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Abstract: Light detection and ranging (LiDAR) is a frequently used technique of data acquisition
and it is widely used in diverse practical applications. In recent years, deep convolutional neural
networks (CNNs) have shown their effectiveness for LiDAR-derived rasterized digital surface models
(LiDAR-DSM) data classification. However, many excellent CNNs have too many parameters
due to depth and complexity. Meanwhile, traditional CNNs have spatial redundancy because
different convolution kernels scan and store information independently. SqueezeNet replaces a
part of 3 × 3 convolution kernels in CNNs with 1 × 1 convolution kernels, decomposes the original
one convolution layer into two layers, and encapsulates them into a Fire module. This structure
can reduce the parameters of network. Octave Convolution (OctConv) pools some feature maps
firstly and stores them separately from the feature maps with the original size. It can reduce spatial
redundancy by sharing information between the two groups. In this article, in order to improve
the accuracy and efficiency of the network simultaneously, Fire modules of SqueezeNet are used
to replace the traditional convolution layers in OctConv to form a new dual neural architecture:
OctSqueezeNet. Our experiments, conducted using two well-known LiDAR datasets and several
classical state-of-the-art classification methods, revealed that our proposed classification approach
based on OctSqueezeNet is able to provide competitive advantages in terms of both classification
accuracy and computational amount.

Keywords: data classification; light detection and ranging (LiDAR); convolutional neural networks
(CNNs); SqueezeNet; octave convolution (OctConv)

1. Introduction

Light detection and ranging (LiDAR) technology is an active remote sensing measurement
technology which can obtain ground object information by emitting laser to the target [1]. Compared
with optical imaging and infrared remote sensing, LiDAR can obtain high-resolution three-dimensional
spatial point clouds, elevation models, and other raster-derived data independent of weather conditions
through laser beam [2,3]. The data adopted in this article are LiDAR-derived rasterized digital surface
models (LiDAR-DSM) which are obtained by rasterizing the point cloud data acquired by the LiDAR
system [4]. There is a lot of research on LiDAR-DSM data classification. Priestnall et al. examined
methods for extracting surface features from DSM produced by LiDAR [5]. Song et al. modified the
crown shape in spectrum by using DSM [6]. Zhou et al. used minimum description length (MDL)
and morphology to recognize the buildings [7]. Zhou combined LiDAR height and intensity data to
accurately map urban land cover [8].
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LiDAR-DSM mainly includes terrain changes and feature heights of the target area and it is
suitable for classification tasks that distinguish targets with different heights. Thus, the accurate
classification of DSM plays an important role in distinguishing different land cover categories. The
classification task of LiDAR-DSM data is usually based on the classification of pixels, that is, the
interpretation process of remote sensing images [9]. For example, Lodha et al. used the support vector
machine (SVM) algorithm to classify LiDAR data and obtained higher accuracy and convincing visual
results [10]. Sasaki et al. adopted a decision tree analysis to investigate the average height of each
land class [11]. Naidoo et al. used an automated Random Forest modelling approach to classify eight
common savanna tree species [12]. Khodadadzadeh et al. developed a new efficient strategy for fusion
and classification of hyperspectral and LiDAR data to integrate multiple types of features [13]. Ghamisi
et al. proposed a joint classification method which is based on extinction profiles (EPs) features and
convolutional neural network (CNN) to improve the classification accuracy [14]. Then Ghamisi et al.
proposed to extract the spatial and background information of DSM data in an unsupervised manner
to obtain higher classification precision [15]. Wang et al. combined morphological profiles (MPs) and
CNN to provide more features for LiDAR-DSM classification [16]. He et al. used spatial transformer
networks (STN) to identify the best input of CNN for LiDAR classification [17]. Xia et al. used an
ensemble classifier to process morphological features which fuses hyperspectral (HS) images and
LiDAR-DSM [18]. Ge et al. proposed a new framework for fusion of hyperspectral image and LiDAR
data based on the extinction profiles, local binary pattern (LBP), and kernel collaborative representation
classification [19].

