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Abstract: Accurate road information is important for applications involving road maintenance,
intelligent transportation, and road network updates. Mobile laser scanning (MLS) can effectively
extract road information. However, accurately extracting road edges based on large-scale data for
complex road conditions, including both structural and non-structural road types, remains difficult.
In this study, a robust method to automatically extract structural and non-structural road edges based
on a topological network of laser points between adjacent scan lines and auxiliary surfaces is proposed.
The extraction of road and curb points was achieved mainly from the roughness of the extracted surface,
without considering traditional thresholds (e.g., height jump, slope, and density). Five large-scale road
datasets, containing different types of road curbs and complex road scenes, were used to evaluate the
practicality, stability, and validity of the proposed method via qualitative and quantitative analyses.
Measured values of the correctness, completeness, and quality of extracted road edges were over
95.5%, 91.7%, and 90.9%, respectively. These results confirm that the proposed method can extract road
edges from large-scale MLS datasets without the need for auxiliary information on intensity, image,
or geographic data. The proposed method is effective regardless of whether the road width is fixed,
the road is regular, and the existence of pedestrians and vehicles. Most importantly, the proposed
method provides a valuable solution for road edge extraction that is useful for road authorities when
developing intelligent transportation systems, such as those required by self-driving vehicles.
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1. Introduction

Road edges are an indispensable part of road information [1,2] and play an important role
in the construction of surveying and mapping geographic information. Fine, accurate, efficient,
and fast automatic road edge extraction technology promotes the development of digital cities,
emergency commands, road maintenance, and 3-D maps, and allows for the rapid development of
new technologies, such as intelligent navigation, self-driving vehicles, and intelligent transportation.
The mobile laser scanning (MLS) system is a multi-platform, multi-mode, multi-sensor integrated
technology tool that comprises laser scanners, navigation systems, and high-resolution digital cameras.
Navigation systems include an inertial navigation system and a global navigation satellite system [3–12].
The MLS can rapidly, continuously, and reliably capture high-accuracy 3-D spatially referenced and
other information (e.g., intensity, color) from road infrastructure and surrounding road corridor
environments [9]. A number of previous studies have focused on extraction and recognition of various
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objects based on MLS data, such as roads [1,2,9], road markings [13–17], and others [10,11,18–21].
At present, the technology to extract road edges [22,23], which is key to acquiring road geometry
information and road objects [9], cannot simultaneously satisfy both structural (different road curb types)
and non-structural road types (such as that of a grass-soil road). Meanwhile, the existing methods rely
on traditional parameters to extract road edge information, such as height jump [24], point density [25],
and slope [26,27]. Thus, the extraction of accurate, efficient, and complete road edge information,
especially for complex structural and non-structural road conditions with severe occlusions, varying
curbstones, and large data processing requirements, remains a significant challenge [2,22].

In this study, we propose a robust method to extract structural and non-structural road edges
from MLS data with complex road conditions. The proposed method uses a topological network
of laser points placed between scan lines and the vertical auxiliary surface to extract accurate road
edges. The remainder of this paper is organized as follows: Related literature on road extraction from
laser points is discussed in Section 2. The key technology and algorithms are elucidated in Section 3;
specifically, the construction of the topological network is presented in Section 3.1, the recognition
of ground points is presented in Section 3.2, the detections of curb points are shown in Section 3.3,
and the extraction of road edges is shown in Section 3.4. Detailed experimental analysis is discussed in
Section 4, with conclusions presented in Section 5.

2. Previous Work

There are primarily two challenges for extracting road edges from MLS data. On the one hand,
high-density and high-accuracy point clouds, with many types of objects (e.g., vehicles, buildings,
trees, poles, and pedestrians) captured, contain holes and occlusions that increase the difficulty of
data extraction. On the other hand, roads in different regions have different road structures, which
has a great impact on the performance of the algorithm. Most research has focused on structural road
types, while only a few proposed methods are applicable for non-structural road types. Additionally,
structural roads have different types of curbstones and non-structural roads do not have curbstones on
both sides. Most non-structural roads have two sides that comprise grassland, wheat fields, gravel,
or some other non-defined transition. Previous methods have performed road edge extraction based
on laser points or intensity images generated from laser points.

