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Abstract: In order to reduce the cost of the flight controller and improve the control accuracy
of solar-powered unmanned aerial vehicle (UAV), three state estimation algorithms based on the
extended Kalman filter (EKF) with different structures are proposed: Three-stage series, full-state
direct and indirect state estimation algorithms. A small hand-launched solar-powered UAV without
ailerons is used as the object with which to compare the algorithm structure, estimation accuracy,
and platform requirements and application. The three-stage estimation algorithm has a position
accuracy of 6 m and is suitable for low-cost small, low control precision UAVs. The precision of
full-state direct algorithm is 3.4 m, which is suitable for platforms with low-cost and high-trajectory
tracking accuracy. The precision of the full-state indirect method is similar to the direct, but it is
more stable for state switching, overall parameters estimation, and can be applied to large platforms.
A full-scaled electric hand-launched UAV loaded with the three-stage series algorithm was used for
the field test. Results verified the feasibility of the estimation algorithm and it obtained a position
estimation accuracy of 23 m.

Keywords: low-cost sensor; state estimation; extended Kalman filter (EKF); three-stage series;
full-state direct; full-state indirect; model calibration

1. Introduction

Solar-electrically powered fixed-wing unmanned aerial vehicles (UAVs) promise significantly
increased flight endurance over pure electrically or even gas-powered aerial vehicles.
Large-scale disaster relief, meteorological surveys in remote areas, and continuous border or wildlife
protection benefit in particular from the multi-hour continuous flight capability provided by these
robotic systems [1]. Traditional solar-powered UAVs require runways or complicated catapults for
take-off and landing which are not commonly available in most field areas. The large size makes it
inconvenient to apply and carry. The size of the UAV can be reduced to a wingspan of 2 to 5 m. With its
excellent aerodynamic shape and lightweight structure, the hand-launched solar-powered UAV has
great advantages in convenient application, long-endurance, and various mission execution [2—4].

Smaller-scale solar-powered UAVs are mostly designed for low-altitude long-endurance (LALE)
applications [5]. Though faced with the more challenging meteorological phenomena of the lower
atmosphere, low-altitude UAVs provide great potential of higher resolution imaging, reduced
complexity and cost and simplified handling, for example, through hand-launched take-off. As a
verification scheme, SoLong [3] has achieved a continuous 48-h flight using solar power and actively
seeking out thermal updrafts, and Skysailor [4] has achieved a continuous 27-h solar-powered flight
without the use of thermals, but both of these require a pilot to control them. AtlantikSolar [5] has
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completed an 81-h autonomous flight, except for launch and landing, which created the current
unofficial flight endurance world record for all aircraft below 50 kg total mass. The current trend of
the LALE solar-powered UAV is from the research stage to the real-life mission application and civil
field [6].

The manufacturing cost is a crucial factor in the marketization of a UAV. It consists of body frame,
energy system, engine system, flight controller, and payload. Except for the controller, the cost of other
systems is relatively fixed. The industrial flight controller consists of high-precision sensors that ensure
the UAV has sufficient control precision and trajectory tracking capability, but its high price accounts
for a large proportion of the entire cost. In contrast, the flight controller consisting of a low-cost
micro-electro-mechanical system (MEMS), inertial measurement unit (IMU), magnetometer, GPS and
barometer has a great price advantage, but it lacks measurement accuracy and long-time reliability, and
cannot be directly applied to a solar-powered UAV platform [7]. Therefore, it is a key technology to
reduce the cost of UAV manufacturing by using a suitable state estimation algorithm for long endurance
stable estimation of low-cost sensors [8]. The solar-powered UAV has the characteristics of low flight
speed and long-endurance, but the measurement error of low-cost sensors will be further amplified
with time accumulation and temperature changes. By using the appropriate state estimation algorithm,
the measurement accuracy of the low-cost sensor is effectively improved to meet the trajectory tracking
accuracy requirements [9], for example, a four-sided route with an area of 1 km? has an acceptable
tracking error of approximately 30 m (30 m/km?), and a heading error of nearly 13 degrees, thereby
reducing the cost of the flight controller.

As a bridge between sensor measurement and controller calculation, the estimated state is fed
back to the flight controller through the fusion of measurement of each sensor, and its accuracy will
directly affect the positioning accuracy and control effect of the UAV. The nonlinearity and cross-axis
sensitivity of industrial-grade sensors is significantly better than the low-cost sensors, as shown in
Table 1. When the solar-powered UAV is equipped with a low-cost sensor, how to balance the error
of the sensors for a long time to ensure the stable estimation of the state during the mission is the
key to state estimation. With a large number of applications of low-cost flight controller platforms on
miniature air vehicles, relevant research has also made some progress [10].

Dynamic observation theory and nonlinear filtering have proven to be effective in UAV state
estimation. The complementary filter is a kind of data fusion algorithm based on frequency domain [11].
It uses gyroscope data in a short time, and regularly uses accelerometer and magnetometer data to
correct the gyroscope. The Kalman filter (KF) is an optimal filter based on the state space method in
the time domain, which resolves and eliminates noise according to the statistical characteristics of
the noise measurement. For example, Extended Kalman filter (EKF), Unscent Kalman filter (UKF).
The EKF method is the most widely used, and the core is to linearize the measurement model [12].
Different structures can be derived according to the type of sensor and the expression of the attitude
angle. The UKF uses a deterministic approach to calculate the mean value and covariance, which results
in approximations accurate to the third order (Taylor series expansions) [13]. However, the nonlinear
method is computationally intensive and is not suitable for application on a low-cost flight controller.