AlexNet [20] won the ImageNet [21] competition in 2012, making the convolutional neural
network (CNN) become the focus again. It is a breakthrough achievement in the history of CNN
development. Since then, convolutional neural networks have been widely used in various image
processing fields [22–32]. Compared with the traditional machine learning algorithms, the three
characteristics of CNN (receptive field, weights sharing, and subsampling) make it learn characteristics
from the images directly. Researchers have proposed various CNNs with different structures and
obtained good classification results [33–36]. These excellent CNNs are designed to achieve higher
classification accuracy by designing deeper and more complex structures. However, they have relatively
many structural parameters and may require large storage space and computing resources.

SqueezeNet is a lightweight structure with a smaller number of structural parameters and less
calculations whose structure and classification accuracy satisfy the application requirements as well [37].
SqueezeNet has only 1 × 1 and 3 × 3 convolution kernels and its purpose is not to obtain the best
classification accuracy but to simplify the complexity of the network and achieve the classification
accuracy similar to a public network. Octave Convolution (OctConv) is mainly used to deal with
feature mapping of multiple spatial frequencies and reduce spatial redundancy. It is a single, generic,
and plug-and-play convolution unit that can replace ordinary convolution directly and it does not
need to adjust the network structure. In addition, the features of adjacent pixels in one image have
similarities; however, the convolution kernel in traditional CNNs sweeps each location and stores its
own feature description independently. It ignores spatial consistency, so that the feature maps have a
large amount of redundancy in the spatial dimension. OctConv scales a portion of the feature maps
and then communicates with the unscaled portion to reduce spatial redundancy and enhance feature
utilization [38]. In this article, we propose a novel dual neural architecture, OctSqueezeNet, which
combines SqueezeNet with OctConv, which improves LiDAR-DSM data classification accuracy with
less structural parameter memory.

In this article, OctSqueezeNet was applied to LiDAR data classification. The main contributions
are written as follows:

SqueezeNet combined with OctConv was used to LiDAR data classification for the first time,
which improved the classification accuracy and reduced the storage space occupied by the network.
We replaced the original convolutional layer in OctConv with the Fire modules in SqueezeNet to
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compensate for the shortcomings of SqueezeNet, which had less extracted feature information due to
lots of 1 × 1 convolution kernel.

2. SqueezeNet Design Architecture

The main objective of SqueezeNet is maintaining competitive accuracy with few parameters. To
achieve this goal, three main strategies were adopted. Firstly, the 3 × 3 filter was replaced by the 1 × 1
filter for which has fewer parameters. Secondly, we reduced the number of input channels to the 3 × 3
filters. Finally, we performed subsampled operations in the later stages of the network to make the
convolution layer with large activation. SqueezeNet drew on the idea of the Inception module [23] to
design a Fire module with a squeeze layer and an expand layer. The structure of Fire module is shown
in Figure 1. In order to reduce the number of channels for input elements, the squeeze layer used a 1 ×
1 convolution kernel to compress the input elements. The expansion layer used the 1 × 1 and 3 × 3
convolution kernels for multi-scale learning and concatenating.
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Figure 1. Structure of Fire module.

The operation process of the Fire module is shown in Figure 2. The size of the input feature maps
is h × w × n. Firstly, the input feature maps pass through the squeeze layer and obtain the output
feature maps with a size of h × w × s1. The size of the feature maps is unchanged but the channels
reduce from n to s1. The output feature maps of squeeze layer are sent into 1 × 1 and 3 × 3 convolution
kernels in expand layer, respectively. Then concatenate the result of convolution. Finally, only the
number of channels changes to e1 + e3. In order to enable the output activation of the 1 × 1 and 3 × 3
filters of the extension module to have the same height and width, the boundary zero filling operation
with 1 pixel is performed for the input of the 3 × 3 filters in the extension module. Rectified Linear
Unit (ReLU) is applied to the activation of squeeze layer and an expand layer. Meanwhile, there is no
full-connection layer in SqueezeNet.
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3. Octave Convolution

Natural images can be decomposed into low spatial frequency components and high spatial
frequency components. Similarly, the feature maps of the convolutional layers can also be decomposed
into feature components of different spatial frequencies. The low frequency components are used
to describe the structure with the smooth changes, and the high frequency components are used to
describe the fine details of the fast changes.

