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Abstract: Recently, smart stents have been developed by integrating various sensors with intravascular
stents for detecting vascular restenosis or monitoring intravascular biomedical conditions such as
blood pressure or blood flow velocity. The information on biomedical signals is then transmitted
to external monitoring systems via wireless communications. Due to the limited volumes of blood
vessels and limited influence of blood flow, antennas with good radiation performance are required
for intravascular applications. In this paper, we propose a stent antenna composed of multiple
rings containing crowns and struts, where each ring is connected with one connector. Unlike a
conventional stent, wherein each ring is connected with several connectors, the single connector
prevents the random distribution of electrical current and thus achieves good radiation performance.
The implantable stent antenna is designed for the frequency range of 2 to 3 GHz for minimum
penetration loss in the human body and tissues. Mechanical FEM simulations were conducted
to ensure that the mechanical deformation was within specific limits during balloon expansions.
A prototype was fabricated with laser cutting techniques and its radiation performance experimentally
characterized. It was demonstrated that the fabricated stent antenna had an omnidirectional radiation
pattern for arbitrary receiving angles, a gain of 1.38 dBi, and a radiation efficiency of 74.5% at a
resonant frequency of 2.07 GHz. The main contribution of this work was the manipulation of the
current distributions of the stent for good EM radiation performances which needed to be further
examined while inserted inside human bodies. These research results should contribute to the further
development of implantable wireless communications and intravascular monitoring of biomedical
signals such as blood pressure and blood flow velocity.

Keywords: smart stent; implantable antennas; vascular restenosis; blood pressure; blood flow
velocity; PWV; FEM; intravascular monitoring

1. Introduction

In past decades, intravascular stents have been widely used in the medical treatment of vessel
obstructions for patients with vascular diseases such as stroke, heart attack, and aneurysm [1,2].
Stents are essentially wire meshes inserted into narrow blood vessels via a catheter and medical
surgery. The narrow parts of the blood vessels are expanded by balloons to restore regular blood
flow. However, the long-term usage of stents inside the blood vessels leads to vascular restenosis
(i.e., vessel re-narrowing) due to the growth of vascular smooth muscle cells [3]. The re-narrowing of
blood vessels hinders the blood flow and can cause severe problems. These issues can be alleviated by
eluting drugs [4,5], manipulating shear stresses on the vessel walls [6], or heating the re-narrowing
regions to suppress the growth of vascular smooth muscle cells [7,8].

For early diagnosis of restenosis and real-time monitoring of intravascular blood conditions,
smart stents or intelligent stents have been developed by integrating versatile sensors and wireless
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electronic systems with stents, as shown in Figure 1 [9,10]. For example, pressure sensors are used to
measure intravascular blood pressure [9,11–16], multiple pressure sensors are used to measure the
pulse wave velocity (PWV) [17], flow sensors can provide blood flow velocity [2,18,19], and other
embedded sensors are utilized to monitor glucose [20] and temperature [19]. In fact, measuring blood
pressure intravascularly, directly from blood vessels, provides accurate and real-time values of blood
pressure that are superior to those of non-invasive blood-pressure approaches such as ultrasound [21],
the volume-clamp method [22]. These sensors mounted on the stents should have low profiles and
small sizes to avoid potential obstacles for regular blood flows [12]. The measured intravascular signals
can be signal-processed by embedded microprocessors or transmitted to external monitoring systems
via wireless communications [11,23].
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Figure 1. Illustration of a smart stent wherein the entire stent acts as an antenna for transferring
biomedical information measured via integrated sensors to the external monitoring system.

In general, intravascular stents are small in size, ranging in length from 12 to 38 mm and
in diameter from 2 to 10 mm. Thus, it is necessary to miniaturize implantable electronic devices
and communication systems. Various wireless power/data communications approaches for smart
stents have been investigated, including passive LC-resonant antennas [7–9,12,17,24–26], miniaturized
packaged antennas [20], RFIC [11], and active stent antennas [10,14,15,19,23]. LC-resonant antennas
are composed of metallic stents acting as inductors and additional capacitors forming LC resonant
circuits. Via strong magnetic field couplings with external loop antennas and the phase dip technique,
the intravascular information can be obtained through the variations of the resonant frequencies.
However, one disadvantage of LC resonant antennas is that the active regions of the transmitting
loop antennas should be overlapped with the receiving inductive stents for strong magnetic-field
couplings [17]. In some circumstances, it is difficult to locate coronary artery stents by the commonly
used CT angiography [27] or MRI [28]. However, the whole stent can be considered as an antenna
for receiving electromagnetic signals and power from transmitting antennas at arbitrary angles [23].
For stent antennas, the requirements that need to be met are long-term usage, biocompatibility, electrical
conduction, and radial expansion capability, as well as structural integrity after expansion to prevent
the influence of blood flow.