Heikki [14] proposed a novel altitude estimation algorithm for fusing triaxial gyroscope and
accelerometer measurements based on the EKF method. By introducing a variable covariance matrix
and a low-cost, temperature-based calibration method, the robustness of the estimation results is
improved. Michael [15] proposed an altitude determination system for small quadrotor UAV using
consumer-grade Components-Off-The-Shelf (COTS). The exchange of estimated information is achieved
by two extended Kalman filters without magnetometer. Nak [16] used an invariant extended Kalman
filter IEKF) for UAV navigation, based on EKF. Flight tests show that the method can be applied to
rotary- and fixed-wing UAV platforms. Hu [17] proposed the external acceleration roll angle Kalman
filter (EARAKF), which achieved a stable estimation of the roll angle during continuous overload with
low-cost sensors.
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Table 1. Various sensors with measurement performance.
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In this paper, three novel state estimation algorithms are proposed to improve the measurement
accuracy of low-cost sensors, reduce the cost of flight controller, and realize the application of three-stage
series method in hand-launched solar-powered UAV. Additionally, the UAV is special, as it is designed
without ailerons and a landing gear to ensure that the full wing is covered with solar cells and is
lightweight (Figure 1). Since only the rudder is used for lateral control, the trajectory tracking accuracy
of such a UAV is poor, and the state estimation algorithms can combine the characteristics of the UAV
to achieve reliable heading estimation, ensuring that it meets the mission requirements and realizes the
reduction of platform cost.

Figure 1. Small hand-launched solar-powered UAV (unmanned aerial vehicle).

The paper is organized as follows. Low-cost sensors measurement error model and error statistics
are described in Section 2. Section 3 presents three state estimation algorithms based on EKF. Section 4
verifies the above algorithms according to the whole mission path simulation. The field experiment
results and model calibration methods are presented in Section 5, and Section 6 concludes the paper.

2. Sensors Measurement Error Model

The sensors combination in the low-cost flight controller is usually composed of MEMS IMU,
magnetometer, pressure sensor and GPS [18], as shown in Figure 2. The SBG-Ellipse IMU module is
chosen as an industrial-grade accuracy comparison.

T

SBG-Ellipse Airspeed Sensor IMU
Figure 2. Low-cost flight controller, GPS and (inertial measurement unit) IMU..

The IMU consists of a triaxial gyroscope, a triaxial accelerometer, the hardware is MPU6050.
The accelerometer with a capacitive transducer to convert the mass displacement into a voltage output.
The measurements are subject to signal bias and random uncertainty, and the simulation model is
constructed as follows:

Yaccel x= u+ qw =710 + gsin@ + ﬁuccel,x+naccel,x
Yaccely= Y +ru—-pw+ gCOSQSin(p+ﬁaccel,y+naccel,y @
Yaccel z= w+ po—gqu + gcos QSin(P+ﬁaccel,z+naccel,z
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where f, is a bias term, which is dependent on temperature and should be calibrated prior to each
flight. The 1, is zero-mean Gaussian noise with the variance oiml. The output of a gyroscope can be
modeled as

Vgyro = kgerQ + ﬁgyro =+ Ngyro (2)

where gy, corresponds to the measured angular rate in volts; k¢yro is a gain converting the rate in
radians per second to volts and () is the angular rate (these two items can be replaced by the real
angular rate in the simulation); B¢yr, is a bias term, mainly dependent on temperature, and the drift is
obviously greater than f,.; Ngyro is zero-mean Gaussian noise with covariance oéym. The measurement
model of the triaxial magnetometer is as follows:

Ymag = l/) + ,Bmug + Nmag

By = R_1(¢, Q,IP)[ 0 0 Ymag ]T (3)

where $ and 1 are similar to the above, and R is a direction cosine matrix. The pressure sensor is
divided into absolute pressure sensor to measure altitude and differential pressure sensor to measure
airspeed. The measurement models are

Yabspres = pghAGL + ﬁabspres + Tlabspres 4)

Ydif fpres = pVg/Z + ﬁdiffpres + Tldif fpres &)

In the GPS measurement process, not only does the size of the positioning error need to be
considered, but also the dynamic characteristics of the error are required. To model the transient
behavior of the error, the Gauss-Markov process proved to be effective [19], and the expression is
as follows:

ofn + 1] = eorsTofu] 4 nps[] ©)

The GPS measurement information includes UAV space position, ground speed and heading
angle can be modeled as

Yepsn/e/n) = Puse/nln) + Vnse/nn) (7)

Vngs = \/(Va COSl/J‘f'a)n)z'f— (Va Sinl[1+wg)2+T]V (8)
Xcps = tan! (Vsiny + we, Vacosh + wy) + 1y

2

where 1y and 1 are zero-mean Gaussian processes with variance o2, and 02, which can be obtained
g

V.

by using basic principles of uncertainty analysis:

©)

Oy

The statistical results of various low-cost sensor measurement errors are shown in Table 1, and the
SBG-Ellipse is used for comparison.

According to the flight conditions of the UAV at low altitude, with an altitude of 600 m and an
airspeed of 12.5 m/s during cruising conditions, combined with what from Table 1, the sensors are
simulated as follows: No wind, an altitude of 600 m, an airspeed of 12.5 m/s, the controller temperature
is 25 °C and remains unchanged, combined with the orthogonal error and bias of Table 1, the simulation
results of various low-cost sensors are as follows. The solid line represents the true state and the
dashed line represents the simulated measurement.

