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Abstract: Wireless sensor networks (WSNs) are susceptible to faults in sensor data. Outlier detection
is crucial for ensuring the quality of data analysis in WSNs. This paper proposes a novel improved
support vector data description method (ID-SVDD) to effectively detect outliers of sensor data.
ID-SVDD utilizes the density distribution of data to compensate SVDD. The Parzen-window algorithm
is applied to calculate the relative density for each data point in a data set. Meanwhile, we use
Mahalanobis distance (MD) to improve the Gaussian function in Parzen-window density estimation.
Through combining new relative density weight with SVDD, this approach can efficiently map
the data points from sparse space to high-density space. In order to assess the outlier detection
performance, the ID-SVDD algorithm was implemented on several datasets. The experimental
results demonstrated that ID-SVDD achieved high performance, and could be applied in real water
quality monitoring.

Keywords: wireless sensor networks (WSNs); outlier detection; support vector domain description;
Parzen-window algorithm; water quality monitoring

1. Introduction

Wireless sensor networks (WSNs) have been widely used in various fields, such as industrial
(e.g., industrial surveillance), military (e.g., military reconnaissance), medical (e.g., medical diagnosis),
agricultural (e.g., agriculture production detection), mechanical engineering, and aerospace engineering
applications [1–8]. The reliability of sensor data has increasingly attracted attention from both academia
and industry. Outlier detection can recognize noise, errors, events, and hostile attacks, which helps to
reduce network risk and ensure data quality [9–12]. Generally, outliers are less than the normal data
in the monitoring process, and they can represent changes in monitoring objects and environments.
Therefore, outliers have great potential value. In aquaculture, sensors are susceptible to germ corrosion
and easily go wrong since they are deployed underwater [13]. Moreover, in the water quality monitoring
process, a high speed of outlier detection is required for processing big data.

There are four commonly used outlier detection methods: statistical-based [14,15], nearest
neighbor [16,17], clustering-based [18,19], classification-based [20–22], etc. However, these methods
still have some limitations when they are used in practice. The statistical-based methods construct
models based on prior knowledge [23]. There is no mathematical model to match the real application
problem of WSNs perfectly. The nearest neighbor method is a classic detection algorithm [24], and it is
time-consuming and has poor scalability when applied in high-dimensional data. Clustering-based
methods are limited to the issue of clustering width [25]. Meanwhile, the calculation of data distance
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consumes computational resources in high-dimensional datasets. Therefore, this method is unsuitable
for the limited-power devices used in WSN applications. Classification-based methods include
Bayesian network theory, support vector machine, etc. Bayesian networks can obtain the correlations
among data, but they have poor scalability for high-dimensional data. Although the calculation
is complex, support vector machines (SVMs) have been introduced to outlier detection for their
advantages in solving binary classification problems.

Support vector data description (SVDD) is a widely used one-class support vector machine
(OC-SVM) proposed by Tax and Duin [26]. It is an unsupervised learning method suitable for detecting
outliers in the fault monitoring process. Jae [27] applied SVDD to classify normal behavior patterns
and to detect abnormal behavioral patterns. Bovolo [28] utilized change vector analysis (CVA) and
SVDD for a change detection problem. Khediri [29] presented a procedure based on the kernel k-means
clustering and SVDD to separate different nonlinear process modes and to effectively detect faults
in the etch metal process. Liu [30] presented a high-speed inline defect inspection scheme based on
fast SVDD for a thin-film transistor (TFT) array process of thin-film transistor liquid crystal display
(TFT-LCD) manufacturing. Zhao [31] used an SVDD-based method in pattern-recognition-based chiller
fault detection.

However, most outlier detection algorithms based on SVDD only take the kernel-based distance
between the spherical boundary and the data point into account, ignoring the distribution of data.
Therefore, many researchers have conducted experiments on SVDD to improve the fault detection
performance [32,33]. Lee [32] proposed a distance measurement to SVDD based on the notion of a
relative density degree for each data point in order to reflect the distribution of a given dataset. Cha [33]
imported the notion of density weight to SVDD, which is the relative density of each data point based
on the density distribution of the target data using the k-nearest neighbor (k-NN) approach. However,
this approach requires more calculation. When used in an unbalanced dataset, the performance will
be unstable.

