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Abstract: Visual inspections of nuclear power plant (NPP) reactors are important for understanding
current NPP conditions. Unfortunately, the existing visual inspection methods only provide limited
two-dimensional (2D) information due to a loss of depth information, which can lead to errors
identifying defects. However, the high cost of developing new equipment can be avoided by using
advanced data processing technology with existing equipment. In this study, a three-dimensional (3D)
photometric stereo (PS) reconstruction technique is introduced to recover the lost depth information
in NPP images. The system uses conventional inspection equipment, equipped with a camera and
four light-emitting diodes (LEDs). The 3D data of the object surface are obtained by capturing images
under multiple light sources oriented in different directions. The proposed method estimates the light
directions and intensities for various image pixels in order to reduce the limitation of light calibration,
which results in improved performance. This novel technique is employed to test specimens with
various defects under laboratory conditions, revealing promising results. This study provides a new
visual inspection method for NPP reactors.
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1. Introduction

The reactor pressure vessel (RPV) of a nuclear power plant (NPP) requires periodic inspection to
ascertain current conditions. Any defects on the internal surfaces may undermine the safe operation of
the NPP. Moreover, exposure to irradiation and corrosive coolants, or damage caused by manufacturing
and outage activities, could accelerate the growth of these defects [1]. Thus, inspection systems and
implementation practices must be capable of detecting small flaws, to prevent them from growing to a
size that could compromise the leak tightness of the pressure boundary.

Visual inspection is the main method for detecting defects, structural integrity issues, or leakage
traces on the surface of key components in an NPP. Owing to its advantages, the demand for more
advanced visual inspection techniques is increasing. The U.S. Nuclear Regulatory Commission (NRC)
has approved the use of high-resolution cameras for inspecting specific areas of key NPP components
instead of ultrasonic examination [2]. In addition, machine vision technology has been applied to
measure fuel assembly deformation [3].

Visual inspection systems capture images of the surfaces of objects by using an image sensor,
a charge-coupled device (CCD), or a complementary metal-oxide semiconductor (CMOS), with
appropriate optical tools and lighting conditions. The visual module is typically composed of light
sources and image sensing units, and completes the inspection with the aid of automated tools.
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Companies such as AREVA and CYBERIA in France, DEKRA in Germany, Ahlberg in Sweden,
DIAKNOT in Russia, and Westinghouse in the United States have been actively developing such
devices. The majority of inspection systems are equipped with high-definition cameras, include a
choice of light sources, from halogen to light-emitting diode (LED) lights, and boast anti-irradiation and
waterproof properties. The types of automated tools are diverse. Some products have data processing
functions, which are becoming increasingly popular. For example, AREVA’s latest RPV device, SUSI
420 HD, is equipped with a high-definition camera and four adjustable high-power LEDs, but the
sizing of indications is limited to the length measurement [4].

Existing NPP visual inspection methods still use two-dimensional (2D) images to identify defects.
Occasionally, the lack of three-dimensional (3D) observations makes it difficult to evaluate certain
observations—specifically, the potential size of the defect. Some inspection tasks can only be performed
using 3D analysis methods, because surface defects may only appear with changes in the shape of
the surface [5]. Therefore, visual inspections can be improved by detecting changes in the 3D surface.
Three-dimensional shape reconstruction methods based on visible light include structured light and
stereo vision technology. For example, the laser 3D scanner of the Newton Laboratory can map NPP
fuels and check the size of defects [6]. Karl Storz laser technology, called MULTIPOINT, is a 3D
laser system with 49 laser points that enables cooperation between the camera and the software to
detect the surface structure of the subject [7]. However, few of these devices can operate individually
without additional overheads. Therefore, to save time and money, it is preferable to use conventional
devices to extract and analyze 3D data for defects. One such method achieves 3D reconstruction of the
inner surfaces of boreholes or cavities using conventional endoscopy equipment [5]. However, this
method does not provide system calibration results or evaluation criteria of the results; thus, further
improvement is required. Furthermore, the 3D visualization function obtained through the shape from
motion (SFM) method can be used to inspect the advanced, air-cooled core in an NPP, but a lack of
surface features limits the application of this method [8].

The photometric stereo (PS) technique recovers 3D shapes from multiple images of the same
object, taken under different illumination conditions. As a result of the pioneering work of Woodham,
it has been widely applied to 3D surface reconstruction [9]. This technique features two advantages:
low hardware costs and low computation costs. In the field of industrial inspection, PS has improved
the detection of very small surface defects [10,11]. The Lambertian model assumption is commonly
used where albedo is assumed to be constant. Although this does not necessarily correspond to the
actual conditions, there are approaches available to realize the normal calculations [12–14]. However,
for models with non-Lambertian reflection properties, highlight and shadow processing requires
additional images [13].