In this paper, we propose a stent antenna for intravascular monitoring and implantable wireless
applications. The stent antenna was expected to have better radiation performance than that of LC
resonant antennas at low frequencies, such as 900 MHz [19]. Modern stents are composed of open cells,
each unit is composed of crowns and struts, and each ring is connected by multiple connectors [29].
However, this design would cause random current distribution and reduce radiation performance.
The goal of this work was to design a stent antenna with good radiation performance by using
a single connector between each unit of the stent. The single-connector stent antenna eliminates
the complicated and meandering geometry of a typical stent, which would cancel out the induced
currents and be unable to excite the desired electromagnetic waves. In addition, a stent with single
connectors should maintain a stable mechanical structure and not exceed fracture limits during balloon
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expansion [1]. The single-connector stent antenna could be applied to other vessels and not limited to
coronary arteries.

This paper is organized as follows. In the next section, the design of the proposed stent antenna
and its operation frequency are presented. Then, the EM and FEM simulations determining the
electrical properties and mechanical FEM simulations for verifying the mechanical properties are
described. Subsequently, the laser-cutting fabrication process and balloon expansions of prototypes
are disclosed. Finally, the radiation characteristics of the fabricated stent antenna are measured in an
anechoic chamber and discussed. Important results are summarized at the end of the paper.

2. Designs

Figure 2a presents the 2D unfolded planar geometry of a multi-connector stent. In general,
multi-connector stents are composed of several rings connected by connectors with cylindrical shapes
for providing sufficient radial force to open narrowed blood vessels [5,24]. Each ring consists of crowns
and struts, and the crowns are circular so that they can expand and achieve large deformation under
balloon expansions. Most commercially available multi-connector stents have two to three connectors
between adjacent rings to achieve the desired structural stability [30,31]. However, these multiple
connectors can lead to random current distributions and are not suitable for antenna applications.
In this paper, we propose a single-connector stent antenna having adjacent rings connected by a single
connector, as shown in Figure 2b. A single-connector stent antenna can allow current distribution
with an approximate half-wavelength resonant mode. The current distributions will be discussed
in the next section. Figure 3a,b presents the 3D geometries of a multi-connector and the proposed
single-connector stent antennas where undesired connectors are not connected.
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Figure 3. 3D topologies of (a) multi-connector and (b) single-connector stent antennas.

For implantable antennas, the resonant frequency of the stent antenna depends on the total length
of the stent and its geometry. In fact, in the human body, electromagnetic waves (EM) have different
penetration attenuations and variable power loss boundaries at different frequencies [23,32]. For
low-frequency electromagnetic coupling communications, the optimal operation frequency is in the
MHz range for low tissue absorption loss where the biological tissues are modeled as dispersive medium
and results in large sizes of implanted antennas [23]. For high-frequency wireless communications,
the human body is modeled as a low-loss multi-layer dielectric medium and the optimal frequency
is in the range from 2 to 3 GHz for the minimum tissue absorptions and good orientation tolerances
of implanted antennas [32]. Therefore, the single-connector stent antenna was designed to have a
resonant frequency in the range of 2 to 3 GHz that the total length of the surface current flow path
shown in Figure 2b was close to a half wavelength expressed as

(Strut Length + Crown Length + Connector Length) × (Ring Number) �
λ
2

(1)

where λ was the wavelength of the first resonance. The strut length, crown length, and connector
length are the lengths of the strut, crown, and connector shown in Figure 2. Furthermore, the length
should be in the range of 10 to 20 mm, and the diameter, in the range of 2 to 10 mm due to the sizes of
vessels [7,8]. In addition, this frequency range falls in the range of the ISM band, and a high operation
frequency is beneficial for implantable antennas [23]. The final dimensions of the single-connector stent
antenna were a length of 18 mm, 6 crowns, 9 rings, and a final diameter of 2 mm when inserted into
blood vessels, as shown in Figure 4 and Table 1. For comparison, a multi-connector stent antenna and
an old helix-shaped stent antenna of the same size were also investigated. The helical stent antenna
had 9 turns within the same total length of 18 mm.

Table 1. The geometric parameters of three stent antennas.

Stent Antenna L (mm) OD (mm) Crown Number Ring Number Turn Number

Single 18 2 6 9 ×

Multi 18 2 6 9 ×

Helix 18 2 × × 9
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In this research, we employed the commonly used L-605 Cobalt-Chromium (Co-Cr) alloy as the
material for all the stents because Co-Cr alloy has a smaller minimum thickness than conventional
stainless steel [1]. As a ductile material, Co-Cr alloy has a Young’s modulus of 203 GPa, a Poisson’s
ratio of 0.3, yield stress of 590 MPa, and ultimate strength of 1689 MPa.