In Figure 3, (a,b), which is the IMU simulation, refers to Equations (1) and (2), where the
accelerometer measurement is a high frequency signal; (c) is a magnetometer (refer to Equation (3)), and
the measurement is a medium-low frequency signal. In order to consider the interference of the solar
cell, the model error is appropriately increased, making the measurement slightly unstable; (d,e) is GPS
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(refer to Equations (6)—(8)); and (f) is pressure sensors simulation, as low frequency as GPS. The sensor
modeling process mainly considers the influence of Gaussian white noise and bias, which is reflected
in the range of variation range, frequency and steady-state deviation of the measured value. For the
dynamic process, the measurement is consistent with the trend of the true signal. When entering the
steady-state, the measurement noise is large and there is a significant deviation.

0.02

p(rad/s)

T|-- measurenqg, i
— truemag,

%-0.04 - measureg,,,
-0.06}— truegyo,
0 1020 30 40 %0
0.010 !
-~ Measuregyy,, 0.6
= 0.005; — trucgy,, 04
< 0.000 { i 52
£ -0.005| g 05 -
z S -0.2||-- measuremag,|--
0,010 ! =04 trueug,
0 :
0.01 o 10 20 30 40 50 Oft 10 20 30 40 50
Time(s) Time(s)
(b) Gyro (c) Magnetometer

-- measurep,,,

>0 10 20 30 40 50

-- measurep,,
— measurep,

10 20 30 40 50
~—< 600 Time(s)
=590 -- measuregps,,
580 — tTchpsm
570 0 20 30 40 80
(d) GPS position (e) GPS ground velocity (f) Pressure sensor

Figure 3. True states and measurement states of low-cost sensors.

3. EKF State Estimation Structure

The extended Kalman filter is similar to the linear Kalman filter, which uses an estimate of
statistical variance to calculate the weight of sensor corrections to state estimates [20,21]. The state and
observation equations of the nonlinear system are as follows:

x = f(x,u)+w(t)

2= h(x(t),u)+vi (10)

where w(t) is used to account for disturbance and unmodeled part, v; represents the measurement
noise. It is assumed that the w(t) and v are zero-mean Gaussian noise, and covariance Q and R,
respectively. The EKF is first-order linearization near the state, and the system time update equations are

x= £(%,u) (11)
A(xu) = —af(;’(u) =% (12)

P = A(%u)P+PA(X,u) +Q (13)
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For the update of state estimates when a measurement is received, the measurement update
equations are

C(x,u) = w (14)
L=PC'(R+CxuPCR W) (15)
P=(I-LC(Xu))P" (16)

X =% +L(z-h(x",u)) (17)

where A is the linearized state update matrix, C is the linearized model output matrix, P is the state
covariance matrix, L is the Kalman gain matrix, Q is the process noise covariance matrix, and R is the
sensor covariance matrix.

Based on the EKEF, this paper divides the state estimation algorithm into full-state estimation
and three-state series estimation method according to whether the estimation structure is hierarchical.
The full-state estimation consists of the direct and indirect method. The same hand-launched UAV
simulation model was used, with an altitude of 600 m and an airspeed of 12.5 m/s, and the hovering
condition of the windless conditions.

3.1. Three-Stage Series State Estimation

This algorithm divides the estimation process into three stages. Firstly, the measurement data are
low-pass filtered, and gyroscope data are used for prediction and combined with the accelerometer for
measurement update, which is the altitude estimation. The second stage is the heading estimation,
especially when the UAV is flying in the wind field. The accurate heading angle is crucial for stable
control. The final stage is the navigation estimation, based on the previous results and fused with GPS
for measurement updates. The algorithm structure is shown in Figure 4.

Three-stage Series State Estimation

Attitude Estimation
=

par

40
x=l¢ of Low Pass

[ p+gsingtand+ rcos. qzmn(l:|

,|(
- “) geosg—rsing

Update Step

—— Roll Angle
Pitch Angle
L Switch
c(xw)- "'—1)\
Navigation Estimation
par
A Prediction Step
Heading Estimation sln B v g owe w]
x=y x=f(%u)
G =f(3u)= ":"77 '“”g Update Step
Update Step h(&u) :[{’\ Py
[B,8,B.1" =h(,u)
— bMiB, 8 T Heading Angle CB
) oh(x.u)
Clxu)=——ws
Attitude Position

State Bus

Figure 4. Three-stage series state estimation algorithm structure.
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3.1.1. Attitude Estimation
For this stage, the states, inputs and outputs are

x:[(p Q]T u:[p g r Va H]T z:[ax ay aZ]T

The state variables to be estimated in this stage are pitch and roll. Angular rates, airspeed and
altitude make up the input vector, u, and body frame accelerations composed the system outputs, z,
for this stage. According to the relationship between body frame rotations and changes in roll and
pitch angle [22], the time update of the states is

d;) — f(%u) = p + gsingtand + rcos¢ptand (18)
IR geosp—rsing

After evaluating the linearization about the current estimate states, the linearized state update
matrix A is obtained:

gsin (f)—r cos<f)
} (19)

A(xu) = of(x, u) b = qcos ¢ tan éA— rsin (jAJAtan 0 ey
Ix —gsin¢ —rcos @ 0

According to Equation (1), assuming that linear acceleration is zero, thatis, 1 = v = w ~ 0, the
measurement update and linearized model output matrix C are shown as follows.

Ay qVasin0 + gsin 0
iy | = h(x,u) =| rV,cos 6— pVasin 6— gcos 6 sind3 (20)
a; —qV, cos O — g cos Osin
Jh(x,u) 0 qVacos O + gcos O
C(x,u) = &—X,|x=§( =| —-g cosﬁv cosA@ —rV,sin 6 — pVacos 9A+ gsiAn qf) sin 6 (21)
gsin¢ cos 0 (qVa+ gcos @) sin 0

Using Equations (11) to (17), the state covariance and Kalman gain matrix are updated to achieve
the altitude angle estimate. The simulation results of this stage are as follows.

