consequently, Geographical Information Systems (GIS)
frequently support the preparation phase. When developing an action plan in order to react to an
emergency due to a large-scale fire, an earthquake, a tsunami or flood experts often (if not always) use a
GIS system for supporting the work, since they must always consider the features of the corresponding
terrain and all possible entrance and exit paths. These terrain features should allow rescue teams to
access the threatened place for helping people and/or bringing people to safer locations. This analysis
should also take into consideration several factors requiring various knowledge domains, such as
knowing the location of medical facilities, schools and safe open areas, the capacities of transportation
in terms of vehicle flux and weight, the required times to move people from a certain location to
another one, etc. [2]. Given these characteristics, we may describe the process of preparing a plan for
rescue actions in the case of certain types of emergencies as a spatial decision-making scenario.

Decision Support Systems (DSS) are defined as interactive computer-based systems that help
decision makers in the use of data and models to solve unstructured problems. A simplified model
for the decision making (DM) process includes the following stages: (1) identifying the problem,
(2) identifying and modeling the objective(s) of the decision, (3) collecting, generating and/or combining
data to generate alternative scenarios, (4) evaluating options according to the objectives, (5) choosing an
option and performing a sensitivity analysis. If the decision makers assess there is enough information,
the process ends with a final decision; otherwise, the flow goes back to steps 2 or 3 [3]. Like Artificial
Intelligence, the criteria for deciding which topics belong to DSS seem to be diffuse. Nevertheless,
most authors trying to define DSS agree that a crucial feature is that human judgment is a key factor in
the decision-making process cycle, generating options, re-defining and re-modeling objectives. This is
a task involving creativity, which cannot be mechanized. Computers in turn, can provide humans
with gathered data, generation of various decision options, and support for evaluating their outcome
according to the goals. Machines can also provide visualization and communication of the results to
other humans.

Frequently, DSS must deal with ill-structured problems; thus, the goals might not be very
clear and/or there is insufficient information to solve them in a certain optimal way. Furthermore,
ill-structured problems typically involve many stakeholders and require several decision makers;
therefore, the solution tends to be subjective and unique. In addition, DSS systems include various
modeling and analysis techniques to be used by non-computer experts. Hence, a DSS must be
interactive, flexible and adaptable in order to support various solution approaches. Moreover, DSSs
oriented to spatial problems must take into account that spatial information is inherently fuzzy and
uncertain [4], which implies that fuzzy analysis techniques are needed.

There are many decision problems involving spatial issues that might be solved with the help of a
GIS. The recurrent problem can be generally stated in the following way: Find a suitable area to “do”
something. For example, Ghayoumian et al. [5] explain how to find specific locations for constructing
artificial water recharge aquifers using floods. In this case, decision makers must not only be experts in
aquifer recharge, but they will also need historical information and spatial data in order to design a
formula, which reflects the correct criteria for selecting the suitable area(s). This formula is used to
build a suitability map using a GIS. This map typically shows the suitability level on each point of
the map satisfying the requirements. However, in ill-structured problems this criterion is complex to
build because the goals are not clear and the various decision makers will tend to define different goals
according to their own knowledge or expertise.

Another difficulty with GIS-based ill-structured problems is that the data available to the decision
makers is frequently unreliable. In particular, data may be incomplete (not covering the whole space)
and/or uncertain (there are doubts on the data accuracy and veracity). This situation is known as
epistemic uncertainty [6]. One example concerns the evacuation of people from coastal areas after
a strong earthquake; there is a high probability of a tsunami and decision makers must decide the



Sensors 2019, 19, 5040 3 of 20

evacuation procedure. Various options may be available, but the data to make an easy decision may
not be at hand: how many people will be located in each portion of the territory at a certain time of
the day? Will they have operational means of transportation at each location? Will they have basic
supplies (water, electricity, gas . . . ) at each location? etc.

Preparation for an emergency case (that is, making plans beforehand to face the situation in the
event an emergency occurs) has been typically described in the literature as a collaborative decision
making process since many experts should be involved [7–9]. However, there is no previous work
mentioned in the literature aimed exclusively at supporting a group of experts doing this work.
Although there are many works developed for supporting collaborative decision-making (see [10] for
an example), emergency preparedness has some particular aspects, which justify the development of a
dedicated tool: geographical context, simulation, discussion and ill-structured problem statement. The
goal of this work is to fill that gap.

The authors of this work have presented a preliminary approach showing a way to deal with
incomplete and uncertain spatial data in a previous work [11]. That work introduced the theory
for merging the criteria of various experts assessing the risk of a certain geographical area adapting
the Dempster-Shafer theory for a geographic context and using mathematical operations, previously
introduced by several different authors in the past. Then in [12] we presented a work in progress about
a possible design of a prototype. In a later work [13], we discussed ideas regarding how to synchronize
the work of various experts who are dealing with the problem of analyzing a scenario for emergency
preparedness. In this work, we present an actual implementation of the ideas presented in the previous
two papers and we further present a more refined manner in which experts can actually present in a
very flexible and versatile way various scenarios of what can happen in an emergency. The presented
system allows each expert to develop her own scenario(s) individually, discuss them asynchronously
with the other experts and then combine their findings in order to present a single unified solution.

The rest of the paper is organized as follows: Section 2 reviews previous work from various
perspectives. Section 3 deals with Dempster-Shafer theory and its application to spatial decision
making. Section 4 presents a case study of collaborative decision making in emergency preparedness.
Section 5 discusses combination methods. Section 6 introduces a collaborative decision-making tool for
supporting discussions on preparedness for emergencies. Finally, Section 7 presents the conclusions.

2. Background

2.1. Scenario Analysis

Scenario analysis is the process of evaluating possible future events and their consequences
through the consideration of possible alternative states of the world (scenarios). These alternative
states may not be equally likely. The definition used by the Intergovernmental Panel on Climate
Change (IPCC) is a representation of scenarios applied to the natural sciences [14]: “A scenario is a
coherent, internally consistent and plausible description of a possible future state of the world. It is not
a forecast; rather, each scenario is one alternative image of how the future can unfold”.