The assumption of the light source and the demand for extensive calibration procedures in
conventional PS limit its applicability [15]. Some previous studies have established illumination models
that conform to actual conditions, such as near-field light models [16–19]. Light calibration, which
aims to estimate the light direction and intensity, often requires a specific equipment or a dedicated
process [20]. However, equipment such as precise calibration spheres or positioning devices are
unlikely to be available in actual applications. Some studies have proposed fully uncalibrated or
semi-calibrated PS methods. A fully uncalibrated, near-light PS method achieves the calculation of
the light positions, light intensities, normal, depth, and albedo without making any assumptions
about the geometry, lights, or reflectance of the scene [21]. Regarding semi-calibrated PS, various
approaches achieve light intensity calibration [22]. However, additional information is required to solve
the high-dimensional ambiguity, and more importantly, at least 10 images are typically required [15].
To apply PS to an NPP environment, a fully automatic calibration method should be designed.

This study employs the PS method with a conventional NPP visual inspection device to
reconstruct the 3D shapes of defects from visual inspection images. Additional contributions include
the development of an auto-calibrated, near-field light calibration method that can easily and accurately
calibrate the light source to meet the demands of practical applications. Moreover, depth information
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can be extracted from the captured images, which enables better and more reliable visualization of
surface defects.

The structure of this paper is as follows: The PS formulation is briefly introduced in Section 2.
The algorithm details for extracting 3D information from captured images are described in Section 3,
as well as the method for estimating light direction and intensity. The experimental setup and results
are discussed in Section 4, and the conclusions are presented in Section 5.

2. Photometric Stereo Technique

PS techniques use multiple images taken from the same viewpoint, but under illumination from
different directions, in order to recover the surface orientation from a known combination of reflectance
and lighting values. The depth and shape of the surface can be obtained via the reconstruction
algorithms. The objects in the scene are Lambertian, and the illumination is a distant point light; the
measured image intensity at a point P(x, y, z) can be written as:

I = ρ〈l, n〉E (1)

where ρ is the albedo at P; l is the light direction; n is the surface normal; and E is the light irradiance.
The image intensity I can be measured per-pixel.

At least three independent light sources are required.
Suppose we have M ≥ 3 images under varying light directions, which we denote as direction

vectors l1, . . . .., lM ∈ R3. By assuming equal light irradiance; i.e., ρE = ρE1 = · · · · · · = ρEM, we can
estimate the normal vector n on a surface point P by solving the pseudo-inverse matrix of L:

n =

(
LTL

)−1
LTI∥∥∥∥(LTL)−1LTI

∥∥∥∥ (2)

where L =


l1
...

lM

, I = [I1, · · · , IM]T.

The surface normal can be computed using Equations (1) and (2). Then, the recovery of the surface
from the computed normal can be achieved using algorithms, including optimization iterative methods
and pyramid reconstruction algorithms. The entire procedure of PS-based 3D shape reconstruction
includes: calibration, surface normal computation, and shape reconstruction from the normal.

3. Three-Dimensional Shape Reconstruction of Defects

3.1. Existing Two-Dimensional Image Capture and Data Analysis Method

The RPV generally consists of a cylindrical part, a spherical part, and nozzles. Although its size
varies, the diameter of the cylinder is always approximately 4000 mm. An examination of the entire
internal surface of the reactors is required to detect surface disorders, deformation, or other important
defects; i.e., (1) mechanical defects, such as scratches or impact damages caused by foreign bodies;
(2) metallurgical defects, such as cracks or arc strikes; and (3) corrosion pitting or deposits. Moreover,
the defects may need to be evaluated both qualitatively and quantitatively.

During the inspection process, tools are used to position the cameras close to the different areas
requiring inspection. Scanning is performed using tools to record videos of the internal surface, using
cameras facing the wall within a field limited to the zone under examination. Technicians observe the
video and images throughout the entire process to identify defects. If an abnormality or suspicious
observation is recorded, the movement of the tool can be paused to allow more detailed information to
be observed manually.