As shown in Figure 5, the subscribe hat and true are the estimated and real state, respectively.
Using the variable gain observer (VGO) as a comparison, the three-stage series algorithm has higher
accuracy for altitude estimation. The noise of the gyroscope is reflected in the time update, while the
accelerometer noise is applied to the measurement update, and the estimated altitude is used as the
input of the heading estimation.

25 ;
20| - - - -

P L S A e r T T T EEEEEEEE.
El | | | |

< 10
<

..............

= &nat — Three Level ||
- Gra — VGO

o L L L L
0 10 20 30 40 50
Time(s)

Figure 5. Comparison of true and estimated roll and pitch angle.
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3.1.2. Heading Estimation

An accurate heading is important to the lateral control of a UAV without ailerons. The rudder
maneuvering produces a yaw moment, then the side slip occurs, and the UAV rolls depending on
its own stability. Since the roll control is not direct, it will affect the trajectory tracking accuracy.
Magnetometer update heading estimation is useful for cases where a wind induced crab needs to be
accounted for when interpreting data from cameras or other sensors [23]. Due to the interference of
the solar cell, the magnetometer can be externally mounted and installed at the wing tip to obtain
accurate measurement, which is suitable for large aspect ratio solar-powered UAV. The groundspeed
will reduce under windy conditions and the heading approximated from GPS will become inaccurate,
leading to the vehicle flying uncontrollably downwind [24]. In this stage, the heading estimation is a
single-state EKF. The state, inputs and outputs are

x=¢ u=[¢ 0 g r]T z=| B, B, BZ]T

The time update of the estimation using gyroscope measurements by the expression

g OO0

= f(xu)= 050 sin0 (22)
f(x,u) B

A(X, u) = T|x:§( =0 (23)

As the single-state linearization yields a zero matrix, only model noise is considered in the
covariance matrix update process. The sensor model is simply a rotational transformation of the
earth-frame magnetic field to the body-frame sensor, given by

By cos 0 cos cos 0sin —sin0 By,
By =h(Xu) =| sin ¢ sin 0 cos 1[1 — cos ¢ sin 1[1 sin ¢ sin 0 sin + cos ¢ cos 1/3 sin ¢ cos 0 Boy (24)
B, cos¢sin@cos +singsing  cosgsinOsin—singcos cosgcosd Bo,

Linearizing the current estimates, the linearized model output matrix is

oh(x ) —cos Osin By, + cos O cos I,DBOV

,u . . S A

C(x,u) = ;; lx=x =| (—sin¢sinOsiny —cos¢cos)By, + (sin¢sinOsiny + cos ¢ sini)By, (25)
(—sin ¢ sin Osin) — cos ¢ cos ) By, + (sin ¢ sin O sin ¢ — cos ¢ sin lﬁ)Boy

The heading estimation simulation is performed using the UAV hovering state, as shown in
Figure 6. As the VGO does not have a separate heading estimate, the simulation results are compared
with the real and estimated yaw angle.

a

S
|
|
I
|
|
|
|
|

(deg)

Snlsebsess

Time(s)

Figure 6. Comparison of true and estimated yaw angle.

Since the solar cell will affect the measurement of the magnetometer, the bias and noise are more
obvious, as shown in Figure 3c. Accurate attitude estimation can ensure the accuracy of heading
prediction. The measurement update of the magnetometer makes the trend of estimation consistent
with the real state. The simulation result has a delay of 1 s and an error of 2 degrees.
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3.1.3. Navigation Estimation

The final stage of this state estimation scheme keeps an estimate of vehicle location and path
angle. With the altitude and heading obtained in first two stages and measured airspeed, the location,
groundspeed and course angle of the airplane are predicted using a simple kinematic model and check
against GPS measurements [25]. If the flight path angle y = 0, then the evolution of the position is
given by

Pn= VacosipecosO — Wy

. (26)
Pp= V,sinpcos® — W
By differentiating Equation (8), the evolution of the ground speed is given by
- (Vﬂcosgb + WN)(—Vad)singb) + (VgSinll) + WE)<Vg¢cosgb) -
g =

Ve

According to the kinematic equation of the aircraft during the coordinated turning process, the
evolution of y is given by

X :itan(pcos( xX—v) (28)
Vg
The state, inputs and output of this stage is
T
x=[Py Pp Vg x Wy We|

u:[Vu qgr ¢ 0 ¢]T

T
ZZ[ YGpsN YGPSE YGPsvg YGPSx YWy yWE]

The nonlinear propagation and linearized state update matrix are given by

II;N VacosipcosO — WN
VE Vasingeosd — Wy
)Eg =f(&xu) = | [(Vacosyp + Wy)(=Va ¢siny) + (Vasing + W )(Vapeosy)|/ V¢ | (29)
Wy gtanqpcos(X — 1)/ Vg
We | 02x1
cosg —Vsing -1 0
0 sing Vgcost 0 -1
f=| 2 ~Ve/ Vg 0 ~Vasing Vayibcoslp (30)
—gtangcos(¥ = ¢)/ V3 —gtangeos(f — )/ Vg 0 Vapcosty
02x2 024

GPS measurement information includes position, ground speed and course angle. In order to
estimate the wind field, a pseudo measurement of wind speed is constructed as follows:

Ywy = Vacosy + Wy — Vgcos x

1
ywg = Vasiny + Wg — Vgsin y G

Therefore, the measurement update and the Jacobian matrix are given by

N N N N A N N T
h(fc,u):[PN Pr Vg & Vacosy+ Wy~ Vgcosf Vusinl,b—O—WE—Vgsinf(] (32)
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I
—Cosx Vgsin X

04%2

33
02x4 ) (33)

—siny — Vgcosx

The simulation results of the navigation estimation are shown in Figure 7. The estimation results
of ground speed and wind field are better than the VGO algorithm; the groundspeed static bias is
0.5 m/s, which is improved to less than 0.2 m/s. The estimated GPS course is based on the results of

the first two stages, so the position accuracy is higher. Algorithm 1 summary of the three-stage series

estimation method.