For extraction directly from laser points, many studies have used horizontal plane characteristics
based on profile segmentation [28], a quasi-flat zone method with a region adjacency graph
representation [29], or an associative Markov network [30] to extract road surface information. These
methods are time-consuming since they search for adjacent points from a large number of unorganized
laser points. Subsequently, studies have used horizontal lines to extract road surface information.
For example, Manandhar and Shibasaki [31] used a height histogram analysis of each scan line.
This method; however, is only appropriate for flat roads with little variations in height. McElhinney
et al. [32] introduced a road edge segmentation algorithm based on fit lines of road cross-sections by
calculating the slope of the spline and finding the change and start points. Miraliakbari, et al. [24]
extracted road curbs of a structural road with smooth road surface and road curbstone based on height
differences and height histograms. Extraction results of these methods do not have a sufficiently
resolution [33]. Moreover, several factors, such as road width, slope, and density [25], were included
in the road edge extraction. Abuhadrous et al. [34] subsequently altered this method to consider
road width, slope, and curvature to construct the histogram. Yoon et al. [35] used road edge seeds to
extract the road surface from surrounding non-road surfaces. Road edges depend on the parameters
of slope [26,27], road width [31], intensity, and vehicle proximity [36]. Zhang [37] used filtering
technology to extract road points from elevation-based information with the extraction of curbstone
points based on vertical points monitored by a Hough transform. These methods are more suitable for
structural road types, results are poor for irregular roads with varying road widths.

To obtain high-resolution road information for irregular structural roads, Yang et al. [2] and Fang
and Yang [38] extracted three types of structural roads using extracted ground and curb points in three
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adjacent moving windows based on density, slope, and height jump. Each type of curb; however,
had corresponding models and thresholds and this method is only applicable to structural roads
with curbstones. Yadav et al. [39,40] filtered ground points based on height difference and detected
road surface points based on surface roughness, topology, and the density of laser points for the
specific structural road type. They then refined the final road edge based on a best-fit polynomial.
Yuan et al. [41] used the maximum entropy of fuzzy clusters to extract the straight lines that belong
to the road surface for each scan line based on the slope angle and location. Although this method
works well regardless of road edge regularity or type (structural and semi-structural), it also considers
location and slope angle. Yang et al. [42] proposed a 3-D local feature binary kernel descriptor method
to extract road information based on the shape and intensity information of the mobile laser points.
The binary kernel descriptor extracted road information by coding the shape and intensity of the 3-D
laser points in a random forest classifier with a combination of binarization components and Gaussian
kernel density estimations.

For other extraction methods based on intensity images, which are generated from laser data,
Husain et al. [1] semi-autumnally extracted road boundary lines based on intensity images generated
from laser points. Balado et al. [43] used planar segmentation based on a split and merge operation
method with geometric and topological information. However, this method is affected by the quality
of the input data and is unable to segment small elements. Zai et al. [44] extracted road edges based on
the super voxels and graph cuts method, in which super voxels choose smooth points as seeds and
assign points into facets centered on seeds based on geometric intensity and spatial distance attributes.
The final road edge is extracted based on the α-shape and graph cuts with energy minimization.
This method is supervised classification and requires specification of positive and negative backgrounds.
Anttoni et al. [26] introduced an image-processing algorithm to extract road lines and markings from
intensity images and curbstones from height images based on 3-D laser points. Although these methods
yielded promising results, they were only performed on simple structural road types, such as flat roads
with perpendicular curbstones. To extract non-structural road information, Kumar et al. [9] used a
combination of gradient vector flow and active contour models with a balloon parametric function to
extract road edges from a 2-D raster surface based on the hypothesis that attributes, such as reflectance,
elevation, and pulse width, can distinguish road information from curbstones and grass–soil edges.
However, extracted structures require further refinement.

Based on the above description, most methods rely on conventional parameters (i.e., slope,
point density, and road width), and few methods simultaneously focus on extracting structural and
non-structural road edges. In this study, we develop an automatic method to efficiently and accurately
extract structural and non-structural road edges from large-scale MLS data. For high-precision road
extraction, we introduce a topological network of point clouds, which was built by adopting adjacent
scan lines. This network was used to rapidly acquire road and curb points to extract high-resolution
road edges. Compared with previous methods, the method proposed in this study can handle
large-scale datasets to account for different structural and non-structural road types and complex road
conditions (e.g., median inlands and pedestrians) without dependence on conventional parameters
(i.e., slope, point density, and road width). Most thresholds in this method have identical stability and
are not influenced by traditional parameters, such as slope, road width, density, and elevation.

3. Key Technology and Algorithm

The framework for the proposed method is shown in Figure 1. The approach focuses on the
extraction of fine road edges from MLS data and is divided into four steps. First, the topological
network of laser points is constructed based on the scan line. Second, ground points are recognized
based on the topological network. Third, curb points are detected based on the topological network
and the auxiliary surface, after which candidate road edge points are identified. Finally, road edges
and refined road points are determined.
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3.1. Topological Network Construction

The key point of the proposed method is the construction of a topological network based on
MLS data. However, constructing a network based on unorganized 3D laser points is difficult and
time-consuming [2]. Ibrahim and Lichti [25] used the K-D tree data structure method to organize
laser points, and points selected as query points were used in the neighborhood search. In this study,
the topological network was defined as a new spatial retrieval structure between adjacent laser points,
constructed by using optimal neighbor points between adjacent scan lines. The purpose of constructing
a topological network is not only to effectively manage and organize the irregular distribution of laser
points, but also to extract road features used to simplify the extraction method, reduce extraction
thresholds, and eliminate interference from traditional parameters.

