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Abstract: The appraisal of stress in plants is of great relevance in agriculture and any time the
transport of living plants is involved. Wireless sensor networks (WSNs) are an optimal solution to
simultaneously monitor a large number of plants in a mostly automatic way. A number of sensors
are readily available to monitor indicators that are likely related to stress. The most common of them
include the levels of total volatile compounds and CO2 together with common physical parameters
such as temperature, relative humidity, and illumination, which are known to affect plants’ behavior.
Recent progress in microsensors and communication technologies, such as the LoRa protocol, makes it
possible to design sensor nodes of high sensitivity where power consumption, transmitting distances,
and costs are optimized. In this paper, the design of a WSN dedicated to plant stress monitoring is
described. The nodes have been tested on European privet (Ligustrum Jonandrum) kept in completely
different conditions in order to induce opposite level of stress. The results confirmed the relationship
between the release of total Volatile Organic Compounds (VOCs) and the environmental conditions.
A machine learning model based on recursive neural networks demonstrates that total VOCs can be
estimated from the measure of the environmental parameters.

Keywords: gas sensing; WSN; plant health; recursive neural network; VOCs

1. Introduction

The standard approach for the monitoring of crops and single plants is based on the measurement
of environmental parameters such as humidity, illumination, and soil composition. More recently, taking
advantage of the progress of sensors and electronic technologies, attention has been focused on measuring
proper plant parameters. Furthermore, nanotechnology is beginning to enable the hybridization of
technology with plants in order to incorporate additional functions into the living system [1].

Among the plant parameters assuming a great importance is the measurement of released volatile
compounds. These substances are synthesized and released in the environment for a multitude of
functions, among them the attraction of pollinators and the repulsion of parasites [2]. Additionally,
as demonstrated by several studies on humans [3], changes in the profile of VOCs can signal the
occurrence of pathologies.

The displacement of observations from the environment to the single plant is a great advance
because it can take into account the intrinsic individual variability of plants’ responses to environmental
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conditions. Furthermore, it allows adjustments to the microenvironment around each plant in order to
establish the optimal farming conditions.

The health of plants can be jeopardized by exposure to either abiotic or biotic sources [4]. The most
relevant abiotic factors are deficiencies or excesses of temperature, light, availability of water and
concentration of nutrients in the soil, but they can also be mechanical deformations or the presence of
pollutants. The biotic factors include pathogens and animals. Sensor technologies have been made
available for each of these factors. However, not all of them can be applied to individual plants.
For instance, biosensors have been developed for pathogen detection [5], but the technology of biosensors
is still not mature enough for large-scale and long-term use of these devices. However, a large number of
low-cost and high-performance devices are readily available for many abiotic sources of stress, such as
temperature, humidity, CO2, and illumination. Furthermore, VOCs microsensors are becoming available
in the market. However, these devices are not specific, and they provide only a generic evaluation
of a total amount of volatile compounds. The information that these sensors can carry is very coarse
and hardly usable for an investigation into the physiological changes occurring in the plant. However,
the rate of production of VOCs is related to metabolic activity, and at least, this information can be
gathered from these sensors.

Networks of wireless sensors have been proposed to monitor the conditions of plants in different
conditions, for instance, in greenhouses [6]. In these applications, sensors were mostly aimed at detecting
the environmental conditions [7]. The implementation of gas sensors in wireless sensor networks (WSNs)
has been attempted for indoor air quality and pollution detection [8], forest fire detection [9], animal
monitoring [10] and precision agriculture [11]. To our knowledge, no application of gas sensors in WSNs
aimed at monitoring plant monitoring has been reported so far.

In this paper, we describe the development and application of a wireless sensor system aimed at
detecting, in real-time, a number of physiological and environmental parameters. The sensor system has
been designed with the scope of monitoring the conditions of small plants during their transportation.
This is a niche application in the more general field of plant or crop monitoring. In this case, a limited
quantity of plants, pot-planted and confined in a closed environment, are considered.

The considered quantities are illuminance, temperature, relative humidity, and total VOCs (TVOCs).
The sensors have been assembled on the same board equipped with wireless data transmission.

A variety of support is available for data transmission. Low-power wide-area networks (LPWANs)
are particularly suitable to cover field crops, and even, to a certain extent, the transportation of plants.
Different implementations of LPWANs are available, such as Sigfox, LoRa, and NB-IoT. Each protocol
is characterized by different properties, but all of them are suitable for sensor network data exchange.
Among them, LoRa ensures the coverage of a wider area and a low power consumption [12].