Sensors 2019, 19, 4970 4 of 12

Because of its beneficial features, a pan/tilt/zoom (PTZ) setup, which normally consists of a camera,
a number of surrounding light sources, lasers (optional), and a built-in pan/tilt unit, has been widely
used as the visual module. The pan and tilt functions allow adjustment of the camera position to
capture better images. Data analysis is performed by inspectors; therefore, suitable frames are required
for observation and evaluation, along with other information recorded during the inspection, to make
a qualified evaluation [23]. As the existing analysis method is based on 2D images, it is often difficult
to evaluate defects due to a lack of depth information; thus, some inspection tasks cannot be solved
using 2D analysis methods.

3.2. Photometric Stereo System

PTZ is one type of module used for NPP visual inspection. In our configuration, it is equipped
with four 30 W LED lights placed around a CMOS camera with 1920 × 1080 picture elements, attached
with an F1.6~F3.0 lens, as shown in Figure 1. The LEDs exhibit approximately the same performance
in terms of the radiant flux value and emitting angle. In the PTZ setup, all LED lamps are fixed to
make their optical axes parallel to the viewing angle of the camera. Each LED can be dimmed in
increments from 0% to 100%. In addition, two laser generators display reference points for length
measurement; the distance between them is calibrated prior to the experiment. Practical inspections
must be conducted at a viewing angle as perpendicular to the target surface as possible. As shown in
Figure 2, Xc, Yc, and Zc are the three axes of the camera coordinate system, which also represent the
global coordinate system in our method.

Figure 1. Pan/tilt/zoom (PTZ) image capture setup and light-emitting diode (LED) light layout
dimensions (mm).

Figure 2. Diagram of the photometric stereo system.

The first stage of the shape reconstruction algorithm—i.e., the calibration of camera
parameters—begins by calibrating the camera intrinsic parameters using Toolbox in Matlab. Then,
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images are captured using the camera with the laser points turned on. Given these images, the
following steps are taken:

(1) Estimate the distance between the PTZ (camera plane) and the target surface by using laser points
and prior knowledge;

(2) Estimate l and E for each pixel by determining the relationship between each image pixel and its
corresponding point on the target surface, using the near-field light model;

(3) Compute the normal by resolving the irradiance equations;
(4) Compute the final 3D surface shape from the normal field via an optimization algorithm.

The PS formulation for our configuration is briefly introduced in Section 2, and details of the
algorithm are provided in Sections 3.3 and 3.4.

3.3. Estimation of Light Direction and Intensity

Previous studies typically assume that the light sources are infinitely far from the surface, and
generally adopt the parallel ray model. However, our system uses LEDs, which are very close to the
target surface; thus, the lighting direction and intensity differ among various image areas. Moreover,
the camera and lights are not fixed during an actual inspection. As previous light calibration methods
are neither practical nor accessible for our application, it is necessary to design a fully automatic
calibration method to estimate the light direction and intensity at each point.

In our configuration, the viewing angle is as perpendicular to the target surface as possible.
In addition, the target surface is approximated as a planar surface that is assumed to be parallel to the
image plane. Furthermore, the LED chip center and camera lens lie on a single plane, which is also
parallel to the image plane. Accordingly, there are three parallel planes in the configuration, as shown
in Figure 2.

The lighting direction for each point is decided by the position of the light Lp and the point P on the
target surface. Supposing that the camera plane is the horizontal plane in the coordinate system, Lp can
be determined by the PTZ structure. To determine the coordinate of point, the mapping relationship
between image pixels and surface points must be determined, as well as the distance between the
camera plane and the target plane. Thus, a two-stage process is designed:

(1) The distance z between the camera plane and the target plane is determined via using lasers;
(2) The orthographic projection-based method is used to determine how a point on the target surface

is related to a pixel on the image plane.

Figure 2 shows that the viewing angle is aligned with the negative z-axis of the coordinate system,
which simplifies the geometry calculation. The laser generators are fixed on PTZ, and their relative
positions are known. Thus, P1(x1, y1, z) and P2(x2, y2, z), the intersections of the laser optical axis and
the target plane, are also fixed. Their corresponding image pixels are I1

(
x′1, y′1, z′

)
and I2

(
x′2, y′2, z′

)
,

respectively, as shown in Figure 2.
The assumption of orthographic projection has typically been used in the conventional PS,

although the perspective projection has been demonstrated to be more realistic [24]. However, when
the change in scene depth is small relative to the distance from the scene to the camera, an orthographic
projection can be used instead of a perspective projection [25]. In our method, the viewing angle is
kept as perpendicular to the target surface as possible, and the distance between the target surface and
the camera is considerably greater than the depth of the defects. Therefore, it is reasonable to apply an
orthographic projection model without resulting in a large deviation.