Heugens and van Oosdterhout [15] define scenarios as “Stories about the future”. Instead of
trying to predict the future, scenarios are possible descriptions of what the future might look like.
Scenario development (or “analysis” or scenario planning) is a systematic method to creatively think
about dynamic, complex and uncertain futures, and identify strategies to prepare for a range of possible
outcomes [16,17]. The scenarios could focus on identifying “favorable futures” in which people wish
to work or “unfavorable futures” that people might want to avoid or at least be prepared to face them.
Instead of trying to reduce uncertainty through increasingly accurate predictions, scenarios can be a
flexible way to discover potential surprises and prepare plans for an uncertain future that is in the
essence of any complex system [18,19].

The scenario-planning concept originated during World War II, as an initiative of the US Air Force
planners in an effort to predict their opponents’ actions; it allowed them prepare alternative plans
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for use in a particular scenario [20]. This planning can serve now various functions, e.g., helping in
investigations, facilitating public learning and discussion, and helping to make political decisions.
For each situation, the degree of stakeholders’ participation can be very varied. The scenarios are
particularly useful in systems that are highly complex and unpredictable and/or where it is not possible
to experiment by manipulating the system to see how the situation changes in response to certain
changes in the values of the relevant parameters describing the state of the scenario [16].

Unlike sensitivity analysis, the objective of scenario-development is to produce a small number of
scenarios with possible descriptions of system factors that can potentially be vastly different in each
scenario. Sensitivity analysis tends to produce a high number of simulations resulting from a number
of gradual variations of a single variable.

Categorizing scenarios can also help experts recognize them, capture their nature and
reuse generalizations that they may derive from possible solutions. Categorizing also promotes
communication during collaborative work between stakeholders, making the design of activities more
accessible to the wide variety of experts that can contribute to this analysis [20]. In addition, they
promote the background and plot to handle exercises for emergencies. The first step when designing
a scenario is to determine the type of threat, danger, or situation that is happening [21]. According
to [22], the scenarios may be classified as follows:

• Exploration Scenarios. Two types of exploration scenarios are commonly used in scenario planning:
Projection and Possible Futures scenarios. In the Projection Scenarios, projects progress over time
according to trends experienced in past periods, while in the Possible Futures Scenarios expert try
to anticipate the next significant changes of variables.

• Anticipation Scenarios. These scenarios are based on different favorable or unfavorable visions of the
future that could be reachable or avoidable. These scenarios may be proposed by expert judgment,
where researchers and experts propose models of future conditions, or where stakeholders define
the assumptions about the future that should be included in the scenarios.

The existing literature shows us that scenario analysis is a very pertinent process to conduct for
emergency preparedness. Scenario analysis is also frequently collaborative.

2.2. Maps and GIS-Based Decision Systems

According to [23], visualizing information may support a decision making process by using
adequate visual representation of the information in order to detect patterns. In several areas,
practitioners and professionals have historically used maps for supporting problem solving and
decision-making processes through the visual representation of the geographical space [24]. In our
days, maps are considered as artifacts that facilitate complex human activities involving the use, access
and organization of geospatial information, [25]. Geo-visualization is a discipline that emerges from
“Geographic Information Science” (GIScience), which goes beyond simple graphic representations of
geo-spatial information, also involving the integration of knowledge construction with geo-spatial
information and the design of user interfaces [25].

In this context, a relevant problem to study is the strategy to merge the work done by various
participants in a group. A simple solution is to divide the work into parts each assigned to a person
and then combining the results at a meeting or by a designated person. Another trivial solution is to
take turns to consecutively improve an initial draft. Unfortunately, these easy solutions may not be
applicable to all situations.

Baeza-Yates and Pino [26] presented a case in which the simple solutions are unfeasible. The
problem concerns collaborative information retrieval: several people seek data and then each result is
merged using a specific strategy to generate the result. Smeaton et al. [27], proposed a second solution
to the same problem: various persons share a single user interface and cooperatively state queries and
analyze results. Thirdly, Pickens et al. [28] suggested a solution, in which an algorithmically mediated
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collaborative search engine coordinates user activities during the searching session. Notice none of
these solutions is trivial and each of them was developed in an ad-hoc way to the specific problem.

GIS-based decision-making also needs convergence research. A frequently occurring setting
consists of a chauffeured group of decision makers, i.e., only one person can provide input to a GIS
system perhaps through just one keyboard and mouse but with common output through a large shared
display. This asymmetric situation has been criticized because the stakeholders are not equally able to
contribute to the final decision (e.g., [29]). Moreover, for several public/private geographically related
problems, various researchers have pointed out the need to democratize the decision-making process by
involving the general public who are directly affected by the decisions (e.g., [29–31]). As a consequence,
GIS-based systems have been often used to support collaborative decision-making processes.

A decision-making process supported by GIS typically starts with two inputs: data and expert
knowledge. Models are built using an expert’s knowledge, and alternative scenarios are constructed
using different data input. These scenarios can be compared because they are based on the same model,
although each model is based on different expert knowledge. Nevertheless, the knowledge can change
during the evaluation process, for instance by including or removing a person from the experts’ team.
A change in the knowledge of the experts’ team is challenging to represent in the model because it
leads to changes in the used databases [32]. Spatial Decision Support systems are especially relevant
to a vast number of scientific, economic and humanistic areas. The most common areas found in the
literature are:

• Socio-economics: urban planning, industrial planning, agricultural land use, housing, education,
natural resources, and many new smart city applications.

• Environmental: forestry, fire and epidemic control, floods and earthquake predictions, pollution,
and smart city applications.