As shown in Figure 3, the components of high and low frequency of the image are written as XH

and XL, and their corresponding outputs are YH and YL after the convolution operation, where α ∈

(0,1) represents the ratio of the low frequency channels. The arrows above and below represent that
the feature maps with the same frequency self-update their information by convolution operation, and
the crossed arrows help to exchange information between the two frequencies by pooling, upsample,
and add operations. In the convolution operation, WH responses are both from XH to YH and from
XL to YH, that is WH = [WH→H,WL→H]. WH→H is traditional convolution, and the size of input and
output images are the same. WL→H upsamples the input image first and then performs traditional
convolution, while WH→L pools the input image first. As shown as Equations (1) and (2), the high
and low frequency feature maps are stored in different groups. Sharing information between adjacent
locations can reduce the spatial resolution of the low-frequency group and spatial redundancy.

YH = YH→H + YL→H (1)

YL = YL→L + YH→L (2)

Sensors 2019, 19, x FOR PEER REVIEW 4 of 15 

 

Natural images can be decomposed into low spatial frequency components and high spatial 
frequency components. Similarly, the feature maps of the convolutional layers can also be 
decomposed into feature components of different spatial frequencies. The low frequency components 
are used to describe the structure with the smooth changes, and the high frequency components are 
used to describe the fine details of the fast changes.  

As shown in Figure 3, the components of high and low frequency of the image are written as XH 
and XL, and their corresponding outputs are YH and YL after the convolution operation, where  
α ∈ (0,1) represents the ratio of the low frequency channels. The arrows above and below represent 
that the feature maps with the same frequency self-update their information by convolution 
operation, and the crossed arrows help to exchange information between the two frequencies by 
pooling, upsample, and add operations. In the convolution operation, WH responses are both from 
XH to YH and from XL to YH, that is WH = [WH→H,WL→H ]. WH→H is traditional convolution, and the size 
of input and output images are the same. WL→H upsamples the input image first and then performs 
traditional convolution, while WH→L pools the input image first. As shown as Equations (1) and (2), 
the high and low frequency feature maps are stored in different groups. Sharing information between 
adjacent locations can reduce the spatial resolution of the low-frequency group and spatial 
redundancy. 

f ( X H; W H→H )

f ( pool (X H , 2 ); W H→L )

f ( X L ; W L→L )

upsample ( f ( X L; W L→H ),2)

X H 

Y L X L 

h

W

0.5w

 ( 1 - αout  ) cout

h

W

0.5h 0.5h
0.5w

 αin cin  αout cout
Y H→L

Y L→L

Y H→H

Y L→H

Y H 

⊕

⊕

 
Figure 3. Structure of OctConv. 

𝑌 = 𝑌 → + 𝑌 →  (1) 𝑌 = 𝑌 → + 𝑌 →  (2) 

The specific calculation process is written as Equations (3) and (4). 𝑌 = 𝑓(𝑋 ; 𝑊 → ) +  𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒 (𝑓(𝑋 ; 𝑊 → ), 2) (3) 𝑌 = 𝑓(𝑋 ; 𝑊 → ) + 𝑓(𝑝𝑜𝑜𝑙(𝑋 , 2); 𝑊 → ) (4) 

4. OctSqueezeNet for LiDAR Classification 

As shown in Figure 4, we rescaled the feature maps with different resolutions to the same spatial 
resolution and concatenated their feature channels, forming a dual neural architecture similar to 
multi-layers called OctSqueezeNet [39] for LiDAR data classification processing. 