The transportation of plants can occur with a variety of vectors, including lorries, trains, or even
ships. The LoRa protocol provides the basis for an “on-board” network which is not limited by either
the size nor the physical conditions, such as barriers or containers.

As an example of application, the wireless sensor node (WSN) has been used to monitor the
parameters of plants of the same species, size, and age, but kept in extremely different conditions.
Both plants were planted in the same soil, but one plant was exposed to natural light and regularly
watered, and the other was kept in the dark and without water.

Results showed that the TVOCs production is related to the health conditions. In particular, the plant
kept in the dark and not watered produced a minor amount of volatile compounds. The relationship
between environmental parameters and VOCs is evidenced by a neural network regression model that
can estimate the amount of total VOCs from the environmental parameters.
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2. Materials and Methods

2.1. Sensors Selection

Table 1 shows the sensors selected for the WSN. All these devices were chosen because of their
low consumption and the digital output that allows for a simple and secure connection with the other
devices on the WSN.

Table 1. Sensors implemented in the wireless sensor networks (WSNs).

Quantity Device Vendor Dimension Consumption

Illuminance [lux] TSL2561 Adafruit 3.80 × 2.60 mm2 750 µW
Temperature [◦C] and relative humidity [%RH] SHT31 Sensirion 2.5 × 2.5 mm2 5 µW

Total VOCs [ppb] SGP30 Sensirion 2.45 × 2.45 mm2 150 mW
Total VOCs [ppb] CCS811 AMS 2.7 × 4.0 mm2 46 mW
Air quality index BME680 Bosch 3.0 × 3.0 mm2 36 mW

The choice of integrated gas sensors on the market is rather limited. Here, the products of
three different vendors were considered: Sensirion, Bosch, and AMS. Each of these devices is based
on a metal–oxide semiconductor gas sensor technology [13]. They are sensor systems in which the
gas sensor is integrated with read-out electronics, preprocessing, and digital output. As a negative
characteristic, the developers of integrated gas sensors tend to seclude access to raw sensor data, and
rather, they provide data elaborated by proprietary algorithms aimed at providing an evaluation of
parameters such as the total VOCs (tVOCs). However, since sensors are rather unselective, these
algorithms are optimized, keeping in mind particular applications.

For instance, the Bosch (BME680) [14] device provides as output an evaluation of the internal
air quality (IAQ), obtained with internal preprocessing. This is a parameter conceived to evaluate
the air quality of living spaces, and it is hardly usable for other contexts, such as the VOCs released
by plants. In the device from Bosch, the evaluation of IAQ is based on the gas sensor and on three
additional sensors of temperature, relative humidity, and pressure. The Sensirion device (SGP30) [15]
integrates four metal–oxide semiconductor sensors, and the evaluation of total VOCs can be obtained
with external processing in which gas sensor signals are integrated with the temperature value and the
relative humidity (provided by SHT31) and applying a proprietary algorithm. The CCS811 sensor
measures tVOCs as well, but, as tested, it is not fit for the application due to its vulnerability to high
values of relative humidity [16].

All tested sensors, namely, SGP30, CCS811, and BME680, calculate an equivalent CO2. This parameter
does not coincide with the real concentration of CO2 because it aims to provide an evaluation of CO2

produced by human breath. Such a value is likely to be not relevant in the case of plants. The most
critical parameter for Metal Oxide (MOX) sensors is relative humidity, as already specified. CC811 may
be seriously damaged at Relative Humidity (RH) above 95%, even for a short period. The response of
BME680 to a low concentration of VOCs is saturated in the presence of a high RH, but this condition is
reversible, and the sensor returns to work correctly as soon as RH decreases. Finally, SGP30 is the most
robust to RH and, even if a combination of VOCs and RH may lead to saturation, it provides reliable
signals in most of the cases. Ultimately, the SGP30 is the most suitable device for this application.

2.2. WSN Board Design

The WSN was designed for long range transmissions in order to be used to monitor crops and to
follow the behavior of plants during their transportation. This last application is particularly useful for
the ornamental plant market.