Accordingly, the extraction of scan lines [2,38,45] is the first step in constructing the network.
Given that MLS is based primarily on the work mode of linear scanning, the same object will show
similar spatial distribution characteristics in adjacent scan lines. Moreover, as almost all consecutive
laser points have a similar time interval or scan angle difference, the angle or time difference [2]
between consecutive points can be used to partition scan lines. In this study, the extraction of scan
lines was based on scan angle differences between consecutive laser points, as shown in Equation (1).
When the scan angle presents an interval jump [2], it can be determined that point Pi is the termination
point of the scan line and point Pi+1 is the starting point of the next scan line. Based on the scan angles
of consecutive laser points, we found that the scan angle range of laser points is located at [θmin, θmax],
where ∆θ represents the threshold of the angular difference, that is, ∆θ = 360

◦

− θmax + θmin.∣∣∣Pi+1(angle) − Pi(angle)

∣∣∣ > ∆θ (1)

If there is no scan angle for each laser point, the scan line could be extracted based on the GPS time
for each laser point. Similarly, when the difference of GPS time between adjacent points (Pi and Pi+1)
presents a time interval jump, it can be determined that point Pi is the termination point of the scan
line and point Pi+1 is the starting point of the next scan line.

Based on the extracted scan line, we defined the topological points as the optimal spatial neighbor
points between adjacent scan lines and the previous and next points of the same scan line, as shown in
Figure 2a. The topological network was constructed based on topological points (Figure 2b). Each point
has a maximum of four optimal neighbor points and is limited to a one-to-one topology in a single
direction. For each point, a matrix can be constructed based on its topological points, as shown in
Figure 2c.
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Given that each scan line has a small number of laser points, the optimal adjacent point for each
point can be easily found among the adjacent scan lines. This condition simplifies and accelerates
construction of the topological network. The subsequent extraction process can then be handled easily
based on this network.

3.2. Recognition of Ground Points

The complexity of road infrastructure and the surrounding road corridor environment—trees,
buildings, vehicles, and pedestrians—increases the difficulty in extracting ground and curb points.
In this study, ground points were extracted using a moving window combined with the topological
network. The moving window comprises the current laser point and its topological points. We used
the moving window by considering the current point and its topological points as an approximate
matrix (Figure 3) to achieve the extraction of ground points based on Equations (2) and (3). Equation
(2) was used to extract points located on the same planar (e.g., ground, pavement, flat roof, or top of a
car) based on the sum of elevation differences between the center point and its topological points in the
matrix. Equation (3) was used to extract points at a specified elevation. The specification of the matrix
can be 3 × 3 (Figure 3a), 5 × 5, or 7 × 7 (Figure 3c). To accelerate calculations, a 3 × 3 matrix is usually
selected. Ground points were subsequently calculated using Equations (2) and (3).

i<n2
−1∑

i=0

|Zi −Z0| ≤ ∆z1 (2)

|Z0 − zs| < ∆z2 (3)

where Z is the laser point elevation, the subscript 0 denotes the center point of the matrix, the subscript
i represents the topological point of the matrix center point, ∆z1 is related to the density of laser
points and road roughness, which has an initial value of 0.05 m related to the empirical value—if the
ground point density is large, the threshold value is small, otherwise it is larger (both the ground
roughness and the ∆z1 increase), zs is the elevation of the road point under the scan car based on scan
angle. n represents the size of the matrix, and ∆z2 is used to identify an elevation range to restrict the
distribution of ground points, which has an initial value of 0.2 m. This method is achieved based on
∆z1 and ∆z2 to extract ground points without using the traditional parameters of intensity, density,
and slope. The extracted ground points comprised mainly road points, including pavement points on
both sides of the road. Meanwhile, curb points were not included. At the same time, trees, buildings,
vehicles, and pedestrians were; therefore, effectively removed. For structural roads with different
types of curbstones, the next step was the detection of curb points. For non-structural roads without
curbstones, we identified ground boundary points as the location of the road edge, so that contour
points for the ground were considered candidate road edge points.
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3.3. Detection of Curb Points