In this paper, we develop a new method based on existing studies [32,33], namely, the improved
density-compensated SVDD algorithm (ID-SVDD). The relative density weight is used to search
for an optimal SVDD. In contrast to the existing studies, we obtain the relative density weight by
the exponentially weighted Parzen-window density. We incorporate it with SVDD to help obtain
the distribution of the target data. All data points are efficiently mapped from sparse space to
high-density space. Then, the Mahalanobis distance is utilized to improve the Gaussian window
function, which can eliminate the interference of correlations between variables. The traditional SVDD,
density-weighted SVDD (DW-SVDD), and density-compensated SVDD (D-SVDD) are compared with
ID-SVDD. Experimental results indicate that the detection accuracy and efficiency were both improved
by ID-SVDD, and that it could be applied for outlier detection in real water quality monitoring processes.

The paper is organized as follows: in Section 2, we introduce the traditional SVDD method and
the ID-SVDD method. In Section 3, we conduct experiments and demonstrate the effectiveness of
ID-SVDD for outlier detection. In Section 4, we give conclusions for this study.

2. Methodology

2.1. Support Vector Data Description

SVDD is a common data classification algorithm proposed by Sun and Tsung [34]. The basic idea
is to map target data to high-dimensional feature space, and constructing a data description as the
smallest sphere to contain all possible target data [35]. The objective of SVDD is to find a spherical
boundary with minimal radius R with center o, and realize the classification of unknown data. The data
points inside the sphere are the target class, and those outside are treated as the non-target class. For
ease of reference, Table 1 summarizes the key notations. The details of SVDD are illustrated in Figure 1.
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Table 1. Key notations.

Symbol Description

R Radius of sphere
o Center of sphere
C The trade-off between sphere volume and the number of target data outside the sphere
ξi Slack variable
α Lagrange multiplier
R The distance between an observation datum in the feature space and center a
θ The mean of Parzen-window density Par(xi)
d The feature dimension of input data
w Weighting factor
n The number of target data
ρi Relative density weight of xi

Par(xi) Parzen-window density of xi
mdij Mahalanobis distance between vectors
MS Covariance matrix
x Mean value of xi
P Relative density weight array

TP The number of true positive results
TN The number of true negative results
FP The number of false positive results
FN The number of false negative results
m The degree of polynomia
δ Bandwidth of Gaussian kernel function
k A constant
e A constant
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Figure 1. Illustration of support vector data description (SVDD) in feature space for outlier detection.

Given target data {xi, i = 1, 2, . . . , n}, SVDD maps the target data from input space into a feature
space F via nonlinear mapping function ϕ and gets the smallest sphere Ω = (o,R) in F. The objective
function of SVDD is as follows: min F(R, a, ξi) = R2 + C

n∑
i=1

ξi

s.t. ‖ϕ(xi) − a‖2 ≤ R2 + ξi, ξi ≥ 0, ∀i = 1, 2, · · · , n
(1)
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where C is a parameter that denotes the trade-off between sphere volume and the number of target
data outside the sphere. The slack variable ξi is used to incorporate the effect of data not included in
the data description, which allows a probability that some points can be wrongly classified.