• Management: Organization logistics, electricity and telecommunication network planning,
real-time vehicle tracking, and other public services planning like health services, security, fire
protection, and smart city applications.

According to Malafant and Fordham [33], a GIS is always a DSS because it is used to support
some stage of a decision-making process. According to [4], GIS offers appropriate techniques for data
management, information extraction, routine manipulation, and visualization. However, Geographical
Information Systems do not have the necessary analytical capabilities to manage a decision-making
process. Furthermore, in [34] authors claim that at the time of publication (2010), the existing Spatial
DSS tools (i.e., Decision Support Systems for spatial related problems) do not provide the needed
characteristics, and recent literature does not show progress in this issue. This is exactly the direction
in which the work presented in this paper contributes to this area.

GIS-based systems play an important role when developing action plans in case of an
emergency [29]. Very often, a suitability map displays the necessary information. This map shows the
“appropriateness” of a certain terrain to fulfill certain conditions in a graphical way. For example, the
risk of a landslide occurrence can be represented on a map by painting the areas with high risk with
red color, medium risk with yellow and low risk with white. In order to build a suitability map, it
is necessary to assign a certain value to each geographical point, which will determine its color. In
the case when the suitability value is determined by the knowledge of experts, the Dempster-Shafer’s
Plausibility Theory [35], has proven to be an effective tool [11,36–38].

2.3. Emergency Preparedness

In this sub-section we review the literature about emergency preparedness in order to find out
which are the key aspects of this process and identify the research gaps that still exit. In particular, we
want to investigate whether there have been computational systems developed to support this process.
For this purpose, we made a web search on academic databases using the keywords “emergency
preparedness”. From the obtained results we selected the most recent ones (from year 2015 onwards),
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except for three works ([39–41], which are from the years 2008, 2008 and 2003 respectively), since they
are very much related to our work. Table 1 summarizes the works we found in this review.

Table 1. Description of most recent and relevant articles published on Emergency Preparedness.

Ref. No. Contribution Focus Collaboration Supports
System Design

[39]
Explores the use of Gnutella peer-to-peer network
over mobile ad-hoc networks in order to support

large-scale CVEs

software
architecture yes no

[40] Reports on a study of one community’s emergency
planning activities. discussion yes no

[41] Reviews the concepts of community preparedness
and emergency planning

discussion
guidelines yes no

[42] Proposes national guidelines on disability inclusion
in emergency preparedness discussion no no

[43] Emphasizes preparedness as an early stage for facing
natural disasters discussion yes no

[44] Proposes a decision process for establishing an
efficient network of secure storage process proposal no no

[45]
Aimed to determine the degree to which Australia
has worked on emergency preparedness for infant

and young child feeding in emergencies
report yes no

[46]

Reports the levels of preparedness of a community
exposed to two natural hazards and identifies the

primary sociodemographic characteristics of groups
with different preparedness levels

report/discussion yes no

[47]

Reviews the challenges and gaps of present disaster
systems, establishing the root cause for failure as the
lack of an effective mitigated disaster management

system in place

process proposal yes no

[48]
Examines student preparedness perceptions, a better
understanding of factors that may influence actual

preparedness is needed.
report/discussion no no

[49] Highlights the need for collaboration discussion yes no

[50] Presents the use of social media in emergency
management. process proposal yes no

[51]

Explores the appropriate planning for deployment of
resources to provide relief to disaster victims and
identifies which of these activities are critical to

reduce suffering

process proposal yes no

[52] Proposes a GIS Flowchart to determine the flood
damage coefficient process proposal no no

[53] Proposes a novel mathematical model for
redesigning existing relief logistics networks model proposal no partially

[54] Highlights the need for planning before the
emergency occurs discussion no no

Examining Table 1 we can conclude that research on emergency preparedness has focused mainly
in proposing processes for performing this task, especially in recent times. We can also observe that
more than half of the articles consider that collaboration among various actors is necessary. However,
we found no proposals to develop a dedicated system to support this task, which is the focus of
this work. By contrast, we can find many works in the literature presenting systems (many of them
designed for mobile devices) for supporting responsive actions during an emergency occurrence or
shortly afterwards (mitigation) [55].
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3. Dempster-Shafer Theory and Spatial Decision Making

In the DSS area, there are mathematical tools designed to include expert knowledge and manage
incomplete and uncertain information. Over the last 20 years, there have been studies using Belief
Functions in different spatial decision-making problems [5,38] getting good results. However, the
calculation method and results in these experiments are based on a specific spatial problem. As a
result, functions used to evaluate the suitability of a place differ from each other and thus are hard to
replicate or adapt to other spatial problems.

The Dempster-Shafer Theory (DST) [35] is a generalization of the Bayesian theory of probabilities
that includes uncertainty as a primary element for the process. Let X to be the set of all possible
outcomes of a process; the theory defines a mass assignment function (or simply a mass) as a function
that assigns a value between 0 to 1 to each subset of X, satisfying that the sum of the masses of all
subset is equal to 1. The theory defines two metrics that can be used to measure the support for an
outcome and they are associated with the probability. The belief is defined as the total evidence to
support an outcome, and the plausibility is defined as the total amount of evidence that can support an
outcome. They define the lower and upper bounds for the probability of the outcome.

Multiple evidence sources expressed by their mass assignment functions can be combined using
the Dempster Rule [56]. This rule establishes how to combine two masses m1 and m2 resulting in a
new mass assignment function m3 which consider the evidence and uncertainty of both sources. The
combination rule also defines a coefficient K, which is called the conflict and measures the level of
disagreement these sources have about the process. One remarkable aspect of the combination rule is
that it allows combining as many evidence sources as necessary to obtain the most accurate result.

Unlike probability, DST can express complex scenarios due to the inclusion of uncertainty in their
computations. DST also allows models to express that they cannot make a prediction accurately. For
example, consider a classification problem between classes A and B; classical probability models are
forced to choose one of these classes to predict. In the same problem, DST can choose among A, B and
the uncertainty (complete set), so if the model cannot predict an observation, then the uncertainty will
be high.