3. Simulations

3.1. EM FEM Simulations

To investigate the EM properties of stent antennas, full-wave EM simulations were conducted to
study the surface currents and radiation patterns with commercial software, CST Microwave Studio.
Figure 5 shows the surface current distributions at the resonant frequency of the helical, multi-connector,
and single-connector stent antennas. Most stent antennas had an issue of small ground planes due
to limited small volumes of blood vessels [10,23]. Similarly, we used SMA connectors with finite
ground planes for power extractions. It could be improved by combining two stent antennas to
form a dipole-like antenna [23]. The multi-connector stent antenna had three connectors, and the
random current flowed throughout the entire stent. In the single-connector stent antenna, there was
a major current flow path between each ring, resulting in an approximate half-wavelength resonant
mode similar to that of the helical stent antenna with a relatively small ground plane. Therefore, the
single-connector stent antenna and the helical stent antenna had similar resonant frequencies, as can
be observed from the simulated reflection coefficients in Figure 6. Since the multi-connector stent
antenna had random current distribution, it had a higher resonant frequency with the same dimensions.
This result supported that a single-connector stent antenna is suitable for stent antennas.
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Figure 5. The simulated surface current distributions of the (a) helical stent, (b) multi-connector stent,
and (c) single-connector stent antennas. At the resonant frequency, the multi-connector stent antenna
has a radon current path where the helical and single-connector stent antennas have half-wavelength
resonant modes. The red dashed box indicates the locations of the maximum current.
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3.2. Mechanical FEM Simulations

To verify that the mechanical properties of the stent antennas fulfilled the requirements, mechanical
finite element simulations were conducted in commercial software, ABAQUS (Dassault System Simulia
Corp., Velizy Villacoublay, France). In accordance with the practical balloon expansion processes of
stents, a cylindrical stent with an initial diameter of 1.5 mm was expanded to a diameter of 2.2 mm to
simulate balloon expansion, as shown in Figure 7 [33]. Then the oversized stent was compressed to
the desired diameter of 2 mm to simulate the radial force of the blood vessel walls. The simulated
Von-Mises stress distributions of the multi-connector and single-connector stents are shown in Figure 8.
In general, coronary stents use ductile materials that can achieve large deformation during balloon
expansion [34]. They obey the Von-Mises stress criterion, expressed as
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σvon−mises =
[(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2]
1
2

√
2

≤ σy (2)

where σ1, σ2, and σ3 are principle stresses. The Von-Mises stress criterion indicates that ductile stents
may fracture if the maximum Von-Mises stress exceeds the ultimate strength. The maximum Von-Mises
stresses of the multi-connector and single connector stents in this research were lower than the ultimate
strength of 1689 MPa of Co-Cr alloy. In other words, both stents had suitable mechanical properties
for balloon expansions. In addition, the effect of removing the connector was described in Figure 9.
If the connector was completely removed, it caused a longer longitudinal deformation, L2, than the
original length of the connector, L1, resulting in undesired longitudinal elongations. This could be
modified via partially removing the connector shown in Figure 9b that the deformed length, L3, was
shorter than L2. Therefore, the trade-off design of the single connector was to sacrifice the longitudinal
elongation and gain a better radiation efficiency.
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4. Fabrication

Two prototypes of single-connector and multi-connector stents were fabricated via laser cutting of
cylindrical Co-Cr alloy hypotubes. To pattern 2D unfolded geometries on the surfaces of the hypotubes,
a 30W Nd-YAG pulse type fiber optical laser (Rofin) and an XY movement platform (Aerotech position)
with precise position controls were employed. The details of the fabrication processes are reported
in [1]. Figure 10 presents photographs of the fabricated multi-connector and single-connector stent
antennas connected with SMA connectors for measurements. High-resolution photographs of the
fabricated multi-connector and single-connector stent antennas viewed under an optical microscope
are shown in Figure 11. In the single-connector stent antenna, each ring was connected via a single
connector, and undesired connectors were not connected, as highlighted with a red box.
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5. Measurements

5.1. Reflection Coefficients

The reflection coefficients of the fabricated single-connector and multi-connector stent antennas
were measured with a calibrated vector network analyzer (Agilent E5071C). To reduce the effect of
the feed line, an RF choke (Jin Hua Electronic Co., LTD, model: 2030000001866, Taipei, Taiwan) was
utilized during the measurements. Figure 12 shows the simulated and measured reflection coefficients
of both stent antennas. The resonant frequency of the single-connector stent antenna was lower than
that of the multi-connector stent antenna of the same length. The simulation results matched the
measured results, and the slight discrepancy was due to fabrication errors and tolerances.