The design is centered on the S76G chip (Acsip Technology Corp., Taoyuan City, Taiwan). It integrates
a STM32L0 ultralow-power MCU with an Arm® Cortex®-M0+ core, a LoRa SX1276 Transceiver, and
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a Sony GNSS Receiver CXD5603GF for high precision position measurement. Figure 1 shows details
of S76G.
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Figure 1. The simplified block diagram of the S76G chip, produced by Acsip, and the evaluation board
of the S76G chip.

The microprocessor communicates with sensors via a shared I2C line, where all sensors are
identified by a unique address code. The standard speed of transmission of 100 kbit/s suits all the
sensors. It is the slowest available, but in this application speed, performance is not a priority.

Each sensor is mounted on a breakout board, with a linear voltage regulator, to adapt the alimentation
voltage to the value required by the devices, and a voltage level shifter that permits the use of both the
3 V and 5 V communication logic.

In the initial state, the processor configures peripherals, such as timers and the LoRa module, then
starts the initialization of sensors. In this process, it is possible to select for each device parameters of
measurement, such as sample rate and others. Most of the devices permit a choice between different
operating modes, which differ in precision, time duration of the detection, and power consumption.
Where possible, maximum accuracy is always selected. After the initialization, the microprocessor
starts to communicate periodically with sensors and to collect data, storing them into arrays, that will
be later used to create the buffer to send to the master via LoRa communication.

The system is implemented in both a normal and low power mode, where the microprocessor
periodically enters into stop mode, to exploit the power consumption reduction. Differences between
these two implementations are explained later.

The communication of data is based on the star network architecture, where one of the WSNs acts
as a master. Thus, it collects data from the other WSNs, the slaves, and then communicates them to
a PC via UART protocol.
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2.3. WSN Test on Plants

WSNs were tested in two experiments. In each experiment, two plants cultivated in the same
soil and contained in similar plant pots were kept for 11 days. Measurements were performed on
European privet (Ligustrum vulgare L., 1753).

Plants were kept indoors. One was exposed to natural light and watered daily, while the other
was not watered and kept in the dark. Plants were kept in a plastic container sealed enough to allow
for the measurement of plant-released VOCs but with a sufficient air inlet.

Figure 2 shows a picture of the two plant containers. WSNs were continually connected, via LoRa,
to a remote computer, and data were uploaded every 5 min. At this rate, a good compromise between
monitoring precision, power consumption, and data storage is achieved. Indeed, a higher rate of
sampling would only increase the power consumption of the node without a relevant difference in the
information collection.
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Figure 2. WSN test of plants enclosed in transparent boxes in order to simulate transport inside lorries.
The transparent box shows an enclosed European privet. WSN and its antenna are also visible inside
the box. The box is endowed with a series of holes for air circulation.

3. Results and Discussion

3.1. Functional Tests

The sensor node is composed of two different parts: the S76S/S76G board and the array of sensors.
Both are powered by the same 3.6 V LiPo battery. To analyze appropriately the power consumption of
the entire node, measurements were performed on both parts. In Table 2, the values measured are
reported, not only for the node, which is the slave in the network, but also for the master. The central
node, of course, requires more energy, because it is constantly in receiving mode, waiting for messages
from slaves. Data for the slave board are reported in both normal mode (NM) and low-power mode
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(LPM), for comparison. The integration of the stop mode permits a good reduction in the power
dissipation of the node. Array (a) of sensors is composed of all sensors previously described, except the
CCS811. In array (b), the SGP30 was also removed to highlight that most of the power consumption
comes from this device. Through adding together the consumption of the board and of the array,
the total power dissipation of the node is obtained.

Table 2. This table summarizes the power consumption statistics for each device of the system. S76S
NM stands for normal mode. S76S LPM stands for low power mode. Array (a) is the array of sensors
described without the CCS811 device. Array (b) is the array of sensors without CCS811 and SGP30.

Power Consumption Master S76S NM S76S LPM Array (a) Array (b)

Energy [mWh] 180 mWh 50.4 mWh 28.8 mWh 158.4 mWh 6.6 mWh
Electric Charge [mAh] 36 mAh 14 mAh 8 mAh 48 mAh 2 mAh

Multiple tests were performed to understand the range of the network in different urban conditions.
Distances are considered valid if most of the packets, 98–99%, are received correctly by the master,
because missed receptions correspond to data loss and the usage of acknowledgements that would
increase the consumption of nodes. In the communication implemented, due to the absence of
acknowledgements, missed receptions correspond to data loss, then distances are considered valid
if most of the packets are received correctly by the master, for example, 98–99%. To further increase
the area covered by the communication, it is possible to implement retransmissions, even if this has
a negative impact on the power consumption of the node.