In DST, hypotheses are statements that affect the final value of the target variable by reinforcing or
weakening its occurrence, and they are associated with a probability of being correct. Then for each
hypothesis and using the available geographic data, the model computes three values associated with
the given probability:

• Plausibility: is the probability that the random variable takes values within the range of the query.
• Certainty: is the probability that the whole range of the distribution of variable is within the range

of the query.
• Uncertainty: no valuable information can be derived from this data.

By defining these hypotheses, along with the mass assignment functions, experts “codify” their
knowledge into the expert system based on Dempster-Shafer theory. For example, if the expert is
looking for people density as the variable to predict, one hypothesis can be “people are in shops
with a 20% of belief” or “people are in schools or workplaces with a 40% of belief”. We also defined
query hypotheses: “people are in shops just like in place X, Y”. In the hypothesis statement, the
expert can define multiple hypotheses, which are combined using Dempster-Shafer combination
rules. Furthermore, the expert can design these complex scenarios without requiring any kind of
GIS expertise.

DST has been adapted to geographical contexts by Frez et al. [57]. This work presents a framework
for predicting the value of a variable that depends on time and space (geographically) using DST. In
summary, the proposed model uses geographic data and a set of hypotheses or rules as the input.
Using the hypotheses and the available data, the model builds several mass assignment functions for
the prediction of the variable in a geographical region. In the same work, authors propose a variation
of the Dempster Rule that considers the influence a set of geographic places where hypotheses apply
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may have on another geographical place for which the mass is being computed. The final mass for this
place considers a combination of all influences taking into account the distance between them. The
result of this process is a suitability map showing the predictions for the variable for a certain period.

The result of combining the hypotheses with real data and fuzzy techniques for spatial
representation is a suitability map. A suitability map typically shows the suitability level on each point
of the map that satisfies the requirements; in our case, it shows the belief degree of the hypothesis for
each evaluated location. This kind of suitability map is what we call a simple scenario.

To illustrate this process, the region of interest is usually discretized into a grid. To see the effect
of a hypothesis, consider one that states that “people are in stores with 40% of belief”; then we can
query the geographical data to check where the stores are located, e.g., stores could be situated in the
blue dots on the Figure 1a. After this, the belief is computed using the combination rule for each grid;
the result of this computation is shown on Figure 1b.
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4. Case Study

Since Chile is a country where earthquakes are very frequent, and a significant part of its territory
is coastal land, plans for evacuating people in case of tsunamis are very important. During the 2010
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earthquake, which had magnitude 8.8, over 500 casualties occurred because people did not have time to
seek refuge in safe areas [58]. Therefore, it is very important to develop plans and train the population
to evacuate the seaside and seek for safety in higher grounds. While developing such plans, many
factors should be considered, like where people could be at the time of an earthquake and the speed at
which a tsunami reaches the coast.

The preparation of an effective population evacuation plan requires the collaboration of various
experts and stakeholders. Each one may have different opinions and hypotheses about which are the
best options to elaborate an evacuation plan. We will assume there are five experts available in order
to exemplify the proposed collaboration. Suppose two of them believe the best evacuation method is
for people to go to higher grounds, using any possible routes and means of transport. The remaining
three experts have another hypothesis: most people will not be able to reach the higher grounds before
the tsunami arrives, so they should seek refuge inside high buildings (vertical evacuation).

Organizations responsible for dealing with emergencies typically rely just on traditional GIS to
evaluate the aforementioned options. These systems provide information about the population living
in the area, the number of schools, and other stored information.

The tsunami evacuation problem is a difficult one. In fact, it can be classified as an ill-formulated
problem, because there is no information about the number of people who must be evacuated at the
time of earthquake occurrence. There is no knowledge either on the precise available time from the
earthquake occurrence to the subsequent tsunami reaching the coast. Of course, the population in the
area may vary according to the time of the day, and day of the week. Furthermore, we must assume an
earthquake can occur at any time.

Using the Dempster-Shafer Theory, we can build a set of hypotheses, which can tell us where
people may be located. For example, let us consider a concrete case. There is an area of the coastline of
Iquique (northern Chile) where there is a high belief that people will congregate there in large numbers
during daytime, because this area includes universities, restaurants, shopping centers, a popular beach,
etc. This area is also far from higher grounds. The vertical evacuation hypothesis may be appropriate
for this area, as stated by three of the experts mentioned above. However, an obvious problem will
occur if there are too many people and not enough high buildings.

The incomplete information and multiple scenarios make Dempster-Shafer theory a suitable choice
to be applied to this case. We propose to encapsulate it in a Collaborative Geographical Information
System (CGIS). The above-mentioned five experts could use this CGIS to make their own hypotheses
evaluation. Because of this process, they will have a set of suitability maps. For example, the first two
experts may disagree on where they believe people may be at different hours of the day. The other
three experts may also disagree on how tall the buildings must be or the kinds of construction that
must resist the tsunami being hypothesized.

There will be at least five suitability maps after each expert builds his/her own simple scenario(s).
The next natural step will group the suitability maps according to both basic evacuation strategies.
However, this procedure should be complemented by a collaborative step so that the experts desirably
generate a single suitability map incorporating all contributions. Another situation that can occur is
that all individual suitability maps are based on similar hypotheses, e.g., that during daytime people
are in commercial areas, schools, universities, libraries, banks, bus stations, etc., but one expert may
believe there will be more people at commercial areas, while others may say there will be more people
located in residential areas.