For structural roads, given that the curb is located in the area between the road and green belts
(or pavement), the curb was treated as the road boundary. Compared with a previous method [2],
the extraction results of curb points were inevitably mixed with misclassified boundary points, such as
wheel points, which have similar geometric characteristics to curbs. To avoid this phenomenon,
we extracted curb points by using the moving window combined with the topological network based
on non-ground points and auxiliary surface based on ground points. The moving window was
constructed from laser and optimal spatial neighbor points, similar to the moving window described in
Section 3.2. The construction of an auxiliary surface was based on trajectory data, that is, the vertically
referenced surface. The auxiliary surface, as a reference surface, was used to extract curbstone points
and was perpendicular to the scanning line. This auxiliary surface was divided into many adjacent
planes by scan lines, as shown in Figure 4a. Each scan line corresponded to an auxiliary plane, as shown
in Figure 4b. Points a and b represent the points in the i and i+1 scan lines, respectively. Plane Si is the
auxiliary plane corresponding to the i scan line, expressed as AiX + BiY + Di = 0, where variables Ai,
Bi, and Di are parameters of the Si auxiliary plane.
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Based on the auxiliary surface and topological points, curb points were extracted using Equations
(4)–(6):

i<n2
−1∑

i=0

|di − d0| ≤ ∆d (4)

|Z0 − zs| < ∆z3 (5)
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where
di =

|Ai·Xi + Bi·Yi + Di|√
A2

i + B2
i

(6)

where di is the distance between the point of the moving window and its corresponding auxiliary plane;
subscript 0 denotes the center point of the moving window; and subscript i is the point corresponding
to the center of the square matrix. Equation 4 is similar to Equation (2), in that both identify laser
points in a 3 × 3 matrix located on the approximate vertical plane. Equation (5) is used to control the
extracted curb points within the specified elevation range. The value of ∆d is directly proportional
to the roughness and density of the extracted surface. The initial value of ∆d is 0.1 m based on the
empirical value. Although the threshold ∆d is directly related to the surface roughness, the point
density also affects the threshold to some extent. Under the same rough surface, the higher the point
density is, the smaller the threshold value is. The ∆z3 value is used to identify an elevation range with
which we restrict the distribution of curb points.

As shown in Equation 6, the extraction of curb points in this step depends primarily on two
thresholds (∆d and ∆z3), without using traditional parameters such as angle, slope, and density. Based
on the thresholds of ∆d and ∆z3, the misclassified boundary points (e.g., pedestrian and wheel bottom
points) can be effectively eliminated, because the surface roughness of wheel and pedestrian surfaces
are larger than the curb surface. Curb points extracted by the proposed method are illustrated in
Figure 5. Based on the extraction result of road and curb points, we identified candidate points for the
road edge, which are located at the intersection of the road and curb points.
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3.4. Extraction of Road Edges

In this study, we extracted road edges based on the detection of candidate road edge points.
For structural road types, we treated the intersections of road and curb points as road edge points,
whereas for non-structural road types, we treated the contour points in the ground points as the location
of the road edge. Non-edge points with similar geometric characteristics and similar surface roughness
to those of curb points (e.g., fence bottom sides within the road area) increased the discontinuous
phenomenon of road edge points. It; therefore, becomes necessary to extract road edges and refine the
road area. Road edge extraction was accomplished through the following three steps:

(1) Clustering. The K-nearest neighbor method [2] was used to divide candidate edge points into
clusters. At the same time, considering the similar geometrical properties between the adjacent
parts of a road boundary, we used the Euclidean distance between edge points and the auxiliary
surface as the distance metric to assist clustering. If points were located on the same road edge,
the distance difference (∆dist_p) of adjacent edge points was less than 0.1 m.
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(2) Merging. Clusters in the same road boundary were merged using two distance metrics:
The distance difference (∆dist_c) between the cluster and auxiliary surface, and the minimum
distance (∆dist_min) between two clusters. We used ∆dist_c to identify whether clusters were
located on the same road edge. If they were, and if ∆dist_min was within a selected value,
we merged the clusters.

(3) Tracing and optimization. Given the similar geometries for a given edge, we performed
optimization using the auto-check, auto-repair, and auto-fill methods. Auto-check was used
to identify and eliminate non-road edge points and clusters from candidate road edge points.
We identified non-road edge points with large distance differences between the point and auxiliary
surface compared with other candidate road edge points located in the same cluster and non-road
edge clusters with fewer points if the number within the cluster was less than N. Here, N is the
number threshold of laser points in a cluster.

Auto-repair was used to remove non-road edge points and clusters, connect these adjacent points
within a certain distance on the same road side, and fit the point–point connect line. We used auto-fill
to extract new road edge points with characteristics similar to those of the previously identified road
edge line to fill small data gaps based on the interpolation method and generate a complete road edge
line by judging the slope of both road edge sides of the hole. If the gap exceeds a certain distance based
on the actual road scene, the reference value is 3 m, it is considered as a large gap, making it difficult to
meet the requirements by relying on adjacent road edges. Due to the overall consistency of road edge
line trends on both sides, large gaps, mainly located on the other side road edge, tend to fill the gaps
based on the interpolation method. Finally, the longest line was selected as the final boundary line
on the same side of the road to eliminate fences and other boundaries. The extraction results for a
grass–soil road are shown in Figure 6. The extraction results for road edges along a structural road are
illustrated in Figure 7.
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and B in (a), respectively; and (b) and (d) show the road edge points extracted based on our proposed
method; (c) and (e) are the road edge of (b) and (c), respectively.