The image magnification can be expressed as follows:

m =
‖ P1 − P2 ‖

‖ I1 − I2 ‖
=

f
z

(3)
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where m is the imaging magnification, f is the camera focal length, ‖�‖ denotes the length of a vector,
and z is the distance between the target surface and the lens aperture, which is approximately equal to
the distance between the surface plane and the camera plane. We denote z0 as the calibrated distance
of reference I1

(
x1, y1, z

)
and I2

(
x2, y2, z

)
; z can then be calculated using

z =

[(
x2 − x1

)2
+

(
y2 − y1

)2
]1/2

[(
x′2 − x′1

)2
+

(
y′2 − y′1

)2
]1/2

z0. (4)

Laser points with different distances between the camera plane and the target plane are shown in
Figure 3. Thus, the next step is to define how a point on the target surface is related to a pixel on the
image plane.

Figure 3. Laser points with different distances between the camera plane and the target plane: (a) 200
mm and (b) 350 mm.

As illustrated in Figure 2, there is a clear relationship between image pixels and their corresponding
points. For any image pixel I

(
x′i , y′i , z′

)
, the position of its corresponding point in the target surface

can be defined as P
(
kx′i , ky′i , z

)
, where k = 1/m. Therefore, the coordinate of P is decided by k, which

can be determined by the laser points and z. The position of the LED,LP
(
xLED, yLED, 0

)
, can also

be estimated from prior knowledge. Therefore, the light direction l, or
→

LP, can be expressed as(
kx′i − xLED, ky′i − yLED, z

)
.

For LED lights, the irradiance (E) on the target surface can be expressed as follows:

E =
ILED(θ) cos(θ)

r2 (5)

where θ is the emitting angle of the LED, ILED denotes the radiant intensity of the LED, and r is the
distance from the light source to the target point [17]. By transforming the parameters, E can also be
calculated from Equation (5). Then, l and E can be determined for various image pixels I

(
x′i , y′i

)
.

The goal of this step is to determine the lighting direction and intensity for each image pixel,
which will improve the accuracy of the surface normal calculation, as well as the final 3D data quality.

3.4. Three-Dimensional Reconstruction using Photometric Stereo Technique

The PS procedure, assuming a Lambertian reflectance model, is applied for 3D shape reconstruction.
The normal n is determined by using at least three images with various lighting conditions. In this
study, they are calculated using the illustrated lighting direction and intensity estimation methods.
Then, the image intensity follows inverse squared law, as

I = ρ
(n× l)

r2 = ρ
n×

(
P− Lp

)
‖ P− Lp ‖3/2

(6)

where r is the distance between the light source and the surface point [17].
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The normal, n, can be calculated using at least three equations; once it is solved, the surface shape
can be reconstructed via the height estimation by a global iterative method [26,27].

Suppose each image has W rows that are indexed by j, and has H columns that are indexed by i.
The pixel is therefore denoted as ( j, i), assuming its depth is z( j, i), and the gradients in the x and y
directions can be expressed as

p = ∂z( j, i)/∂i, q = ∂z( j, i)/∂ j (7)

Then,
n/‖n‖ = (p, q, −1)T. (8)

The image size is W ×H, so that the discrimination function in the iterative method is

E =
1

W ×H

x (
∂z( j, i)
∂i

− p( j, i)
)2

+

(
∂z( j, i)
∂ j

− q( j, i)
)2

did j. (9)

4. Experimental Results and Discussion

Existing NPP visual inspection methods are not highly reliable for identifying small defects.
This could be improved by using a camera with a higher resolution, which would produce a higher
contrast between the defect and the metal surface [1]. However, it can also be difficult to discriminate
between true and false defects; therefore, we tested specimens exhibiting small, hard to discern defects.

For the experiments, we used PTZ, introduced in Section 3.2. The layout dimensions of the lens
and lights and the image capture setup is shown in Figure 1. With a beam fixing the PTZ, the camera
looks downward, and the sample images are captured from the bottom. The four light sources, lasers,
and lens are controlled via a controller. In our experiments, the defects were placed immediately below
the camera.

Firstly, to show the efficacy of the proposed method for estimating z, the estimated distances were
compared with the set values, as listed in Table 1, using a distance of 253 mm as the calibration point.
The method provides accurate results, ranging from 133–493 mm. The errors were predominantly
due to the orthographic image formation model, which does not always precisely reflect the actual
conditions. These deviations are also related to the accuracy of laser point extraction.

Table 1. Estimation results of the distance between the camera plane and the target plane (mm).