The collaborative step can be designed to allow the combination of the various suitability
maps generated by experts in a hierarchical order, according to certain operators, as Merigó and
Casanovas [59] have suggested. Of course, the suitability maps to be combined using certain operation
would need to be collaboratively decided by the experts. In each combination step, the resulting
suitability map should be the outcome of the discussion of each scenario possibility including the
experts’ hypotheses concerning known information about the area, and relevant factors on which
to focus.
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Suitability maps are combined as a result of argumentation and discussion (Figure 3).
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Figure 3. Hierarchical combination process. The figure shows that expert 1 generated three and expert
2 two scenarios individually. Expert 1 produced a single scenario combining the maps generated by
her and presenting it to expert 2 for consideration. Expert 2 did the same with her two maps. After a
discussion process (which is supported by the developed system) both experts agree to combine their
scenarios in a single one, which is used for developing emergency preparedness plans.

5. Combination Methods

A complex scenario is the combination of various simple scenarios. Building a complex scenario
requires cooperative work between different stakeholders like experts in the particular scenario area and
decision makers. In order to provide useful tools for collaborative scenario building for a single area we
must divide the work in two different dimensions: Hypothesis Dimension and Time Dimension. The
hypothesis dimension directly relates to the collaboration process between stakeholders (decision maker
and experts) who have different hypotheses about belief function values for a certain time, e.g., one
expert will have a certain hypothesis about the number of people at commercial areas for the morning,
noon, evening and night. When combining suitability maps, experts should consider the same time
dimension for stating their hypotheses. As the stakeholders discuss, argue, evaluate and combine the
maps, the time dimension of the suitability map generation unfolds.

In this work, additional to using the Dempster-Shafer combination rule, we propose to provide
the user with four other operators, one of them with four variants, to collaboratively build a scenario,
based on combinations of suitability maps which were previously constructed, either individually
or already as a result of a collaborative process. The need to use these new operations appears from
the fact that they have a semantic meaning, which can be more understandable for users who are not
expert in the plausibility theory. In this way, they will feel keener to “merge” their findings. In general,
the operations work in the following way: two or more input scenario maps of the same region, with
belief values already assigned for each cell are merged in order to produce a single output scenario
map. In the output map, the belief value for each cell results from applying the operation to the value
of the same cell of the input maps. The operations are the following:

• Sum: The sum is probably the simplest operator a decision team should be able to use; it consists
of summing the belief value of each scenario for each evaluated location (cell in the scenario).
Graphically, it consists of summing the mass values of the same cell. Visually the resulting map
does not show the sum of the two bars, one over the other, because the final values for each cell
are normalized. This operator can be useful when three independently but related scenarios must
be merged. For example, criminality, transit and street maintenance scenarios must be combined
to evaluate the governmental resources needed in a general and comparative scope. Using sum
the decision maker can easily identify the need of resources for each location independently of the
type of need.
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• Subtraction: The subtraction operator subtracts the belief value of two or more scenarios at each
evaluated location. This operator can be useful when it is necessary to evaluate the differences
between one scenario and others. For example, if we have a possible flood scenario and a refuge
scenario. Using subtract, the decision maker can easily identify the places of refuge with lower
flood belief values.

• Average: The average operator is the simple average between the belief degrees of each location
in each scenario. The result of this operator is visually similar to sum but can be numerically
different. For example, if a cell has value 0 for the belief for two of the experts’ maps and 100 for
another, the sum will be 100, but the average will be 33.3. This operator can be used in order to
find places in which to deploy scarce resources. One example is that of deploying police forces
according to criminality.

• OWA operator: An OWA operator is a weighted average of the input values given an order
induced among them [60,61]. The OWA operator has already been used to combine data using
the Dempster-Shafer Theory, [59]. Given this situation, we introduce four operators: OWA-ASC
OWA-DESC, weighted-OWA and Induced-OWA.

• OWA-DESC operator: When using this variant of the OWA operator values and weights are ordered
both in descending order. This combination can emphasize the biggest belief values of each
scenario, avoiding that a certain important fact known by one of the experts could be ignored
because of the simple average of numbers. For example, if a crime scenario has a large belief
degree at a certain location, then using average, this information can be mixed with lower degree
values of the other scenarios.

• OWA-ASC operator: When using this variant of the OWA operator values are ordered in an
ascending sequence and the weights are also ordered in an ascending sequence. This combination
emphasizes the belief when the values are constantly high in all scenarios. This operator is similar
to average, but it is not susceptible to isolated big values. It can be applied to allocate specific and
limited resources that can support multiple scenarios. It can also be used to identify critical areas.

• Weighted OWA operator: The weighted OWA (WOWA) operator integrates the weighted average
and the OWA operator in the same formulation. Thus, it can represent the importance of the
variables and the attitudinal character of the decision maker in the same formulation, under
or overestimating the initial data. The main advantage is that it can provide a more complete
representation of the information taking into account any scenario that may occur between the
minimum and the maximum.

• Induced OWA operator: The induced OWA (IOWA) operator is an aggregation operator that
follows the methodology of the OWA operator [62]. However, instead of reordering in increasing
or decreasing order, it uses order-inducing variables to determine the ordering process of the
aggregation. This issue is important because many times the numerical values do no indicate the
ordering of the information. The IOWA operator can be used to specify the scenario evaluation
order. For example, if we want to order scenarios by their “source quality”, it is possible to define
an order using the u values in IOWA pairs. However, the order cannot be arranged by an optimal
value, because we are working with belief degrees.

6. A Collaborative Decision-Making Supporting Tool Intended for Discussions on Preparedness
for Emergencies

In this section, we present a tool that implements the collaborative decision model explained in
the previous chapter by an example in which a team of three experts analyzes the tsunami scenario in
Iquique. The members of the team have various expertise and/or information on identifying risk zones,
people agglomerations and evacuation plans. We present screenshots of the most important stages
of the tool with views of workspaces from the point of view of these three experts. The application
obtains all the information needed in order to conduct this analysis from open public sources like



Sensors 2019, 19, 5040 12 of 20

OpenStreetMap (http://openstreetmap.org), public databases of Chilean ministries and National Office
for Emergencies (ONEMI).