4. Experiments and Analysis

4.1. Experimental Dataset

Five representative experimental datasets of varying laser point densities and road conditions
were selected to demonstrate the feasibility, practicality, and efficiency of the proposed method. These
datasets were acquired using the SSW-IV [46,47] developed by the Chinese Academy of Surveying and
Mapping. This system can be equipped with different types of laser scanners, such as the Chinese RTW
or Riegl laser scanners. For the orientation of laser scanners in SSW-IV, the forward direction is defined
as the X direction, vertical forward X direction as the Y direction, and vertical upward is the Z direction,
it satisfies the right-hand criterion of coordinate system. For the Riegl laser scanner, we used the
VUX-1HA mode to collect data with a scan speed of 250 scans/second, a survey-grade accuracy of 5 mm,
and a measurement rate of up to 1,000,000 meas./sec with a “full circle” 360◦ field-of-view that allows
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unrestricted data acquisition. For the RTW laser scanner, the scan speed is up to 100 scans/second, the
survey-grade accuracy is less than 10 mm, the measurement rate is up to 500,000 meas./sec with a “full
circle” 360◦ field-of-view that allows unrestricted data acquisition. The experimental datasets include
the following details:

(1) The dataset shown in Figure 8a originates from a complex suburban area located in Tianjin, China.
We performed data acquisition using an SSW-IV with the domestic RTW laser scanner. The data
consist of approximately 206 million laser points with a total length of 4.26 km. The mean laser
point density is 694 p/m2. The scene has three types of curbstones (vertical, inclined, and arc
curbs) as road edges. This dataset has a complex road environment with many occlusions and
road entrances (occlusions and road entrances are challenges for road edge extraction).

(2) The dataset in Figure 8b shows an urban residential area in Beijing, China, characterized by
a complex and occlusion-rich road environment that includes many cars, trees, fences, and
pedestrians. The presence of these objects increases the difficulty of road extraction. This dataset
was also acquired using the SSW-IV with the Riegl laser scanner. The mean laser point density is
7416 p/m2 and the number of laser points in the scene total to 164 million with a length of 1.9 km.

(3) Figure 8c shows a non-structural road dataset from a rural area of Lianjiang, China, which was
acquired using the SSW-IV with a domestic RTW laser scanner. The mean laser point density is
1717 p/m2 and the number of laser points in the scene total 36 million with a length of 1.07 km.

(4) The datasets in Figure 8d,e show highway ramps for structural and non-structural road types
in Taian, China, respectively, and were acquired using the SSW-IV with a Riegl laser scanner.
The mean laser point density is 867 p/m2. Laser points in Figure 8d total 54 million with a length
of 4.08 km and those in Figure 8e total 34 million with a length of 2.8 km.

Figure 8. Experimental datasets of a suburban area from Tianjin (a), an urban area from Beijing (b),
a rural area from Lianjiang (c), and structural (d) and non-structural (e) highway ramps in Taian.
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4.2. Means of Validation

Road edges extracted by the proposed method were compared with manually-digitized road
edges by calculating their correctness (Equation (7)), completeness (Equation (8)), and quality (Equation
(9)) [2,9].

correctness =

∑k−1
i=0 ET∑k−1

i=0 ET +
∑p−1

i=0 EF
(7)

completeness =

∑k−1
i=0 ET∑k−1

i=0 ET +
∑m−1

i=0 EL
(8)

quality =

∑k−1
i=0 ET∑k−1

i=0 ET +
∑m−1

i=0 EL +
∑p−1

i=0 EF
(9)

where ET is the length of the extracted road matching the reference road edges; EF is the length
of the extracted false positive road; EL is the length of the non-extracted road; k is the number of
the automated true road edges; p is the number of the extracted false positive roads; and m is the
number of non-extracted roads. A buffer zone [9] was introduced to identify whether extracted and
manually-digitized road edges were coincidental. The buffer zone used the manually-digitized road
edge as the centerline to determine left and right buffer edges. If an extraction result was located at the
buffer zone, the road edge was then regarded as true; if not, it was then false.