First, random selection of 20% from the input feature map performed a 2 × 2 maxpooling 
operation to halve the size to 16 × 16, and the remaining feature maps maintained the original size, 
32 × 32. The two parts were sent separately to different Fire modules to obtain their respective output 
feature maps. The size of feature maps did not change through the Fire module. We repeated the 
above operation for the 32 × 32 output feature maps. At the same time, 80% of the 16 × 16 output 
feature maps were sent to a Fire module and a 2 × 2 upsampling operation was performed on the 
corresponding output to restore the size to 32 × 32; the remaining 20% of these were sent to another 
Fire module. Feature maps with the same size in different sections were combined to form the dual 

Figure 3. Structure of OctConv.

The specific calculation process is written as Equations (3) and (4).

YH = f
(
XH; WH→H

)
+ upsample

(
f
(
XL; WL→H

)
, 2

)
(3)

YL = f
(
XL; WL→L

)
+ f

(
pool

(
XH, 2

)
; WH→L

)
(4)

4. OctSqueezeNet for LiDAR Classification

As shown in Figure 4, we rescaled the feature maps with different resolutions to the same spatial
resolution and concatenated their feature channels, forming a dual neural architecture similar to
multi-layers called OctSqueezeNet [39] for LiDAR data classification processing.
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First, random selection of 20% from the input feature map performed a 2× 2 maxpooling operation
to halve the size to 16 × 16, and the remaining feature maps maintained the original size, 32 × 32. The
two parts were sent separately to different Fire modules to obtain their respective output feature maps.
The size of feature maps did not change through the Fire module. We repeated the above operation for
the 32 × 32 output feature maps. At the same time, 80% of the 16 × 16 output feature maps were sent
to a Fire module and a 2 × 2 upsampling operation was performed on the corresponding output to
restore the size to 32 × 32; the remaining 20% of these were sent to another Fire module. Feature maps
with the same size in different sections were combined to form the dual outputs, then sent them to the
average pooling layer to obtain output feature maps with size 16 × 16 and 8 × 8.

As shown in the lower part of Figure 4, the above operation was repeated for these 16 × 16 output
feature maps. Meanwhile, 80% of the these 8 × 8 output feature maps were only sent to a Fire module;
the remaining 20% were sent to a Fire module and then the outputs the outputs after this Fire module
were sent to a 2 × 2 upsampled layer to restore to the size of 16 × 16.

The feature maps with the same size in different parts were combined to obtain 8 × 8 and 16 × 16
and, respectively, sent to the Fire module, shown as the lower part of Figure 4. Then we upsampled
the 8 × 8 feature maps to 16 × 16. The 16 × 16 feature maps were merged to obtain a single output and
downsampled to 8 × 8. Finally, softmax was used for data classification.

4.1. Adaptive Learning Optimization Algorithm

Adam optimization algorithm is an extension of the stochastic gradient descent (SGD) algorithm.
It is a step-optimization algorithm based on the gradient stochastic objective function and low-order
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moment adaptive estimation based on training data. It can replace the SGD and update the weight
of the neural network iteratively based on the training data. The method estimates the different
parameters by the first order matrix, mt, and the second order matrix, nt, of the gradient to calculate
the adaptive learning rate. The process is shown as Equations (5)–(7):

mt = µ×mt−1 + (1− µ) × gt (5)

nt = V × nt−1 + (1−V) × g2
t (6)

m′t =
mt

1− µt (7)

n′t =
nt

1− vt (8)

The mt
′ and nt

′ are the correction for mt and nt, which approximate the expected unbiased
estimate, have no additional requirements for memory, and can be adjusted dynamically according
to the gradient, where -m′t/

√
n′t + ε forms a dynamic constraint on the learning rate and it has a

clear scope.