To solve the objective function (1), we introduce the Lagrange multiplier α. By calculating the
inner product with the kernel function, we can get the rearranged function as follows:

max
n∑

i=1
αiK(xi·xi) −

n∑
i=1

n∑
j=1

αiα jK(xi·x j)

s.t. 0 ≤ αi ≤ C, i = 1, 2, · · · , n
n∑

i=1
αi = 1

(2)

where K(xi,xj) is the kernel function that satisfies Mercer’s theorem [36]. The radius R of the sphere
and the distance r between an observation datum in the feature space and center o are denoted as:

R2 = K(z·z) − 2
n∑

i=1

αiK(z·xi) +
n∑

i=1, j=1

αiα jK(xi·x j) (3)

r2 = K(xk·xk) − 2
n∑

i=1

αiK(xi·xk) +
n∑

i=1, j=1

αiα jK(xi·x j) (4)

In outlier detection, Figure 1 also shows the SVDD detection principle. It determines the
description boundary as the detection boundary. For given test data, x is regarded as a target datum
inside the sphere if r ≤ R, which indicates x is normal. Otherwise, it is treated as an outlier, which
indicates x is abnormal.

2.2. Density-Compensated Support Vector Data Description

The traditional SVDD algorithm often ignores the impact of data density distribution on
classification [33], which means the sphere cannot reflect all features of the target data, and reduces the
classification accuracy. To account for the distribution information of data, we introduce the notion of
relative density weight to compensate SVDD, which reflects how dense the region of target data is
compared to other regions. This approach makes the training data in high-density areas more likely to
fall into the sphere than those in low-density areas.

In this paper, the Parzen-window algorithm [37] is applied to calculate the relative density weight
of sample data. Assuming the target data X = {x1, x2, . . . xi, i = 1, 2, . . . , n}, the relative density weight
of point xi in a dataset is determined as:

ρi = exp
{
ω×

Par(xi)

θ

}
,∀i = 1, 2, · · · , n (5)

Par(xi) =
1
n

n∑
j=1

(
1√

(2π)dS

) exp(−
1
2s
‖xi − x j‖

2) (6)

where ρi is the relative density weight, θ = 1
n

n∑
i=1

Par(xi) is the mean Parzen-window density Par(xi),

d represents the feature dimension of input data, ω (0 ≤ ω ≤ 1) is the weighting factor, s denotes the
smoothing parameter of Parzen-window density, and n is the number of target data.

We use relative density to reflect the data distribution in real space. In the process of searching for
an appropriate description, we calculate the relative density weight according to Equation (5). After
importing the relative density weight to SVDD, we obtain the redefined objective function as follows:
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 min F(R, a, ξi) = R2 + Cρ(xi)
n∑

i=1
ξi

s.t. ‖ϕ(xi) − a‖2 ≤ R2 + ξi, ξi ≥ 0, ∀i = 1, 2, · · · , n
(7)

Let the relative density weight multiply the slack variable. Then each datum in high-density
regions will get a high relative density value. For searching the optimal description of target data,
D-SVDD can shift the description boundary to the dense areas. By introducing the Lagrange multiplier
to solve Equation (7) in SVDD, we get the optimization Equation (8):

max
n∑

i=1
αiK(xi·xi) −

n∑
i=1

n∑
j=1

αiα jK(xi·x j)

s.t. 0 ≤ αi ≤ ρ(xi)C, i = 1, 2, . . . , n
n∑

i=1
αi = 1

(8)

2.3. Outlier Detection Using Improved Density-Compensated SVDD

In D-SVDD, we choose the Gaussian function as the window function of the Parzen-window
algorithm and use the Euclidean distance to measure the distance in the Gaussian function. However,
Euclidean distance does not take into account the correlation between sample points [38], which will
affect the precision of D-SVDD. Mahalanobis distance (MD) is scale-invariant [39], which can overcome
the shortcomings of Euclidean distance. Thus, it can avoid the calculation error caused by measurement
units or the difference in magnitude of eigenvector values [40]. The performance of MD is better than
Euclidean distance. MD is a non-uniform distribution of the normalized distance in Euclidean space,
and it is constant for all linear transformations. The formula of MD is given as follows:

mdi j =

√
(xi − x j)

TS−1(xi − x j) (9)

MS =
1

n− 1

n∑
i=1

(xi − x)(xi − x)T (10)

where mdij is the Mahalanobis distance between vector xi and xj, MS is the covariance matrix between

two vectors, and x = 1
n

n∑
i=1

xi denotes the mean of xi.