The first view corresponds to the view a user has when logging into the platform. It shows
the ongoing projects in evaluation/discussion, and the scenarios that participants recently generated
which the user has not seen yet (Figure 4). It also shows the participants of the project, in this case
three: Nelson, Jonathan and Alvaro. According to the screenshot, Nelson is the one who is logged
in, Jonathan is also online but Alvaro is not. The screenshot shows there are three ongoing projects
“Landslide prevention Chaiten”, “Evacuation planning Iquique”, and “Fire prevention Valparaiso”.
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by authorship (Figure 5) under the username of the team member who created them.
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By clicking the pushbutton labeled “new map” a user can generate a new map from scratch or by
combining two or more already generated maps. First, we will explain the generation of a new map
from scratch with an example.

Let us assume the user Nelson has an expertise in analyzing urban areas where there can be
agglomeration of people during a natural disaster. He has several hypotheses about why people
concentrate in certain places and he wants to generate a map showing the number of people in the
places near the coastal regions. Using the platform, he can include those hypotheses, giving them a
percentage of mass and specifying exceptions that might occur (Figure 6). The platform takes this
information and generates a belief map about which are the places where a large number of people
could gather.
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their weights.

He thinks that there are usually high concentrations of people near amenity places, and near
shops and at some hours of the day, near educational buildings. In order to evaluate his hypotheses
separately, Nelson generates three scenarios (maps), one for each.

On the other hand, Jonathan has expertise evaluating the level of risk that certain zones may have.
He generates two risk scenarios, which evaluate the risk a person being in a certain geographical area
of the city may face according to two parameters. The first one depicts the zones in which the risk
of being flooded in case of a tsunami is determined according to their altitude (lower altitude means
higher risk). In the second one, the risk depends on the distance that would be necessary to cover for a
person to get out of the flood zones (longer distances means greater risk).

Álvaro is an expert in evacuation; he has only uploaded a map with the current evacuation
routes and he must develop a new evacuation plan, which will use the scenarios created by Jonathan
and Nelson.

As a team, the three experts decide that in order to generate an evacuation plan, they require only
one scenario showing the possible people concentration and another one that shows the risk zones, so
both Nelson and Jonathan must combine their scenarios.

To combine the scenarios, the platform provides an interface to use the operators of addition,
subtraction, average and ordered weighted averages (OWA). Nelson decides that the right operation
for combining his maps should be the addition, since people in the concentration areas will sum up
in a real scenario. Figure 7 shows a screenshot of the tool when combining the maps resulting from
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estimating the number of people in amenities and people at shops with the SUM operation, which is
called “Sum People”.Sensors 2019, 19, x FOR PEER REVIEW 14 of 20 
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Jonathan decides that the most appropriate operation for combining the risk scenarios generated
by him was a decreasingly ordered weighted average (OWA-DESC), which gives greater weighting to
higher values and lower weighting to lower values. In this manner, the high-risk zones in any of the
scenarios to be combined are maintained. The generated scenario is called “Danger DOWA” (Figure 8).
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Finally, Alvaro combines the two scenarios generated by Jonathan and Nelson in a single one
called “People in Danger”. In order to prioritize areas with high risk and at the same time areas with
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concentrations of people, he decides to combine using an OWA-ASC operator, being the areas that
meet both conditions the most prominent (Figure 9).
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OWA-ASC operator.

The application also implements a tool that can be used for supporting the asynchronous discussion
and the pertinence, validity or convenience of using a given scenario for preparing the actions needed
to react in case of a disaster and/or plan the rescue and mitigation procedures. This tool consists of
creating “Argumentation Objects”, e.g., to discuss the need to carry out a differentiated evaluation
for night periods. In order to give context to the argument, it is possible to attach previously created
scenarios and assign them a discussion category. Figure 10 shows a screenshot when user Nelson is
creating an Argumentation Object.
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The other project participants can review the argument with the attached antecedents (scenarios),
discuss it and support the argument based on a voting system, which can be seen in Figure 11.
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7. Conclusions

The work reported here concerns the development of a model, a methodology and a computational
system to support a collaborative decision-making process involving ill-structured problems where
geographical data plays an important role. These are often called “suitability problems”.

This research was motivated by the fact that Chile is a highly active seismic country and at
the same time, it has a long coastland, with several cities along this coast. This exposes a large
population to the possible scenario of a tsunami. A strong earthquake in 2010 which claimed hundreds
of lives due to an afterwards tsunami and a moderate high earthquake in a coastal city of Iquique
in 2014, set on the alarms at the need of developing evacuation plans for all inhabited coastal zones.
However, although there are many systems supporting collaborative decision making in general and
for particular situations, a literature review showed that there is no system intended for supporting
the best evacuation routes decision process. In this work we have focused on studying some type of
emergency preparation (planning sub-stage [63]), namely, preparations for tsunamis in a coastal city.
As we have discussed, the problem also has epistemic uncertainty. However, preparing actions for
other emergency situations could be also addressed using the results of this work. Other cases may
be flood emergencies caused by rivers or by snow melting in mountains caused by sudden increases
of temperature.