4.2. Loss and Activate Function

The activate function of the structure in this article is ReLU. As shown as Equation (9), it causes
a part of the output of neuron to zero, which results in sparseness of the network and reduces the
interdependence of parameters, alleviating the problem of overfitting. The calculation of the whole
process saves a lot of time.

g(x) = max(0, x) (9)

Because our dataset is a multi-category dataset, softmax is adopted as the final classifier of the
network model. Shown in Equation (10), softmax is used as the exponential operation, which can
increase the comparison of the large values and small values to improve learning efficiency.

aL
j =

eZL
j∑

K eZL
K

(10)

where ZL
j represents the input of the jth neuron of the Lth layer (usually the last layer), aL

j represents

the output of the jth neuron in the Lth layer, and e represents the natural constant.
∑
K

eZL
K represents the

sum of the inputs of all neurons in the Lth layer. Therefore, as Equation (11), the corresponding loss
function is a combination of softmax and cross-entropy loss.

Lossi = − log yi = − log
eZL

j∑
K eZL

K

(11)

5. Experimental Results and Analysis

5.1. Datasets Description

This article conducted experiments on two different datasets, Bayview Park and Recology, to
evaluate the performance of the proposed classification method. They are the public datasets of the
2012 IEEE International Remote Sensing Image Convergence Competition and collected in the city of
San Francisco, CA, USA. The Bayview Park dataset has a size of 300 × 200 pixels, the spatial resolution
of 1.8 meters and marks 7 land classes. The Recology dataset consists of 200 × 250 pixels with a
spatial resolution of 1.8 meters and contains 11 land classes. Figure 5 shows the DSM maps and the
groundtruth maps, respectively, for Bayview Park and Recology datasets.
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5.2. Experimental Set-Up

Experiments used the TensorFlow under windows as the backend, encoded with Keras and
Python. We divided the datasets into two parts: Training samples and test samples. The number
of training samples (i.e., 400, 500, 600, and 700) was selected randomly and the rest were used as
test sets. And we adopted overall accuracy (OA), average accuracy (AA), and Kappa as objective
evaluation criteria. In the experiments, SqueezeNet only used convolutions size with 1 × 1 and 3 × 3,
the input features of both datasets were 32 × 32 pixels. DSM data were linearly mapped to (−1 1) and
the gradient optimization algorithm selected Adam. The kernel function of SVM was set to radial basis
function (rbf) and the coefficient of rbf was default to auto. The penalty parameter of the error terms
was 100. The initial learning rate for Bayview Park and Recology datasets both were 0.001 in CNN,
and they were set to 0.0005 and 0.001, respectively, in OctConv. In SqueezeNet and OctSqueezeNet,
the initial learning rates for two datasets were both set to 0.0005. For the two datasets, the ratio of
pooling for feature maps in the first input layer and middle layers were all set to 0.2. The last output
layer did not perform pooling. In this article, the initial learning rate for Bayview Park and Recology
datasets both were 0.001 in CNN, and they were set to 0.0005 and 0.001, respectively, in OctConv; in
SqueezeNet and OctSqueezeNet, the initial learning rates for the two datasets were both set to 0.0005.

5.2.1. Bayview Park Dataset

The experiments ran on a 3.2-GHz CPU with a GTX 1060 GPU card. As shown in Table 1,
OctSqueezeNet achieved the best results on OA, AA, and Kappa when different numbers of training
samples were selected. When 700 samples were selected, the best OA was 95.42%, increasing 1.91%,
2.21%, 6.32%, and 19.17% compared to OctConv, SqueezeNet, CNN, and SVM, respectively. Figure 6
uses the bar chart to show the accuracy of each comparison method when different numbers of samples
were selected. It can be seen intuitively that the accuracy of OctSqueezeNet proposed by us was always
higher than that of other methods.
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Table 1. Classification results on Bayview Park dataset.