4.3. Results and Discussion

To validate the proposed method, extraction results for the road edge were quantified using the
parameters shown in Table 1. During the optimum parameter selection process, three factors were
considered: 1) Density; 2) the road structure type (i.e., the parameter for parameters with different
road structures is different); and 3) the actual road scene, such as vehicle occlusion. The proposed
method was calculated using a computer with 8 GB of RAM and an intel(R) Core (TM)i7-8550U CPU
@1.80GHz running the VS2010 C/C++ language.

Table 1. Parameters used for calculation by the proposed method.

Parameter
Value

Suburban Data Urban Data Rural Area Ramp (d) Ramp (e)

∆θ (◦) 100 100 100 100 100
∆z1 (m) 0.05 0.05 0.05 0.05 0.05
∆z2 (m) 0.2 0.2 0.2 1.0 1.0

∆d (m)
0.25 (Vertical curb)

0.10.15 (Inclined curb)
0.3 (Arc curb)

∆z3(m) 0.1 0.1

∆dist_p (m) 0.1 0.1 0.1 0.1 0.1
∆dist_c (m) 0.3 0.3 0.3 0.3 0.3
∆dist_min 2 2 2 2 2

N 10 20 15 15 15
time(min) 25.12 19.87 4.52 6.81 3.67

Extraction of the scan line is based on differences in the angles of laser points. The scan angle
range of each scan line for these five datasets was 60◦–320◦, the threshold of ∆θ is 100◦. The extraction
result of scan lines is shown in Figure 9. The topological network was constructed based on scan lines.

In the extraction process, the extraction of ground points involves two critical thresholds (∆z1 and
∆z2) based on the moving window (3 × 3). Similarly, extraction of road curb points also has two critical
thresholds (∆d and ∆z3) based on the moving window. Emphasis is placed on the critical thresholds
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in the following discussion. The detailed relationships between the thresholds and the extraction
results are shown in Tables 2 and 3, using the arc curb identified by box A in Figure 8a as an example.
To further investigate the relationship between thresholds (∆z1 and ∆z2) and extracted ground results,
a height amplification factor of 10 was used to amplify the details of the extraction results (Table 2).Sensors 2019, 19, x FOR PEER REVIEW 12 of 22 
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Table 3. Relationship between the extraction result and thresholds for curb points.

∆d/∆z3 Extraction Results Curb Points Only

0.25/0.2
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As shown in Table 2, when Δz2 remains constant, Δz1 continues to increase. This increases the 
density of the extracted ground points, and the range of ground points grows on both sides of the 
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result contains uneven road surface points. These trends occur because the threshold of Δz1 is related 
to the roughness of the extracted surface, and Δz2 defines the maximum elevation plane to restrict 
the extraction result. The relationship between the extraction results and thresholds for curb points 
is shown in Table 3.  

The threshold of Δd has a function similar to the threshold Δz1, and Δz3 is similar to the ground 
extraction threshold Δz2. The parameter Δd is related to the roughness of the extracted curbstone 
surface, and Δz3 is used to define the elevation range to restrict the extraction of curb points. The 
extraction result of the curb points for the structural road type when Δd and Δz3 are 0.3 and 0.1, 
respectively, is shown in Figure 10, which is another dataset with many cars and curved curbs. More 
specifically, the extraction results of Samples A, B, C, and D in Figure 10a are shown in Figures 10b–e, 
respectively. According to Figure 10, there were five road entrances and occlusions (mainly due to 
moving cars), which is challenging for road edge extraction. Moreover, the road corners were the 
main components of the region. Based on our proposed method, we nonetheless obtained better 
experimental results. 
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with uneven road surface points having been excluded. When Δz2 is 0.2 and Δz1 is 0.1, the extraction 
result contains uneven road surface points. These trends occur because the threshold of Δz1 is related 
to the roughness of the extracted surface, and Δz2 defines the maximum elevation plane to restrict 
the extraction result. The relationship between the extraction results and thresholds for curb points 
is shown in Table 3.  

The threshold of Δd has a function similar to the threshold Δz1, and Δz3 is similar to the ground 
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respectively, is shown in Figure 10, which is another dataset with many cars and curved curbs. More 
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To further verify the extraction results for structured roads, three types of road curbs and three
regions within the experimental suburban area were selected. These areas, each of which has a unique
type of road curve, are, respectively, denoted by boxes D, E, and F in Figure 8a. Extraction results for
each of the three types of road curbstones are shown in Table 4 for each region. Results display ground
and curb points, road edges, the overlap map, and the local effects. The data suggest that ground
points, curb points, and road edges were well extracted.