Sensors 2019, 19, 4616 9 of 14
Sensors 2019, 19, x FOR PEER REVIEW 9 of 14 

 
Figure 12. The simulated and measured reflection coefficients of the multi-connector and single-
connector stent antennas. 

5.2. Far-field Radiation Characteristics 

The 3D far-field radiation patterns were measured in the anechoic chamber at the Joint 
Laboratory for Microwave and Millimeter Wave Antenna Measurements at National Taiwan 
University of Science and Technology. Figure 13 shows the measurement setup. The stent antenna 
was mounted on a rotating stage and acted as a receiving antenna, and the probe antenna, which 
acted as a transmitting antenna, moved in the azimuth and elevation planes. The measured gain 
radiation patterns are shown in Figures 14 and 15. Note that the measured radiation patterns at 180° 
were inaccurate due to the measurement setup where the transmitting antenna couldn’t move to the 
position underneath the stent antenna. 

 
Figure 13. (a) Illustration of the measurement setup for 3D far-field radiation measurements, (b) The 
anechoic chamber, (c) The stent antenna mounted on a rotating stage to act as a receiving antenna. 

Figure 12. The simulated and measured reflection coefficients of the multi-connector and single-
connector stent antennas.

5.2. Far-field Radiation Characteristics

The 3D far-field radiation patterns were measured in the anechoic chamber at the Joint Laboratory
for Microwave and Millimeter Wave Antenna Measurements at National Taiwan University of Science
and Technology. Figure 13 shows the measurement setup. The stent antenna was mounted on a
rotating stage and acted as a receiving antenna, and the probe antenna, which acted as a transmitting
antenna, moved in the azimuth and elevation planes. The measured gain radiation patterns are shown
in Figures 14 and 15. Note that the measured radiation patterns at 180◦ were inaccurate due to the
measurement setup where the transmitting antenna couldn’t move to the position underneath the
stent antenna.
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Figure 14a,b shows the simulated and measured gain radiation patterns of the multi-connector
stent antenna at a resonant frequency of 2.97 GHz in the E- and H-planes, respectively. Similarly,
Figure 15a,b shows the simulated and measured gain radiation patterns of the single-connector stent
antenna at a resonant frequency of 2.07 GHz in the E- and H-planes, respectively. It can be seen that
the radiation efficiency of the single-connector stent antenna was superior to that of the multi-resonant
stent antenna due to its approximate half-wavelength resonant mode shown in Table 2. Although the
multi-connector stent had a larger gain compared to that of the single-connector stent, both stent-based
antennas had donut-shaped radiation patterns with omnidirectional radiation in the azimuth plane,
which would be suitable for arbitrary receiving angles. Figure 16 shows the gain and the radiation
efficiency of the single-connector stent antenna at different frequencies. It was demonstrated that the
highest radiation efficiency of the single-connector stent antenna was 74.5% at the resonant frequency of
2.07 GHz, with a corresponding gain of 1.38 dBi. It indicated that a single-connector stent could provide
the maximum radiation efficiency and omnidirectional electromagnetic emissions for intravascular
wireless communications.

Table 2. The radiation characteristics of the stent antennas.

Stent antenna Gain (dBi) Directivity (dBi) Efficiency (%)

Multi 4.94 6.527 69.5

Single 1.38 2.661 74.5
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6. Discussions

In this research, we proposed a single-connector stent antenna composed of the stent and
SMA connectors for good radiation efficiencies. The SMA connector acted as a finite ground plane.
The simulation results showed that the entire stent antenna had a half-wavelength current distribution
shown in Figure 5 and a dipole-link radiation pattern shown in Figure 14. For all measurements
conducted in this research, an RF choke was exploited to reduce the effects of the feed line and only
considered the stent antenna. The measured radiation pattern demonstrated a dipole-link radiation
pattern as expected shown in Figure 14. The discrepancy between the simulated and measured
radiation patterns at 180◦ was due to the measuring equipment that the receiving antenna cannot move
underneath the stent antenna and cannot measure the EM radiation at 180◦.
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7. Conclusions

In this paper, we present a stent antenna for intravascular monitoring and implantable wireless
applications that employ the entire stent as an antenna. The main contribution of this work was the
manipulation of the current distributions of the stent for good radiation performance with a short stent
length by exploiting a single connector between each unit of the stent. Unlike a general stent, wherein
each unit is connected with multiple connectors, our proposed stent can achieve good EM radiation,
maintain good mechanical strength, and remain within fracture limits during balloon expansions.
A prototype was designed, fabricated, and experimentally examined with an EM anechoic chamber.
The fabricated stent antenna demonstrated an omnidirectional radiation pattern, a gain of 1.38 dBi, and
a radiation efficiency of 74.5% at the resonant frequency of 2.07 GHz. The results of this research should
contribute to the development of implantable wireless communications and intravascular monitoring
of cardiovascular diseases.
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