== prpa — Three Level ||
= P — VGO

—— Plruc

== pepa — Three Level
-+ pepa — VGO

=+ Vona — VGO

oo [~ = Wepa — Three Level| _
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Time(s)

Time(s)

Figure 7. Comparison of true and estimated location, groundspeed and course.

Algorithm 1. Three-stage series state estimation

Stage 1:
Attitude
estimation

Stage 2:
Heading
estimation

Stage 3:
Navigation
estimation

1:
2:
3:
4:
5:

Low-pass filtering of barometers, airspeed sensor and gyroscope measurements, set initial X.
Update the roll and pitch altitude, Equation (18).
Compute the linearized state update, covariance matrix and update the prediction, Equations (13) and (19).
for each accelerometer axis then
Calculate appropriate sensor output, linearized output, and Kalman gain matrix, Equations (15), (20) and

@1).

6:
7:
: Obtain q and r from gyroscope update and ¢ and 0 from stage 1.

: Update the heading angle using kinematic equation, Equation (22).

: Compute the linearized state update matrix, zero matrix, and covariance matrix, Equations (13) and (23).
: if magnetometer measurement available then

—_

Update state estimate and covariance matrix, Equations (16) and (17).
end for

for each magnetometer axis do
The same process as the stage 1, sensor measurement update is different, Equations (24) and (25).
end for

: end if

: The airspeed is updated by the airspeed sensor, assign initial value to the altitude angle.
: Update the state estimate using kinematic equation Equation (29)

: Compute the linearized state update and covariance matrix, Equations (13) and (30)

: if GPS measurement available then

for each measurement state do
The same process as the stage 1, sensor measurement update is different, Equations (32) and (33).
end for

: end if

3.2. Full-State Direct State Estimation

The hierarchical method is used to simplify the model, reduce the order of the matrix, ignore the
mutual influence of the state parameters, and obtain a reliable heading estimation. This reduces the
amount of calculation necessary but the accuracy is limited. The full-state method treats all parameters
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as a whole, the measurement error of IMU is used as a time update, and other sensors are used as
measurement update to get the complete state.

When the mission is sensitive to airspeed and altitude, and the flight controller has feasible
computing power, full-state direct state estimation is a suitable method to apply. The algorithm
structure is shown in Figure 8. Due to the different sampling frequencies, the corresponding state of
the fast sensor measurement update using the air pressure sensor includes altitude, airspeed and side
slip angle pseudo measurement [26]. The states corresponding to the slow update using GPS include
location, ground speed and course.

Full-state Direct State Estimation A‘f"ressufesem GPS
1 i
Prediction Step Fast Sensors Update Slow Sensors Update

Pseudo Measurement GPS Sensor

States: x =(PT,V",07,b",w")

hy =v, (V,0,w) heps, (X)=p, Position
oh oh | oh Ceps.a (x)=(L0...
Propagation model Cﬁ(x):(o,a—v.g,o,g) ars (x)=( )

P=R(0)V
V=V (Yoyro D Tgyro )+ (Yaceet ~Macca) +11
©=5(0)(¥gro D ~Tgro )

| Acceleromete

heps.e (X)= pe
Ceps. (x)=(0,1,0...
Differential Pressure Sensor arse ()= )

hag (x):%p[V—R' (0)w)" (V-R" (0)w) hops v (%) = [[122.02, IR (0) V]

b=0,, - o Corsye (x)=(0,V'R™ (0)P"PR(0),0,0)
Ww=0,, C”’”(x):(o‘\'R (G)W'E‘o‘ﬁj GroundSpeed
l * Al
. Static Pressure Sensor hoo = tan™!| =22
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Figure 8. Full-state direct state estimation structure.

The state, measurement input of the time update process are

X = (PT,VT,GT,bT/WT)T Y= (chcel’YEYTO)T

Using the gyro and accelerometer models, the equations of motion can be written as

P=R(0)V
. X
V=V (yg}{ro_b - “gym) + (yaccel_b - naccel)+n
Q= S(G)).(ngro_b - 1]gyro) (34)
b = 03,1
w = 021

where P = (pn,pg,pd)T, V= (u,0w),0= (9,0, ¢)T, w=(p,q, )T, b is the bias vector,  is the noise
vector, w is the wind filed vector, R(0) is the direction cosine matrix, and S(0) is the transformation
matrix of the angular velocity of body axes to inertial axes. Therefore, the state propagation equation is

X = f(xr Y)+Gg(x)ngyro+ca (X)naccelJrn (35)
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The time update model of the state and the Jacobian matrices are as follows:

R(8)V
VX (ygyro )+)(Yaccel ) + RT ( 0 )g

f(xy) = S(® (ngro ) (36)
03x1
02x1
IR(8)V
0353 R(6) a[[Ré(ee)) ]} 033 03x2
x g
s |0 [gnb) THeo VO e
A = — = d|s(e -b 7
(o) Ix 03x3 03x3 2SOyt )S;ygym ) -S(8) O3x2 (37)
03x3 03x3 03x3 03x3  O3x2
02x3 02x3 02x3 02x3  0O3x2