In this paper, we introduce the MD to replace Euclidean distance in the Gaussian function.
By calculating the MD between data points, the improved Parzen-window density for x1 is redefined.
The Parzen-window relative density weight is denoted as

IPar(xi) =
1
n

n∑
j=1

(
1√

(2π)dS

) exp(−
1
2s

md2
i j) (11)

ρi = exp
{
ω×

IPar(xi)

θ

}
,∀i = 1, 2, · · · , n (12)

Now, we can give the pseudocode of the ID-SVDD algorithm as shown in Algorithm 1. The outputs
of the ID-SVDD algorithm are the Lagrange multipliers αi, radius R of sphere, and distance r. For
a given xi, it is classified as an outlier if the distance ri is greater than R. If not, xi is classified as a
normal datum.
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Algorithm 1. ID-SVDD outlier detection

Input: Target dataset X = {x1, x2, . . . xi, i = 1, 2, . . . , n}, kernel function K(.)
Output: αi, R, and r.
Begin
Define an array P to store relative density weight for each point.
for (k = 1; k ≤ n; k++) do
calculate Pk = ρ(xk) according to Equation (12)
End
Solve the optimization problem of (8).
Determine a sample whose αi is between 0 and ρ(xi)C.
Calculate the radius R of sphere and the distance r according to Equations (3) and (4).
End
Return αi, R and r.

3. Experiments

3.1. Experiment Design

In order to evaluate the performance of ID-SVDD, we compared it with the traditional SVDD,
D-SVDD, and DW-SVDD provided in [33]. Cha proposed the DW-SVDD with a weight coefficient
calculated by k-NN distance. We chose DW-SVDD for comparison because it also attempts to apply
the relative density to traditional SVDD. Meanwhile, these four methods were implemented with
MATLAB language and run on a PC with 2.9-GHz Core™ processor, 16.0 G memory, and Microsoft
Windows 10 operating system.

Considering the completeness and continuity of data, we chose the data of nodes 12 and 17 in
the SensorScope system dataset [41] to complete simulation experiments. The SensorScope system is
deployed at Grand-St-Bernard Mountain, which lies between Switzerland and Italy. The datasets have
two attributes, including the external temperature and surface temperature. In addition, we finished
experiments on a real water quality dataset with three attributes, including dissolved oxygen (DO), pH,
and dissolved oxygen relative saturation. More detailed information about the experimental datasets
is presented in Table 2.

Table 2. Experimental datasets.

Datasets Attributes Normal Data Outliers

SensorScope node12 2 1411 44
SensorScope node17 2 1309 137
water quality data 3 1706 50

We used different indexes to evaluate the performance of ID-SVDD. These indexes included true
positive rate (TPR), true negative rate (TNR), accuracy, and run time [42,43]. The calculation formulas
of these indexes are shown as follows.

TPR =
TP

TP + FN
(13)

TNR =
TN

FP + TN
(14)

Accuracy =
TP + TN

(TP + FN) + (FP + TN)
(15)

where TP is the number of true positive results, TN represents the number of true negative results, FP is
the number of false positive results, FN denotes the number of false negative results. These indicators
together with run time can measure the performance of outlier detection methods effectively.
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3.2. Experiment Results

3.2.1. Comparison among Different Kernel Functions

The kernel function of SVDD can map nonlinear relations to higher-dimensional space and
construct linear regression for processing [44]. In ID-SVDD, the kernel function also plays a key role.
The common kernel functions include the linear kernel function (16), polynomial kernel function (17),
Gaussian kernel function (18), and Sigmoid kernel function (19) [45]:

k(x, z) = x · z (16)

k(x, z) = ((x · z) + 1)m (17)

k(x, z) = exp
{
−
||x− z||2

2δ2

}
(18)

k(x, z) = tanh(k(x, z) + e), (k> 0,e< 0) (19)

Here, we set the parameter C within the range 2−8 to 28, which controls the trade-off between
volume and errors. For better outlier detection results, we conducted experiments to choose the
optimal kernel function. For the variable δ in Gaussian kernel function, we set it between 2−8 and
28. Further, we used fivefold cross validation (CV) to find the adequate parameters of these kernel
functions. After parameter selection, we obtained the optimal results of ID-SVDD with the SensorScope
dataset. The detailed results are provided in Table 3.