Table 4. Extraction results for three different types of road curbs.
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Curb type Inclined Curb Vertical Curb Arc Curb
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For the non-structural road, we successfully extracted ground points because the roughness of the
road surface was significantly different to that of the roadsides. Extraction results for a non-structural
curb are illustrated in Figure 11 and marked by box C in Figure 8c. The extraction results for the ground
points are shown in Figure 11a, and the road edges are shown in Figure 11b. The results confirm that
the method successfully extracted ground points and the road edge for a non-structural road type.
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The road edges extracted from these experimental datasets based on the proposed method are
shown in Figure 12. Thresholds in the process of road edge extraction are shown in Table 1 for all
experimental datasets. Figure 12a shows the extraction results for suburban roads using the proposed
method. Non-extracted edges occur at locations with large turn angles. Figure 12b presents the
extraction results from the urban dataset, and Figure 12c shows extraction results for the road edge in a
rural non-structural grass–soil road. Figure 12d,e shows the extraction results for the road edge of the
highway ramp.

Sensors 2019, 19, x FOR PEER REVIEW 16 of 22 

 

(b) 

Figure 11. Extraction results for ground and curb points along a grass-soil road type. (a) Road edge 
points for grass-soil road; (b) Road edge for grass-soil road. 

The road edges extracted from these experimental datasets based on the proposed method are 
shown in Figure 12. Thresholds in the process of road edge extraction are shown in Table 1 for all 
experimental datasets. Figure 12a shows the extraction results for suburban roads using the proposed 
method. Non-extracted edges occur at locations with large turn angles. Figure 12b presents the 
extraction results from the urban dataset, and Figure 12c shows extraction results for the road edge 
in a rural non-structural grass–soil road. Figures 12d,e shows the extraction results for the road edge 
of the highway ramp. 

            
               (a) Suburban data           (b) Urban data          (c) Grass-soil data 

      
                   (d) Highway ramp                        (e) Highway ramp  

Figure 12. Extraction results for road edges; non-extracted road edges are indicated in red, and 
extracted road edges are indicated in blue. 

① 
② 

③ 

④ 

⑤ 

⑥ 

⑦ ⑧ 

Figure 12. Extraction results for road edges; non-extracted road edges are indicated in red, and extracted
road edges are indicated in blue.



Sensors 2019, 19, 5030 17 of 22

The proposed road edge extraction method successfully extracted edges for both sides of the
road for all datasets. The completeness, correctness, and quality of results were computed using
Equations (7)–(9), respectively, to validate the road boundary extraction results. The assessment results
are based on the buffer zone of the manually defined road edge (i.e., a 0.1 m buffer width). The detailed
completeness, correctness, and quality results, together with related thresholds for the larger-scale
experimental dataset (Figure 12), are listed in Table 5. Among the results, road 1–4, 7, and 8 show the
results of each side of the road. Road 5 and 6 not only show the result of each edge, but also contain
the edge result of the road median. Ramp (d) and (e) show the unified evaluation of the whole road.

Table 5. Assessment results for suburban, urban, and rural areas.

Data Road Correctness Completeness Quality

Suburban

1O Left 0.993 0.967 0.960
Right 0.993 0.961 0.955

2O Left 0.977 0.941 0.920
Right 0.994 0.955 0.949

3O Up 0.983 0.924 0.909
Down 0.995 0.926 0.921

4O Up 0.991 0.959 0.951
Down 0.990 0.947 0.938

5O
Left 0.984 0.941 0.927

Middle 0.986 0.943 0.931
Right 0.980 0.937 0.919

6O
Up 0.984 0.917 0.904

Middle 0.985 0.930 0.916
Down 0.979 0.974 0.955

Urban 7O Left 1 0.965 0.965
Right 0.978 0.982 0.961

Rural 8O Left 0.971 1 0.965
Right 0.955 0.998 0.953

Ramp (d) 0.978 0.962 0.941

Ramp (e) 0.981 0.977 0.959

Assessment results based on Table 5 show that the correctness of the extraction results for
the structural suburban and urban road data using the proposed method were greater than 97.7%,
completeness results were greater than 91.7%, and the quality measure values were greater than 90.9%.
Correctness for the non-structural rural road was greater than 95.5%, completeness was greater than
96.2%, and the quality measure value was greater than 94.1%.

A comparison of the assessment results with the previously developed methods [2] based on
the validation method described previously (see Section 4.2) is listed in Table 6. For the structural
road data (i.e., suburban and urban data), the correctness, completeness, and quality of the assessment
results were higher than those obtained using the previous method [2], except for the completeness
of suburban data. For the urban data, in particular, which had complex road conditions (i.e., many
obstructions from cars, pedestrians, and fences), the assessment results based on our proposed method
were much better than those obtained by the previous method [2]. Extracted road edges, denoted by
box B in Figure 8b, are illustrated in Figure 13. Road points acquired within the road area are based
on the extracted road edges. As shown in Figure 13b, road edges were still successfully extracted by
the proposed method despite the influence of cars, pedestrians, or other objects. The entire road edge
was easily acquired based on similar geometric road boundaries. For non-structural roads without
a curb (i.e., rural data), our proposed method also achieved high assessment results for correctness,
completeness, and quality values of 96.3%, 99.9%, and 95.9%, respectively. However, the previous



Sensors 2019, 19, 5030 18 of 22

method [2] is not suitable for road edge extraction on non-structural roads because it is based on the
thresholds of height jump, slope, and density to identify road curbstones. In contrast, our proposed
method is mainly based on the roughness of the extracted surface.