The fast sensor measurement update includes three parts, static and differential pressure sensor
and pseudo side-slip angle. According to Equations (4) and (5), the measurement model and associated
Jacobian matrices are given by

hoac(x) = =p8pa haigr(x) = 3pV3 = 5p(V-RT(0)w)" (V-R" (0)w) 38)

oh oh ) (39)

Cstatic(x) = (0,0,-pg,0...)  Caifs(x) = (03,1/V—RT(9)W, 387 %1 3u0

With the given sensors, the side-slip angle or side-to-side velocity is unobservable and drift occurs,
but it is important when the control system needs to obtain reliable lateral information to control the
flight path [12]. To correct this parameter, a pseudo measurement is proposed on the side-slip angle by
assuming that it is zero. Therefore, the model for the pseudo-sensor is given by

hg=2v:(V,0,w)=[ 0 1 0 |(V-RT(0)w) (40)
The associate Jacobian matrix is given by

oh Jdh 8h) (1)

Cp(x) = (01><3, V' 30’ 01x3, w

The GPS measurement is updated at a low frequency, including north and east position, ground
speed and heading. Similarly, the measurement model and the corresponding Jacobian matrices are
as follows:

hGpsu(x) = pn hGps,e(X) = pe )
hps,vg(X) = [T, 001R(O)VIl hgps,(x) = tan™ (Ve / V)
Capsn(x) = (1,0,0...) Cepse(x) = (0,1,0...) (43)
Cops,vg(x) = (0, VIRT(8)PTPR(0),0,0) Cops,(x) = (0, %, 5&,0,0)

The comparison between the real and the estimate state of all parameters is shown in Figure 9.
Algorithm 2 is a summary of full-state direct state estimation method.

Compared with Figures 5 and 6, the accuracy of full-state method is obviously superior in position,
speed, and heading. When entering the steady state, the altitude deviation is small, the error precision
is less than 8%, the GPS-related state measurement accuracy is higher, and the position error precision
is approximately 3 m, ensuring sufficient trajectory tracking accuracy. Due to the increase of accuracy of
the estimated ground speed and course, this method is suitable for reliable trajectory tasks or fixed-area
hovering, such as animal photography or precise takeoff and landing.
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Figure 9. Comparison of true and estimated state.

Algorithm 2. Full-state direct state estimation

Time update

Fast sensor
update

Slow sensor
update

1: Obtain w and a from gyroscope and accelerometer, set initial X.
2: Update the state estimate using the kinematic equation, Equation (35).

3: Compute the linearized state update matrix and covariance variable, Equations (13) and (37).

1: if air pressure sensor measurement available, then
2:  for static and differential pressure sensor measurement do

Update state estimate and covariance, Equations (16) and (17)
end for

Calculate sensor output, linearized output equations, and Kalman gain, Equations (15), (38) and (39).

Calculate pseudo side slip angle output and linearized output equations, Equations (40) and (41).

3

5

6

7

8:  Using zero to update state estimate, Equations (15)-(17)
9: end if

1: if new GPS measurement available, then

2:  for each measurement state do

3
4
5
6

Using measurement to update state estimate, Equations (15)—(17)
end for
: end if

Calculate location, groundspeed and course output and linearized output equations, Equations (42) and (43)

3.3. Full-State Indirect State Estimation

The direct state estimate method focuses on the observation of all measurement states, while for
the indirect estimation method the idea is to filter the error states, which should satisfy the linear and
Gaussian assumptions better than the direct implementation. The biggest difference of indirect method
is that the error estimation vector is introduced, which is predicted by time update, and the estimation
of states is achieved by observation and compensation of errors. Let x be the true state, X the estimated
state, then x = x — X is the error state. Similar to the previous section, if X satisfies

The state error evolves according to Equation (35), X can be written as

%= f(%,y)+G(x)ns+n;—£(%,y)

(44)

(45)

Using the Tylor series expansion up to the linear term, f and G are equivalent to

f(x,y) = f(%,y)+A(% y)x
G(x)ng = G(x)n,

(46)
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Equation (45) can be simplified as

X= A(%,y)+G(Z)ns+n; (47)

The basic idea is to run the indirect filter on the state error, then to correct the state estimate at
each step by adding in the error, and the state error is reset to zero after each correction. In the time
update process, the state error propagate equation can be written as

x= A(%,y)x (48)

In the measurement update process, it is also necessary to introduce a measurement of the state
error, and Equation (17) can be rewritten as

X' =X +L(z-h(x",u)-C(x", u)X) 19)
= xt4x"

The state error is set to zero after each estimation, that is x=0. The algorithm is outlined in
Figure 10.

i [ eps |

Full-state Indirect State Estimation | A Pressure Sensor |
|
Prediction Step Fast Sensors Update Slow Sensors Update

B =F 4 L0y () =5+ Larsi ~horsa (¥

Propagation model PR
—Cp(3)F) =Cops.a(3)37) Position

=5+ LVgps.e ~haps(87)
i i ~Caps.(F)F7)
Differential Pressure Sensor k

T =T+ Ly —hay ()

P=R(0)V
V=V (Yayro ~DNgyen )+ (Vacea ~Macca) + 11
2=5(0)(Ygyro ~D o)

b=0,,

W=0,,

¥ =X+ L(Vapspg ~hapsyg (X))

—Cay (8)X7) = Capsye (3)F7)

. L GroundSpeed
X=F(%Y)+ Gy (X) Ngyro + Gy (Mg + 11
. Static Pressure Sensor Course

States Error: x = x —x

=i P i e -
¥ =X+ LO%atic = Mytaric () e (}Gf'{, 6ps,7 (37)
State Error _c TS Cansy ()
Covariance Matrix warie (F7)X7)
= QR Measurement Update Step
3 & — 3 45 x*
X =X +X
=0

State Bus

Figure 10. Full-state indirect state estimation structure.