Training of
Different
Samples

Index SVM CNN SqueezeNet OctConv OctSqueezeNet

400
OA% 72.11 ± 2.02 86.77 ± 2.11 88.60 ± 1.56 91.32 ± 0.41 91.99 ± 0.81
AA% 77.08 ± 1.43 88.01 ± 1.32 89.04 ± 0.47 93.02 ± 0.32 93.21 ± 0.43
K×100 63.11 ± 1.89 82.92 ± 1.77 85.42 ± 2.01 88.30 ± 0.66 89.48 ± 1.00

500
OA% 73.75 ± 2.40 87.37 ± 1.07 91.31 ± 2.81 91.61 ± 0.63 92.79 ± 0.41
AA% 78.45 ± 2.07 89.21 ± 2.99 90.59 ± 2.05 93.37 ± 1.21 95.02 ± 0.90
K×100 65.41 ± 0.84 84.62 ± 1.52 88.44 ± 1.65 88.47 ± 1.43 90.48 ± 0.47

600
OA% 74.72 ± 2.03 88.27 ± 0.71 91.32 ± 1.03 92.32 ± 0.49 94.09 ± 1.23
AA% 78.87 ± 1.10 89.44 ± 2.64 92.11 ± 1.57 94.30 ± 0.51 95.75 ± 1.25
K×100 66.74 ± 1.88 85.88 ± 2.01 89.63 ± 1.43 89.89 ± 0.72 92.23 ± 1.64

700
OA% 76.25 ± 0.74 89.10 ± 2.09 93.21 ± 0.63 93.51 ± 0.77 95.42 ± 0.91
AA% 81.21 ± 2.25 90.11 ± 0.88 93.33 ± 0.79 95.64 ± 1.56 96.43 ± 1.37
K×100 68.70 ± 2.14 86.52 ± 2.70 91.11 ± 2.14 91.38 ± 1.04 93.99 ± 1.97
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Figure 6. The classification results of different methods on Bayview Park.

Table 2 and Figure 7 show the classification accuracy of each class. OctSqueezeNet had a good
effect on classification of different land classes. Figure 8 shows the classification results of different
networks for Bayview Park visually through the false color maps. It can be seen from the classification
results, as the precision increased, the mis-division area of the feature gradually decreased.

Table 2. Classification results of each class on Bayview Park dataset.

NO. Classes SVM CNN SqueezeNet OctConv OctSqueezeNet

1
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Figure 8. Classification results on Bayview Park: (a) Groundtruth map, (b) support vector machine 
(SVM), (c) convolutional neural network (CNN), (d) SqueezeNet, (e) Octave Convolution (OctConv), 
and (f) OctSqueezeNet. 
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5.2.2. Recology Dataset

As shown in Table 3, OctSqueezeNet also achieved the best results for Recology dataset on OA,
AA, and Kappa when selecting different numbers of training samples. When selecting 700 samples, the
best OA was 95.91%, increasing 0.63%, 0.97%, 3.22%, and 17.98% compared to OctConv, SqueezeNet,
CNN, and SVM, respectively. Figure 9 shows that the accuracy of the five methods grew steadily with
the number of samples increasing. The accuracy of OctSqueezeNet was always the highest.
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Table 3. Classification results on Recology dataset.