Table 6. Assessment results compared with those from the previous method [2].

Dataset Method
Assessment

Correctness Completeness Quality

Suburban
Proposed method 0.987 0.944 0.933

Yang et al. [2] 0.981 0.946 0.929

Urban
Proposed method 0.989 0.974 0.963

Yang et al. [2] 0.969 0.941 0.922

Rural
Proposed method 0.963 0.999 0.959

Yang et al. [2] — — —

Ramp (d) Proposed method 0.978 0.962 0.941

Yang et al. [2] — — —

Ramp (e) Proposed method 0.981 0.977 0.959

Yang et al. [2] — — —

For our proposed method, correctness values were high because road edges were acquired from
curb points located at intersections with ground points for the structural data and from the ground
boundary points for non-structural data. The calculation of completeness and quality was related
to the non-extracted section, which was primarily concentrated on the larger part of the curved
road, such as at road turns and residential entrances. This can be attributed to the fact that the
extraction of curb points was not sensitive to road curve. As mentioned in Section 3.3, the road curve
affected the extraction result. However, for Figure 10, which shows many road curves, road entrances,
and occlusions, the extraction result is better. This is because the region depicted in Figure 10 has a high
density. Subsequently, for the road turns, we could achieve high-resolution extraction results. Hence,
the density and road curves were closely related to the extraction results. The curbstone points cannot
be successfully extracted from road curves with lower density, which leads to failure to extract road
edges. If the density increases, the accuracy of extraction results in corners will increase accordingly.

There are two main reasons for road corner extraction failure. The first is the influence of density
(i.e., the higher the density, the more the extraction completeness increases). The second is the
occurrence of data holes caused by vehicle occlusion during data collection. Point cloud density is
influenced by several parameters, such as point frequency, line frequency, and speed, among which the
point and line frequencies are influenced by the specific type of equipment, and the speed is a subjective
factor that has great influence on the point density during the data acquisition process. If the vehicle
slows down, the laser point density increases and the point density decreases. Therefore, to improve
the accuracy of corner extraction, the following two points in the data acquisition process require
strict accordance with the precision requirements of the actual engineering: 1) Peak periods during
mornings and evenings should be avoided, which ensure the absence of occlusion via vehicles and
pedestrians; and 2) for road curves, the speed should be appropriately reduced to ensure a relatively
high point density at corners, which help enhance the completeness of the road boundary extraction.

In summary, the proposed method has several advantages. First, this method can be used not
only in the accurate extraction of large-scale structural road edges, but also large-scale non-structural
roads. Second, the method is implemented based on surface roughness without directly computing
attributes such as slope, angle, and density. Moreover, it is effective regardless of whether the road
width is fixed, the road is regular, or pedestrians and vehicles are present. Fourth, the correctness,
completeness, and quality values associated with the extraction results are high and exceed those
of previous methods. The assessment results are highly consistent across varying road conditions
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(i.e., complex road conditions with cars, trees, fences, pedestrians, and different curb types), which
demonstrates the stability of our method. However, this method is not sensitive to road bending
degree, leading to poor road edge assessment results when the road has a relatively sharp bend. At the
same time, based on the extraction results of road edges, the road centerline, road width, cross slope,
and longitudinal slope can easily be achieved.
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5. Discussion

This study proposed a robust method to automatically extract structural and non-structural road
edges from MLS data. The road edges, as well as road and curb points, were successfully extracted
based on the construction of a topological network of laser points and auxiliary surfaces without using
height jump, density, or slope. The successful extraction of road edges from large-scale experimental
datasets verifies the feasibility, stability, and practicality of the proposed method. Quantitative analyses
of the results obtained from these structural and non-structural datasets indicate that the correctness,
completeness, and quality measure values exceed 95.5%, 91.7%, and 90.9%, respectively.

This method can be used not only to extract large-scale structural road data with severe pedestrian
or vehicle occlusion, but also to extract large-scale road edges for non-structured roads (e.g., grass–soil
road types). At present, our proposed method is being ported and tested on a private cloud platform
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to accelerate computing for improved efficiency. Our future research will focus on how to enhance
the overall applicability of the proposed approach, particularly for special road conditions with large
bending degrees. Additionally, these results are based on measuring various geometries with one type
of laser scanner; future work would benefit from testing other sensors.
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