As the supplement to the direct filter, it is more computationally intensive and more complex, but
the elimination of measurement bias is better than the first two methods. Due to the large size of the
state matrix, the computation power of low-cost flight controller is a challenge. Figure 11 shows the
simulation results of the indirect method, Table 2 compares the accuracy of the different algorithms,
and Algorithm 3 is a summary of the method.

According to the above, it can be seen that the estimation accuracy of indirect method is better
than that of direct method, and the estimation accuracy of wind field is higher. The indirect method
has further improved the estimation accuracy of the altitude and position. Compared with Figure 9,
the altitude deviation is small at the beginning, the deviation after steady state is reduced, and the
result is more stable. Therefore, this method is suitable for large-scale solar-powered UAV or mission
with high trajectory tracking accuracy.
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Figure 11. Comparison of true and estimated state.
Table 2. Comparison of the estimate accuracy of three algorithms.
Roll Pitch Yaw Position Height Airspeed Ground GPS Wind
Angle Angle Angle (m) (m) (m/s) Speed  Course (m/s)
(deg) (deg) (deg) (m/s) (deg)
Three-stage series 2.52 3.13 7.19 6.04 53 2.4 29 10.45 0.3
Full-state direct 1.24 0.4 1.58 2.93 0.98 0.8 0.68 1.62 0.3
Full-state indirect 0.48 0.3 0.61 2.9 0.98 0.5 0.37 1.48 0.15

Algorithm 3. Full-state indirect state estimation

Time update

Fast sensor
update

Slow sensor
update

: Obtain w and a from gyroscope and accelerometer, set initial X and x = 0.

Update the state estimate using the kinematic equation and linearized state, Equations (35) and (37).

: if air pressure sensor measurement available then

for static and differential pressure sensor measurement do
Calculate sensor output, linearized output equations, and Kalman gain, Equations (15), (38) and (39).
Update state covariance, state error and estimate state, Equations (16) and (49).

end for

: Propagate X and P according to Equation (Equations (13) and (48))

Calculate pseudo side slip angle output and linearized output equations, Equations (40) and (41).

Using zero to update state estimate, Equations (15), (16) and (49)

end if

: if new GPS measurement available then

for each measurement state do
Calculate location, groundspeed and course output and linearized output equations (Equations (42) and (43)

Using measurement to update state error (Equations (15), (16) and (49))

end for

: end if
: State error reset zero, X = 0.

4. Simulation

In order to verify the effectiveness of the proposed algorithm, the simulation of the complete
mission path is carried out for the same UAV simulation model. A typical clime-cruise-hover-descend
is used as the mission path, and the hovering process performs specific tasks, and the estimation
accuracy in each flight phase and state switching is obtained. The flight trajectory and estimated

parameters are shown in Figures 12 and 13.

All three algorithms can achieve autonomous flight in the mission process, and the altitude and
trajectory accuracy are different. As the static pressure sensor and airspeed sensor are only processed
by low-pass filtering, the static bias of three-stage series method will appear in the estimation of
altitude and airspeed, which is 5.3 m and 0.9 m/s, respectively, and the error of flight trajectory will
also appear in the heading estimation, which is approximately 10 degrees, resulting in a position error
of 6 m in the hover phase.
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Figure 13. Different mission phases simulation.

Full-state estimation method fuses the measured data of pressure sensor and GPS, and has higher
accuracy of position and velocity estimation, and there is only a small error in altitude, airspeed, and
groundspeed. Full-state methods can consider the mutual influence between estimated states, and
the parameter is not abruptly changed during the state switching, which is obvious in the three-stage
series method. The altitude and position accuracy of the direct method are 1.2 degrees and 3.4 m,
respectively. The indirect method achieves similar precision, but the estimated result is more stable.
Since this method is based on the elimination of state error, the altitude estimation accuracy is high
and the steady-state process estimation accuracy fluctuation is small.

Table 3 compares the three algorithms from five aspects: Algorithm complexity, hardware
requirements, number of estimable parameters, estimation accuracy and application. The indirect
full-state algorithm has the highest accuracy, but the hardware requirements are also highest. The direct
full-state algorithm is more compromised, and the three-stage series has the adequate heading accuracy,
with the lowest controller computation requirements and simplest complexity, but the estimated

parameters are limited.

Table 3. Comparison of different state estimation algorithms.

Algorithm Hardware Estimated  Estimation Application
Complexity Requirement Parameters Accuracy PP
Three-stage series b 8. > 14 b 8. Low-cost, small UAV, lower mission requirements.
Full-state direct * kv * v 19 * kK Low-cost UAV with high trajectory tracking accuracy.
Full-state indirect ok k *k 19 2. 8.8.8.¢ Mission trajectory requires high precision and large-scale UAV.
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5. Field Experiment

A full-scale electronic UAV, with a wingspan of 3 m and a weight of 3 kg without solar cells,
was equipped with a low-cost flight controller and the three-stage series estimation algorithm were
loaded for the full mission flight verification (Figure 14). The cost of the flight controller is less than
$3000, and the whole system is less than $8000. The experimental site is located at (108°56’3.07”” E,
34°58’58.85"” N), with an altitude of 630 m, an average wind speed of 3.5 m/s, a ground temperature of
10 °C, and during autumn.