3.2. Plant Experiment

WSNs were used to monitor the parameters of two European privets (Ligustrum vulgare L., 1753)
kept in radically different conditions. One plant was kept in the dark without watering while the other
was exposed to natural light and watered daily. Measurements were continuously acquired for 11 days.

Figure 3 shows the data provided by the four sensors. Ambient data were regularly recorded
while the gas sensor experienced two malfunction periods. Oscillations in temperature and humidity
follow the environmental conditions. However it is interesting to note that the humidity in the box
kept in the dark was higher than that detected in the container exposed to natural light, and this might
be related to the stress condition of the plant. The behavior of the total VOCs is rather erratic and
correlated poorly with the other variables. The gas sensor experienced two periods of malfunctioning
due to a fast increase of RH in the measurement chamber. These periods have been removed from the
following analysis.

A better understanding of the relationship between the four parameters can be acquired through
a multicomponent analysis. For the scope, the data were processed with the principal component
analysis (PCA) [17]. Calculations were performed with the statistics toolbox of MATLAB.

Since the illumination is drastically different, it was eliminated from the calculus of PCA. The first
principal component carries most of the quantitative information; thus, the separation between the
two plants is rather obvious and it can be directly observed in Figure 3. More interesting is to observe
the behavior of the other two principal components where the influence of the magnitude of signals is
reduced. The results of PCA are manifested by the scores and loadings plots. Figure 4 shows the scores
plot with a clear separation between the two conditions. It is worth considering that the measures are
dynamically evolving, and each parameter spans an overlap range of values throughout the day. Thus,
the fact that most of the time, the two conditions are clearly separated is a not trivial result.

The loadings provide information about the role of each parameter to the scores plot. The loadings
are optimally appreciated in a biplot where the directions of the original axis are projected onto the
scores plot. The biplot of the data is shown in Figure 5.

The three variables are divergent from each other, which shows that each variable contributes
independently to the scores plot. This is particular evident for relative humidity and total VOCs.
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The separation between the two conditions is minimally influenced by the temperature, but it is rather
dependent on total VOCs and humidity.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 11 

 

Multiple tests were performed to understand the range of the network in different urban 

conditions. Distances are considered valid if most of the packets, 98%–99%, are received correctly by 

the master, because missed receptions correspond to data loss and the usage of acknowledgements 

that would increase the consumption of nodes. In the communication implemented, due to the 

absence of acknowledgements, missed receptions correspond to data loss, then distances are 

considered valid if most of the packets are received correctly by the master, for example, 98%–99%.  

To further increase the area covered by the communication, it is possible to implement 

retransmissions, even if this has a negative impact on the power consumption of the node.  

Table 2. This table summarizes the power consumption statistics for each device of the system. S76S 

NM stands for normal mode. S76S LPM stands for low power mode. Array (a) is the array of sensors 

described without the CCS811 device. Array (b) is the array of sensors without CCS811 and SGP30. 

Power Consumption Master S76S NM S76S LPM Array (a) Array (b) 

Energy [mWh] 180 mWh 50.4 mWh 28.8 mWh 158.4 mWh 6.6 mWh 

Electric Charge [mAh] 36 mAh 14 mAh 8 mAh 48 mAh 2 mAh 

3.1. Plant Experiment 

WSNs were used to monitor the parameters of two European privets (Ligustrum vulgare L., 1753) 

kept in radically different conditions. One plant was kept in the dark without watering while the 

other was exposed to natural light and watered daily. Measurements were continuously acquired for 

11 days. 

 

Figure 3. Behavior of the signals provided by the four sensors. Gas sensors experienced  

short failures. 

Figure 3 shows the data provided by the four sensors. Ambient data were regularly recorded 

while the gas sensor experienced two malfunction periods. Oscillations in temperature and humidity 

0 0.5 1 1.5 2

Time [min] 10
5

0

20

40

60

80

100

I 
[L

u
x
] 

  

Lux  
light and water

dark and dry

0 0.5 1 1.5 2

Time [min] 10
5

24

25

26

27

28

29

30

T
 [

C
] 

  
  

T    
light and water

dark and dry

0 0.5 1 1.5 2

Time [min] 10
5

30

40

50

60

70

80

90

100

R
H

 [
%

] 
  

 

R H    
light and water

dark and dry

0 0.5 1 1.5 2

Time [min] 10
5

0

100

200

300

400

500

600
c
o

n
c
 [

p
p

b
]

tV O C s
light and water

dark and dry

Figure 3. Behavior of the signals provided by the four sensors. Gas sensors experienced short failures.
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PCA evidence shows the interrelation between the environmental parameters and the released VOCs.
Thus, it is usual to study the possibility to retrieve the amount of total VOCs from the environmental
parameters. It is worth remarking that other than the environmental conditions, the plants are absolutely
identical and share the same initial conditions.