Training of
Different
Samples

Index SVM CNN SqueezeNet OctConv OctSqueezeNet

400
OA% 71.86 ± 1.05 85.57 ± 1.37 90.39 ± 0.65 92.88 ± 1.07 93.93 ± 0.61
AA% 72.69 ± 2.43 88.97 ± 2.13 89.02 ± 0.18 91.17 ± 1.56 93.63 ± 0.17
K×100 66.62 ± 0.88 82.35 ± 1.71 88.67 ± 3.21 91.28 ± 0.73 92.79 ± 0.74

500
OA% 74.51 ± 0.77 87.63 ± 1.43 92.54 ± 2.01 93.24 ± 1.14 94.77 ± 0.83
AA% 77.64 ± 3.26 91.06 ± 0.39 91.28 ± 1.21 91.41 ± 0.57 93.72 ± 0.60
K×100 69.73 ± 1.75 85.98 ± 0.29 87.30 ± 1.43 92.06 ± 1.20 93.79 ± 0.99

600
OA% 76.35 ± 2.33 90.12 ± 0.52 93.13 ± 0.71 94.53 ± 1.24 95.07 ± 0.48
AA% 79.51 ± 1.31 88.77 ± 1.22 92.38 ± 1.72 94.02 ± 0.62 95.36 ± 1.15
K×100 71.85 ± 2.01 86.89 ± 0.72 91.94 ± 2.13 93.51 ± 1.44 94.13 ± 0.63

700
OA% 77.93 ± 0.93 92.69 ± 1.69 94.94 ± 2.63 95.28 ± 1.38 95.91 ± 0.73
AA% 81.00 ± 1.32 92.22 ± 1.47 94.29 ± 0.79 94.82 ± 1.16 95.89 ± 0.17
K×100 73.70 ± 1.01 89.53 ± 2.18 93.19 ± 2.14 94.40 ± 1.09 95.13 ± 0.11
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Figure 9. The classification results of different methods on Recology.

Table 4 and Figure 10 also prove that OctSqueezeNet had better classification effects on different
classes. Figure 11 shows the classification results of the land classes and the area of the wrong division
was also less and less with the increase of precision.

Table 4. Classification results of each class on Recology dataset.

NO. Classes SVM CNN SqueezeNet OctConv OctSqueezeNet

1
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5.3. Selection of Experimental Parameters

The number of parameters and the model size of the proposed method in this article were
compared with the classical methods. In order to adapt to the Bayview Park and Recology datasets,
we made some adjustments to the structure of these classic algorithms. Next, the adjustments made in
each architecture are described.

(1) SqueezeNet: The first change was the addition of batch normalization, which was not present in
the original architecture. Then dropout was not used in the last convolution layer. Finally, we
changed the size of the kernel on the first convolution layer from original 7 × 7 to 3 × 3.

(2) AlexNet: Its original architecture contained eight weights layers; the first five layers were
convolution and the rest of the layers were fully connected. In comparison experiments, the
first convolution layer changed the stride from 4 to 1. The output of the last fully connected
layer was fed into a 7-way softmax for the Bayview Park dataset and an 11-way softmax for the
Recology dataset.
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(3) ResNet-34: Original Resnet-34 had 4 sections which were composed of 3, 4, 6, and 3 identity
blocks, respectively. The number of filters was 64, 128, 256, and 512, respectively, in each identity
block of the four sections. In our experiments, the kernel of the first convolution layer was
changed from 7 to 3. The number of filters was modified to 16, 28, 40, and 52, respectively. The
output of the last fully connected layer was set the same as AlexNet.

As shown in Table 5, compared with some classical CNN algorithms, OctSqueezeNet proposed
by us had higher precision, and reduced the number of parameters and model size significantly. When
700 training sets were selected, the OA of OctSqueezeNet on the Bayview Park dataset reached 95.42%,
increasing 2.33%, 1.67%, and 2.21% compared with AlexNet, ResNet-34, and SqueezeNet, respectively;
but the number of parameters of OcSqueezeNet was only 0.32M, which is 29.67M, 0.1M, and 0.92M
less than the number of parameters of AlexNet, ResNet-34, and SqueezeNet, respectively. The model
size was only 1.38M, which is 113M, 0.45M, and 3.45M less than the model size of AlexNet, ResNet-34,
and SqueezeNet, respectively. The best OA of OcSqueezeNet on the Recology dataset was 95.91%
and it was 1.64%, 0.86%, and 0.97% higher than AlexNet, ResNet-34, and SqueezeNet. Its number of
parameters was the least (0.33M) compared with the other three methods. The number of parameters
of AlexNet, ResNet-34, and SqueezeNet was 114.51M, 1.84M, and 4.85M, respectively. The model size
of OctSqueezeNet was also the smallest (1.37M) of these four methods, which decreased 113.14M,
0.47M, and 3.48M compare to the model size of AlexNet, ResNet-34, and SqueezeNet.