Table 3. Comparison among different kernel functions. TNR: true negative rate; TPR: true positive rate.

Different Kernel Functions TPR (%) TNR (%) Accuracy (%)

SensorScope12
Linear 89.3525 0 84.4898
Ploy 100 0 94.5578

Gaussian 99.4245 87.5 98.7755
Tanh 98.1295 20 93.8776

SensorScope17
Linear 38.4095 28.1482 36.5014
Ploy 92.5550 45.9259 83.8843

Gaussian 100 97.037 99.449
Tanh 68.1895 0 55.5096

Table 3 clearly indicates that the TPR, TNR, and accuracy of Gaussian kernel function were superior
to the other three kernel functions in nodes 12 and 17 of SensorScope. Based on these experimental
results, we adopted the Gaussian function as the kernel function of ID-SVDD in the outlier detection of
water quality data.

Figure 2a,b are the testing results distribution diagrams of the ID-SVDD detection algorithm in
SensorScope node 12 and 17 datasets, respectively. From Figure 2, the support vector constructed the
boundary to distinguish the normal data from outliers. The decision boundaries of the two datasets
are both irregular graphics. The blue points outside the sphere represent the outliers, whereas the red
points inside the sphere are normal data. It is clear that the detection model could describe the data
edges accurately. So, the ID-SVDD model is an effective detection model.
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3.2.2. Comparison Results of Different Datasets

We conducted experiments to compare ID-SVDD with traditional SVDD, D-SVDD, and DW-SVDD
in a set of standard datasets from SensorScope. The detection results are displayed in Table 4.

Table 4. Detection results of SensorScope datasets.

ID-SVDD D-SVDD DW-SVDD SVDD

Node 12
TPR (%) 99.4245 98.4173 70.5036 98.0496
TNR (%) 87.5 100 82.5 100

Accuracy (%) 98.7755 98.5034 71.1565 98.1788
Time (s) 0.489 0.5329 0.4211 0.5463
Node 17
TPR (%) 100 98.8338 90.3553 99.3232
TNR (%) 97.037 100 63.7037 98.5185

Accuracy (%) 99.449 98.8981 85.3994 99.1736
Time (s) 0.3794 0.578 0.4172 0.3763

We can see from Table 4 that the TPR and accuracy values of ID-SVDD in nodes 12 and 17 were
both superior to the D-SVDD, DW-SVDD, and SVDD. However, the TNR of ID-SVDD was lower than
the TNR for D-SVDD and SVDD. These results indicate that the MD improved Parzen-window relative
density weight could eliminate the interference of correlation between variables. It is appropriate for
measuring the distance between target data. Meanwhile, the TPR, TNR, and accuracy of D-SVDD
in nodes 12 and 17 were superior to those for DW-SVDD and SVDD. These results indicate that
Parzen-window relative density weight is appropriate for compensating the SVDD. In terms of
run time, these four algorithms were close. Actually, the use of ID-SVDD provided an acceptable
improvement in outlier detection on the SensorScope datasets of nodes 12 and 17.