Figure 14. Field flight test of a small hand-launched UAV.

The UAV has no landing gear and it takes off through hand-launch from the car. The fuselage
touches the ground when landing. The predicted state during the calculation is the altitude, position,
and groundspeed. In the Figure 15a,c are three-dimensional and two-dimensional flight trajectories,
respectively, and (b) is parameters and commands recorded by flight controller. The directly measured
states include altitude, airspeed, longitude and latitude; the IMU data are shown in the dotted line
in Figure 16. Through the control of pitch and roll angle, altitude and airspeed control results,
the three-stage series state estimation algorithm can provide a reliable state for flight controller.
The calculation frequency is 50 Hz, and the IMU is also sampled based on the same frequency; the
GPS measurement frequency is 10 Hz, which is the same as the data transmission frequency; and
the data link frequency band is 915 MHz. The variation range is 8 m, the airspeed is 9-15 m/s, the
groundspeed is 6-16 m/s, the roll angle accuracy is 6.5 degrees, the pitch angle is 3 degrees, the yaw
angle is 9.3 degrees, and the trajectory tracking precision is nearly 23 m.

1091035
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1001020 Ll
91015

10
340345091010

(a) Three-dimensional flight path
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Time(s) Time(s)
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(b) Flight parameters

0.00018
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Figure 15. Flight path and state parameters during cruise process.
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Figure 16. Comparison of IMU measurement and filtered data.

The field flight test can not only verify the feasibility of the state estimation algorithm, but also
calibrate some parameters in the modeling process, such as sensor measurement bias, noise and
covariance matrix R. The Finite Impulse Response (FIR) filter is used to filter the flight data [27], as
shown in Figure 16. The measurement result of the IMU is regarded as the raw data, and the filtered
parameter is regarded as the real state. The bias and noise of the sensor model can be obtained by the
following equations:

min min

XX Xf |max
Neorrect = —— 5 ——

2
ﬁcarrect == E(Xm) - E(Xf)

where fcorrect 15 the corrected measurement noise and feorrect is the corrected measurement bias.
The subscripts m and f represent measured and filtered data.

The statistical data are of the measured noise and deviation of the IMU is shown in Table 4. For the
noise of the accelerometer and the bias of the gyroscope, the value in the y direction is smaller than the
x and z directions. The calibration of the covariance matrix R in the state estimation process is shown

(50)

as follows:
(0.0818)° 0 0 (0.0723)2 0 0
Ryl = 0 (0.0193)2 0 Rgyro = 0 (0.0906)2 0 (51)
0 0 (0.251)2 0 0 (0.0898)2
Table 4. The statistics of IMU measurement noise and bias in the cruising process.
Accelerometer (m/s?) Gyroscope (deg/s)
x Direction y Direction z Direction p q r
Noise 0.0818 0.0193 0.2514 41424 5.915 5.146
Bias 0.00424 0.00315 —0.0875 -0.1074 0.0383 0.3928

For the velocity vector, V = (1,7, w)T, both u and w are greater than v during the mission process.
A penalty factor 7 can be introduced in the matrix R, to get a more general expression, rewritten as

T
Riccer :[ Rxo TRyo RZO ] (52)

6. Conclusions

This paper begins with the cost of the flight controller of a hand-launched solar-powered UAV
without ailerons and landing gear, and proposes three novel state-estimation algorithms according to
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whether they are hierarchical, direct or indirect. The UAV trajectory tracking accuracy is improved by
three algorithms and the platform cost is reduced.

Firstly, the measurement process of the low-cost sensors is modeled, and the simulation of the
model is completed based on the statistical values of the measurement error and bias. The measurement
of the accelerometer is high frequency, the gyroscope and the magnetometer are in middle frequency,
and the GPS measurement is low frequency.

The three-stage series method reduces the longitudinal accuracy, and focuses on the estimation
of heading angle to improve the trajectory precision, which is simple, with a clear hierarchy, limited
estimation parameters, and is suitable for application on low-cost small UAV platforms. The full-state
method can also obtain side-slip angle or side-to-side velocity estimation to improve the control
precision of the aileron free UAV. For the solar-powered UAV, a method of fixing the magnetometer
externally can be selected to ensure heading accuracy. The full-state direct method has a higher
estimation accuracy and more estimation parameters, but the increase of the algorithm calculation
requires a higher-level controller, suitable for high control precision and harsh takeoff and landing
conditions. The indirect method has the highest accuracy estimation and the highest requirements for
flight controllers, which can be applied to large solar-powered UAV platforms.

Simulations are presented to validate the proposed methods, and the results show the three-stage
series method has a position accuracy of approximately 6 m, while the direct and indirect methods are
both 3.4 m; however, the stability and state switching of the indirect method are better. Afterwards, the
three-stage series algorithm is loaded on the full-scale low-cost electric UAV. The results illustrate that
the three-stage series algorithm can provide a reliable state for the controller and achieve stable control,
the yaw angle precision is 9.3 degrees, and the trajectory tracking precision is nearly 23 m. Finally, the
sensor model and covariance matrix R corrected according to the recorded and filtered data of the
IMU during flight.

As a next step, we will conduct research on a long-endurance, high-reliable flight control system,
and adaptability to harsh environmental condition. With the long time reliability test of the hardware,
the service life of the low-cost solar-powered UAV can be obtained. The completion of this series of
experiments makes it closer to civilian applications.
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