The presented approach uses Dempster-Shafer’s plausibility theory for analyzing emergency
scenarios, since it allows to apply hypotheses and use uncertain data over geo-referenced information
in order to draw conclusions about the necessary action that could be taken in case of a certain type
of emergency. Then, we propose cooperative work aggregating the contributions of various experts,
giving the possibility of discussing about the plausibility of the hypotheses stated by each expert
participating in the preparedness team. The aggregation is done by combining suitability maps using
operators previously proposed in the literature. The result is a few number of maps encapsulating the
experts’ knowledge. Such maps may depict geographical areas, which are not appropriately supported
to respond to the emergency.
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The proposal includes a computer tool (a CGIS) which supports experts to perform the
two aforementioned stages. Antunes et al. [64] have presented several evaluation techniques
for collaborative systems; the evaluation work described in this paper can be classified as a
Knowledge-based scenario method. Another evaluation technique suitable for this kind of scenario
tool could be a Scenario-Based Evaluation (SBE). The methods to validate scenarios like these ones
require a long-term study, especially for evaluating tools used in emergency-related situations, since
they are difficult to replicate in controlled environments for conducting evaluations. Therefore, we
opted for validating the approach through a simulation of the preparation for a tsunami in a northern
Chilean coastal city. Through this simulation, we show that the method and the developed tool indeed
support the execution of Scenario-Based evaluation. Furthermore, we plan to conduct a user-centered
evaluation method in the future to specifically evaluate usability with the tool; however, that is another
inquiry project.

In this work we could also check that the use of the Dempster-Shafer’s theory of plausibility is an
appropriate approach for analyzing collaborative scenarios, since it allows multiple stakeholders to
apply hypotheses and use uncertain data over geo-referenced information, in order to draw conclusions
about the necessary action that could be taken in case of a certain type of problem. Furthermore,
this work implements the aggregation of the contributions of various experts, giving the possibility
of discussing about the plausibility of the hypotheses stated by each expert participating in the
preparedness team.
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30. Dragićević, S.; Balram, S. A Web GIS collaborative framework to structure and manage distributed planning
processes. J. Geogr. Syst. 2004, 6, 133–153. [CrossRef]

31. Malczewski, J. GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci.
2006, 20, 703–726. [CrossRef]

32. Shim, J.P.; Warkentin, M.; Courtney, J.F.; Power, D.J.; Sharda, R.; Carlsson, C. Past, present, and future of
decision support technology. Decis. Support Syst. 2002, 33, 111–126. [CrossRef]

http://dx.doi.org/10.1016/j.ijpe.2014.02.019
http://dx.doi.org/10.3390/proceedings2191254
https://www.ipcc-data.org/guidelines/pages/definitions.html
https://www.ipcc-data.org/guidelines/pages/definitions.html
http://dx.doi.org/10.1016/S0016-3287(01)00023-4
http://dx.doi.org/10.1046/j.1523-1739.2003.01491.x
http://dx.doi.org/10.1016/j.enpol.2007.08.015
http://dx.doi.org/10.5751/ES-01971-120108
http://dx.doi.org/10.1016/j.landurbplan.2006.11.001
http://dx.doi.org/10.1016/j.envsoft.2008.11.010
http://dx.doi.org/10.1559/152304001782173970
http://dx.doi.org/10.1111/0004-5608.00233
http://dx.doi.org/10.1007/s10109-004-0130-7
http://dx.doi.org/10.1080/13658810600661508
http://dx.doi.org/10.1016/S0167-9236(01)00139-7


Sensors 2019, 19, 5040 19 of 20

33. Malafant, K.; Fordham, D. GIS, DSS and integrated scenario modelling frameworks for exploring alternative
futures. WIT Trans. Ecol. Environ. 1970, 315–342.

34. Morris, A.; Jankowski, P.; Bourgeois, B.S.; Petry, F.E. Decision support classification of geospatial and regular
objects using rough and fuzzy sets. In Uncertainty Approaches for Spatial Data Modeling and Processing; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 3–8.

35. Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976; Volume 42.
36. Baloian, N.; Frez, J.; Pino, J.A.; Zurita, G. Efficient planning of urban public transportation networks.

In Proceedings of the International Conference on Ubiquitous Computing and Ambient Intelligence,
Puerto Varas, Chile, 1–4 December 2015; pp. 439–448.

37. Frez, J.; Baloian, N.; Zurita, G. Getting serious about integrating decision support mechanisms into Geographic
Information Systems. In Proceedings of the Ninth International Conference on Computer Science and
Information Technologies Revised Selected Papers, Yerevan, Armenia, 22–25 September 2013; pp. 1–11.

38. Park, N.-W. Application of Dempster-Shafer theory of evidence to GIS-based landslide susceptibility analysis.
Environ. Earth Sci. 2011, 62, 367–376. [CrossRef]

39. Boukerche, A.; Zarrad, A.; Araujo, R. A heterogeneous network architecture based Gnutella for mobile
emergency preparedness applications. In Proceedings of the 2008 IEEE/ACS International Conference on
Computer Systems and Applications, Doha, Qatar, 31 March–4 April 2008; IEEE: Piscataway, NJ, USA, 2008;
pp. 1064–1069.

40. Schafer, W.A.; Carroll, J.M.; Haynes, S.R.; Abrams, S. Emergency management planning as collaborative
community work. J. Homel. Secur. Emerg. Manag. 2008, 5, 10. [CrossRef]

41. Perry, R.W.; Lindell, M.K. Preparedness for emergency response: Guidelines for the emergency planning
process. Disasters 2003, 27, 336–350. [CrossRef] [PubMed]

42. Kruger, J.; Hinton, C.F.; Sinclair, L.B.; Silverman, B. Enhancing individual and community disaster
preparedness: Individuals with disabilities and others with access and functional needs. Disabil. Health J.
2018, 11, 170–173. [CrossRef] [PubMed]

43. Zhou, L.; Wu, X.; Xu, Z.; Fujita, H. Emergency decision making for natural disasters: An overview. Int. J.
Disaster Risk Reduct. 2008, 27, 567–576. [CrossRef]

44. Hale, T.; Moberg, C.R. Improving supply chain disaster preparedness: A decision process for secure site
location. Int. J. Phys. Distrib. Logist. Manag. 2005, 35, 195–207. [CrossRef]

45. Gribble, K.; Peterson, M.; Brown, D. Emergency preparedness for infant and young child feeding in
emergencies (IYCF-E): An Australian audit of emergency plans and guidance. BMC Public Health 2019, 19,
1278. [CrossRef]

46. Bronfman, N.C.; Cisternas, P.C.; Repetto, P.B.; Castañeda, J.V. Natural disaster preparedness in a multi-hazard
environment: Characterizing the sociodemographic profile of those better (worse) prepared. PLoS ONE
2019, 14, e0214249. [CrossRef]

47. Verma, M.; Verma, T.; Banerjee, T. Disaster Management for Future City. In Proceedings of the Conference on
Technologies for Future Cities (CTFC), New Panvel, India, 8–9 January 2019.