Table 5. Performance comparison of 700 samples for different networks.

Data Method Params
(Million)

OA
(%)

Model Size
(M)

Training
Time (s)

Test
Time (s)

Bayview
Park

AlexNet 29.99 93.09 ± 0.66 114.38 212.13 223.12
ResNet-34 0.42 93.75 ± 1.29 1.83 125.15 160.17

SqueezeNet 1.24 93.21 ± 0.63 4.83 75.82 65.43
OctSqueezeNet 0.32 95.42 ± 0.91 1.38 108.82 151.07

Recology

AlexNet 29.99 94.27 ± 0.74 114.51 222.94 230.52
ResNet-34 0.41 95.05 ± 0.31 1.84 169.94 207.63

SqueezeNet 1.25 94.94 ± 2.63 4.85 38.04 44.12
OctSqueezeNet 0.33 95.91 ± 0.73 1.37 119.62 191.54

Additionally, the training and test time are shown in Table 5 where 700 samples were selected as
training sets and experiments ran 150 epochs. For Bayview Park data set, the training time of AlexNet,
Resnet-34, SqueezeNet and OctSqueezeNet are 212.13 s, 116.35 s, 75.82 s and 108.82 s respectively. The
test time of them are 223.12 s, 160.17 s, 65.43 s and 151.07 s respectively. For Recology data set, the
training time of the four methods are 222.94 s, 169.94 s, 38.04 s and 119.62 s respectively. The test time of
them are 230.52 s, 207.63 s, 44.12 s and 191.54 s respectively. The time of OctSqueezeNet was longer than
SqueezeNet. Although the parameters were reduced, the structural branches were more complicated,
which affected the transfer time. However, though the time was slower than SqueezeNet itself, it was
acceptable compared to the greatly improved accuracy and the reduced number of parameters and
model size. OctSqueezeNet was much faster than AlexNet and Resnet-34.

6. Conclusions

This article designed a dual neural architecture OctSqueezeNet to classify LiDAR-DSM data.
Using SqueezeNet alone without combining with OctConv, the network parameters were more and
the model size was larger. Most importantly, the classification accuracy of the dataset was reduced
significantly. Because SqueezeNet replaced the traditional 3 × 3 convolution kernels with a large
number of 1 × 1 convolution kernels, which lost more extracted features relatively. The OctConv did
not change the size of the convolution kernel. By reducing the size of a part of the feature maps, it was
equivalent to expanding the receptive field to obtain more global feature information. The feature
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maps with the original size were equivalent to extracting more detailed feature information, because
the receptive field had no change. This can compensate for the loss of SqueezeNet in feature extraction.
Because there were only 1 × 1 and 3 × 3 convolution kernels, it also made parameters of a network
fewer and the model size smaller.

Overall, combining SqueezeNet with OctConv gave better classification precision of datasets and
less space for the storage model. The experiment results indicate that OctSqueezeNet achieved 95.42%
and 95.66%, respectively, in terms of OA on the Bayview Park and Recology datasets when the number
of training samples was 700, which were better than other classification methods. At the same time, for
the two datasets, the number of parameters of OctSqueezeNet achieved 0.32M and 0.33M, respectively,
and the model size of OctSqueezeNet achieved 1.38M and 1.37M, respectively. They were lower than
some other methods. The combination of SqueezeNet and OctConv opens a new window for LiDAR
data classification by fully extracting its spatial information.
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