3.2.3. Experimental Results on Water Quality Datasets

This experiment evaluated the ID-SVDD algorithm on a real water quality dataset. All data were
collected from the internet of things (IOT) monitoring system running in the Nanquan breeding base
located in Wuxi city, Jiangsu province [46]. This system uses various types of sensors to collect water
quality data (e.g., DO, pH, and dissolved oxygen relative saturation). These data were transmitted
from sensors to a server via the IOT monitoring system.
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The water quality dataset in this experiment included 1756 data (sampled 10 min once) from
20 May to 2 June 2017. We chose the first 1052 data as a training dataset, and the remaining 704 data as
a testing dataset. The distribution of training data is illustrated in Figure 3.
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Figure 3 is the training result distribution diagram of the ID-SVDD detection algorithm in the
water quality dataset. In Figure 3, the green points represent all normal data in the training process.
The three-dimensional coordinate represents the DO content, pH variable, and DO relative saturation
variable, respectively. Most normal data are aggregated and distributed in an irregular shape. Small
amounts of data are dispersedly distributed. The detection result on the testing dataset is shown in
Figure 4.
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We can see from Figure 4 that the three-dimensional coordinate is the same as Figure 3.
After ID-SVDD outlier detection, the error points are shown in Figure 4 with the form of a black
dot. Error points appear in both the normal dataset and the outlier dataset. The outlier data are
distributed around the normal data. To evaluate the performance of the ID-SVDD algorithm, we made
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a comparison with D-SVDD, DW-SVDD, and traditional SVDD. The precision comparison results are
shown in Table 5. Figure 5 presents the run-time comparison of the four algorithms.

Table 5. Detection results for the water quality dataset. D-SVDD: density-compensated SVDD;
DW-SVDD: density-weighted SVDD; ID-SVDD: improved density-compensated SVDD.

pond13 ID-SVDD D-SVDD DW-SVDD SVDD

TPR (%) 91.1374 89.0694 70.901 67.356
TNR (%) 96.2963 100 92.5926 96.2963

Accuracy (%) 91.3352 89.4886 71.733 68.4659
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It can be seen from Table 5 that ID-SVDD had the highest values of TPR and TNR, with 91.335%
detection accuracy. The TPR of ID-SVDD was 2.322%, 28.542%, and 35.307% higher than those of
D-SVDD, DW-SVDD, and traditional SVDD, respectively. The TNR of ID-SVDD was 4% greater than
that of DW-SVDD, and equal to that of SVDD. ID-SVDD was successful in detecting the outliers
of water quality data, increasing the accuracy by 2.064%, 27.327%, and 33.403% when compared to
D-SVDD, DW-SVDD, and SVDD, respectively. There are correlations among pH, DO, and DO relative
saturation. MD improved Parzen-window relative density weight can eliminate the interference of
correlations, thus improving the detection performance. Meanwhile, the TPR, TNR, and accuracy of
D-SVDD were superior to DW-SVDD and SVDD. That is because Parzen-window relative density
weight can obtain a characterized description of the dataset in high-dimensional feature space and
help search for an optimal SVDD. This approach is suitable for calculating the relative density weight.
The introduction of improved relative density to SVDD helps enhance the performance for outlier
detection efficiently.

As Figure 5 indicates, ID-SVDD had an advantage over D-SVDD and DW-SVDD in terms of run
time. It consumed 0.5381 s for outlier detection. Single SVDD provided the shortest time (0.4832 s),
but its TPR and accuracy were the lowest among the four algorithms. Therefore, ID-SVDD provided
satisfactory outlier detection accuracy and efficiency, and it is suitable for detecting outliers in real
water quality monitoring.

4. Conclusions

This paper presents a new outlier detection algorithm (ID-SVDD) incorporating the relative
density weight with SVDD. This approach can obtain the features of the data, thus improving the
performance of SVDD. To measure the relative density weight, we used the Parzen-window method.
The Mahalanobis distance was applied to improve the Gaussian function in the calculation of relative
density. ID-SVDD can realize data mapping from relatively sparse space to high-density space.
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We conducted experiments to evaluate the performance of ID-SVDD based on SensorScope datasets
and water quality datasets, and then compared it with D-SVDD, DW-SVDD, and SVDD algorithms.
The experimental results showed that ID-SVDD performed better than its three other counterparts
in terms of TPR, TNR, accuracy, and run time. Therefore, it is efficient and useful to introduce
relative density to SVDD. ID-SVDD provides a new idea of outlier detection and it can be used in
real-world applications.
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