Real Distance Estimated Value Error

133 138 5
193 196 3
253 - -
313 318 5
375 376 1
433 441 8
493 510 17

The remaining experiments were conducted with two metal plates, as shown in Figure 4.
One contains two small dents, labelled as defect 1 and defect 2 respectively, and the other one contains
a pit, labelled as defect 3.

The 3D data generated for each defect are shown in Figures 5–7. The transformation from image
pixels to real-world coordinates was achieved as described in Section 3.4. The depth information was
then extracted five times along the Y direction for each defect, and the maximum depth contour was
provided. The 3D data were then combined with altimetric readings of the maximum depth contour
for further analysis.
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Figure 4. Images of test specimens: (a) 50 × 20 mm containing two dents (defects 1 and 2); (b) size
50 × 60 mm, containing one pit (defect 3).

Figure 5. (a) Three-dimensional (3D) reconstruction results and (b) altimetric readings for the maximum
depth in the 3D result for defect 1.
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Figure 6. (a) 3D reconstruction results and (b) altimetric readings for the maximum depth in the 3D
result for defect 2.

Figure 7. (a) 3D reconstruction results and (b) altimetric readings for the maximum depth in the 3D
result for defect 3.
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It is clear that the proposed method produces significantly more information than can be observed
in the original acquisition images, enabling an accurate characterization of the dimensions and depth
of defects. This facilitates image analysis for a range of inspection tasks that could not be solved by 2D
analysis of the original acquisition images.

The initial results of the 3D reconstruction show that the proposed method is very useful for
identifying defects, and can contribute to more reliable visual inspections with currently available
devices. Thus, exploiting available devices will contribute to significant improvements and time
savings for NPP visual inspections.

Table 2 shows the evaluation of defect depth. We compare our method with the baseline derived
from MarSurf LD 120, which can conduct measurements using the Mahr metrology products. Z is the
average maximum depth of the five contour lines extracted from the 3D results. The baseline is the
average maximum depth of the five contour lines obtained by LD 120, which uses the non-defect area
of the metal plate as the reference. LD 120 measures by contact and has a resolution of 0.001 mm in the
depth direction, whereas the capacity for our image sensor and lens is approximately 0.030 mm under
the proposed setup.

Table 2. Comparison of defect depth calculated from the 3D results and obtained by LD 120 [mm].

Defect Number Z Baseline

1 0.29 0.23
2 0.22 0.20
3 0.53 0.49

As shown in Table 2, the depth estimated by our method is close to the baseline. Errors in the
experimental setup come from the camera, light sources, object reflectance, etc. The PS technique
can deal with these errors to ensure more precise results; however, all PS techniques rely on radiance
measurements. The characteristics of the defects, including defect opening displacement and geometry,
will affect the validity of the results. In future research, we will determine the parameters and their
impacts on the efficacy of depth measurement, which will require further experiments and verification.

Additionally, there are a few limitations of this study. First, it is assumed that the surface reflectance
of the object follows the Lambertian model. Figure 6 reveals no highlights or shadows; therefore, there
is no distortion in the results. Conversely, Figures 5 and 7 reveal the distortion in specific areas because
of specular reflection. The processing of highlights and shadows requires more images, yet the small
number of PTZ lights limits highlight and shadow processing. A methodology to handle shadows
and highlights with four lights may be useful to improve the performance [28]. It is also important to
note that the experimental defects analyzed in this study are more easily processed than the defects
observed under actual inspection conditions. That is, the reflectance of the objects does not deviate
substantially from the Lambertian model, and the experiment does not include any underwater images.
Thus, the next step is to perform extensive experiments under a range of different conditions.

The limitations discussed here do not limit the use of this technique in NPP visual inspections.
Moreover, we suggest that this research provides an important basis for developing a method that can
readily identify and quantify defects through NPP visual inspection.

5. Conclusions

This study presents a 3D shape reconstruction method for the visual inspection of defects in NPP
reactors. The method is based on the photometric stereo techniques and does not necessitate new
inspection devices. The proposed approach, which involves estimating the light source directions
and intensities, has reduced the limitation of light calibration and exhibits good practical applicability.
The developed methodology can obtain the 3D shape and depth information of defects, thereby
improving NPP visual inspection.
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The demands for 3D image reconstruction will allow the visual inspection sector to perform more
complex and accurate tasks. However, this is only possible if both the software and hardware are
improved. The new market applications are expected to continue to emerge as the benefits of a 3D
generating function are revealed. This research may also be relevant for designing inspection devices
for future generations of NPP reactors.
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