48. Tkachuck, M.A.; Schulenberg, S.E.; Lair, E.C. Natural disaster preparedness in college students: Implications
for institutions of higher learning. J. Am. Coll. Health 2018, 66, 269–279. [CrossRef]

49. Telfair LeBlanc, T.; Kosmos, C.; Avchen, R.N. Collaboration Is Key to Community Preparedness. Am. J. Public
Health 2019, 109, 252. [CrossRef]

50. Bennett, D. Emergency preparedness collaboration on Twitter. J. Emerg. Manag. (West. Mass.) 2018, 16,
191–202.

51. Rodríguez-Espíndola, O.; Albores, P.; Brewster, C. Disaster preparedness in humanitarian logistics:
A collaborative approach for resource management in floods. Eur. J. Oper. Res. 2018, 264, 978–993.
[CrossRef]

52. Frongia, S.; Meli, M.; Sechi, G.; Silvano, R. Flood Risk Management Plan for the Sardinia Hydrographic
District. In Proceedings of the 9th World Congress of Ewra “Water Resources Management in a Changing
World: Challenges and Opportunities”, Istanbul, Turkey, 10–13 June 2015; Alma Mater Studiorum-Università
di Bologna: Bologna, Italy, 2015; pp. 891–894.

53. Khademi Zareh, H.; Rezaei, H.; Bashiri, M.; Fakhrzad, M.B. A humanitarian reconfiguration and rehabilitation
model for preparedness and response to earthquakes using a scheduled reopening of links. J. Ind. Syst. Eng.
2015, 11, 96–115.

http://dx.doi.org/10.1007/s12665-010-0531-5
http://dx.doi.org/10.2202/1547-7355.1396
http://dx.doi.org/10.1111/j.0361-3666.2003.00237.x
http://www.ncbi.nlm.nih.gov/pubmed/14725091
http://dx.doi.org/10.1016/j.dhjo.2017.12.005
http://www.ncbi.nlm.nih.gov/pubmed/29287974
http://dx.doi.org/10.1016/j.ijdrr.2017.09.037
http://dx.doi.org/10.1108/09600030510594576
http://dx.doi.org/10.1186/s12889-019-7528-0
http://dx.doi.org/10.1371/journal.pone.0214249
http://dx.doi.org/10.1080/07448481.2018.1431897
http://dx.doi.org/10.2105/AJPH.2019.305272
http://dx.doi.org/10.1016/j.ejor.2017.01.021


Sensors 2019, 19, 5040 20 of 20

54. Alexander, D.E. Disaster and Emergency Planning for Preparedness, Response, and Recovery; Oxford University
Press: Oxford, UK, 2015.

55. Omaier, H.T.; Alharbi, A.Z.; Alotaibi, M.F.; Ibrahim, D.M. Comparative Study between Emergency Response
Mobile Applications. Int. J. Comput. Sci. Inf. Secur. 2019, 17, 87–90.

56. Shafer, G. Dempster’s rule of combination. Int. J. Approx. Reason. 2016, 79, 26–40. [CrossRef]
57. Frez, J.; Baloian, N.; Zurita, G.; Pino, J.A. Dealing with incomplete and uncertain context data in geographic

information systems. In Proceedings of the IEEE 18th International Conference on Computer Supported
Cooperative Work in Design (CSCWD), Hsinchu, Taiwan, 21–23 May 2014; pp. 129–134.

58. Wikipedia. 2010 Chile Earthquake. Available online: https://en.wikipedia.org/wiki/2010_Chile_earthquake
(accessed on 29 July 2019).

59. Merigó, J.M.; Casanovas, M. Induced aggregation operators in decision making with the Dempster-Shafer
belief structure. Int. J. Intell. Syst. 2009, 24, 934–954. [CrossRef]

60. Yager, R.R. On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE
Trans. Syst. Man Cybern. 1988, 18, 183–190. [CrossRef]

61. Yager, R.R.; Kacprzyk, J.; Beliakov, G. Recent Developments in the Ordered Weighted Averaging Operators: Theory
and Practice; Springer: Berlin/Heidelberg, Germany, 2011; Volume 265.

62. Merigo, J.M. A unified model between the weighted average and the induced OWA operator. Expert Syst.
Appl. 2011, 38, 11560–11572. [CrossRef]

63. Haddow, G.D.; Bullock, J.A.; Coppola, D.P. Introduction to Emergency Management; Butterworth-Heinemann:
Oxford, UK, 2017.

64. Antunes, P.; Herskovic, V.; Ochoa, S.F.; Pino, J.A. Structuring dimensions for collaborative systems evaluation.
ACM Comput. Surv. (CSUR) 2012, 44, 8. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijar.2015.12.009
https://en.wikipedia.org/wiki/2010_Chile_earthquake
http://dx.doi.org/10.1002/int.20368
http://dx.doi.org/10.1109/21.87068
http://dx.doi.org/10.1016/j.eswa.2011.03.034
http://dx.doi.org/10.1145/2089125.2089128
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Scenario Analysis 
	Maps and GIS-Based Decision Systems 
	Emergency Preparedness 

	Dempster-Shafer Theory and Spatial Decision Making 
	Case Study 
	Combination Methods 
	A Collaborative Decision-Making Supporting Tool Intended for Discussions on Preparedness for Emergencies 
	Conclusions 
	References