In this regard, it is also important to consider that each data point is not independent from
those following and preceding; thus, any regression method must consider the time evolution of the
ambience and of the plant status. The optimal way to study such a system is to consider the data as
a time series. After the elimination of the data corresponding to the malfunction of the gas sensor,
the experiment collected 2225 data from the illuminated plant and 1952 data from the plant kept in the
dark. Two thirds of each group has been taken for training and the final third for testing the model.

The regression has been carried out with a recursive neural network implementing a nonlinear
autoregressive model with external inputs (NARX) [18]. In practice, the series of total VOCs was
predicted given a number of past data of total VOCs and environmental parameters. The neural
network model was calculated using the Neural Network toolbox of Matlab. A total of 10% of training
data were used for internal validation and another 10% for internal testing. The network was made of
10 hidden neurons and 3 inputs (illumination, temperature, and relative humidity) and 1 target output
(total VOCS). The delay was fixed to 2. This means that to estimate the amount of VOCs at the time t,
the network uses the environmental parameters at time t, t-1, and t-2, and the estimated amount of
VOCs at times t-1 and t-2. Considering that data are taken every 5 min, the estimation of VOCs at time
t is based on the measurement and estimation back to 15 min.

Figure 6 shows the sequence of estimated and measured total VOCs in the training data set. Large
errors are achieved at the transitions between sequences of data. In correspondence of these points,
the temporal relationship between data is obviously lost. Figure 7 shows the network estimate of the
test data set, which corresponds to the last sequence of data of both plants. In Figure 8, the histogram
of the errors is shown. Most of the errors are in the interval between −7 and + 15 ppb, only 3% of the
whole range of variability of the total VOCs.
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4. Conclusions

In this paper, a network of WSNs for monitoring environmental parameters and the total amount
of VOCs released by a plant has been illustrated. The technology of ambient sensors (illumination,
temperature, and relative humidity) is rather solid, and a number of sensors of good performance,
limited cost, and low-power consumption are available. However, the recently introduced integrated
gas sensors in CMOS technology are complemented by an internal processing mainly aimed at
compensating typical drawbacks of these sensors, such as drift and lack of selectivity. However, the
processing is in almost all cases addressed towards the evaluation of qualitative parameters of indoor
air quality. This is a quantity of almost null interest in plant monitoring.

Here, we adopted a sensor which provides an evaluation of total VOCs. Interestingly, we found
that the total VOCs are discriminative of the different conditions in which the plants are kept. Hence,
even if this quantity is only a coarse evaluation of the real air composition, it was shown to be useful
to monitor stress events in plants. It is important to emphasize that for a thorough interpretation
of the sensors’ data, a deep investigation of the physiology of the plants under stress is necessary.
Furthermore, the final objective of the WSN illustrated here is the detection of stress in potted plants
and during their transportation; thus, the conditions of such plants may be quite different from that of
those cultivated in natural soil and exposed to atmospheric agents.

As a further demonstration, a recursive neural network model shows that the total VOCs can
be derived from the environmental parameters. This is not surprising, considering that the plants
were absolutely identical and planted in the same soil, and the only differences between them were
the environmental conditions. This result cannot be straightforwardly extrapolated to all plants in all
conditions, but it provides a solid basis for the monitoring of a crop where all plants follow a parallel
development and are exposed to the same treatment and environmental situations.

During transportation, plants are likely to be kept together in a closed environment where they
share the same physical conditions. In this situation, the measure of VOCs from single plants is likely
influenced by the VOCs released by the other plants and the extent of this influence depends on
the distribution of heating, ventilation, and air conditioning (HVAC) inside the container. In these
conditions, the deployment of WSN combined with a proper data analysis, integrated with HVAC
system parameters, could be used to optimize the HVAC system to ensure homogeneous conditions.
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