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Abstract: The problem of prescribed-time containment control of unmanned underwater vehicles
(UUVs) with faults and uncertainties is considered. Different from both regular finite-time control
and fixed-time control, the proposed prescribed-time control strategy is built upon a novel coordinate
transformation function and the block decomposition technique, resulting in the followers being able
to move into the convex hull spanned by the leaders in prespecifiable convergence time. Moreover,
intermediate variables and the control input terms are also shown to remain uniformly bounded
at the prescribed-time. To reduce the magnitude of the bounds, a novel fixed-time observer for the
fault is proposed. Two numerical examples are provided to verify the effectiveness of the proposed
prescribed-time control strategy.
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1. Introduction

Formation control, a typical behavior in various aspects of systems, has received considerable
attention due to its wide applications in spacecraft formation flying, deep-sea inspections, mobile
robots and underwater vehicles. Many of the typical systems, the unmanned underwater vehicles
(UUVs), share information with neighbors to obtain the goal in the complex ocean environment.
In particular, containment control with multiple leaders is of great vital and potential application.
For instance, the leaders can detect the obstacles, and the followers maintaining in the convex hull
formed by the leaders can execute the task with collision avoidance [1–4].

In leader–follower formation control of UUVs, some challenging issues exist that deserve
discussion, e.g., the convergence speed of the formation control system. In [5], the finite-time
formation control of multiple nonholonomic mobile robots is considered. In [6], a finite-time
leader–follower formation control for quadrotor aircraft is discussed, and a similar finite-time
fault-tolerant leader–follower formation control strategy is presented for a group of autonomous
surface vessels in [7]. In [8], the finite-time consensus and collision avoidance control algorithms for
multiple UUVs are considered. Furthermore, in [9], fixed-time leader–follower formation control of
autonomous underwater vehicles with event-triggered intermittent communications is presented,
and the fixed-time formation control algorithm can not only ensure the settling time regardless of
the initial conditions of the system, but also can obtain higher accuracy performance and faster
convergence speed of the system. While fixed-time stabilization fixes the defects of the finite-time
control algorithm, where the convergence time is set by some fixed number independently of the initial
condition, it should be emphasized that the settling time in fixed-time control cannot be preassigned
arbitrarily, due to the fact that the upper bound of settling time is subject to certain restrictions.
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Furthermore, the existing algorithms for finite-time control and fixed-time control do not always lead
to smooth control action because of the existence of the signum function. In [10], the prescribed-time
consensus is considered in the single integrator model. In [11], the prescribed finite-time consensus
tracking for multi-agent systems with nonholonomic chained-form dynamics is considered. To the
authors’ knowledge, few works related to the formation control for UUVs by smooth control law
within fixed-time have been considered.

On the other hand, although finite-time and fixed-time stabilization have been widely considered
due to the specified time property for the control system [12], most of the finite-time and fixed-time
stabilization algorithms of a chain of integrators are presented by the approaches based on sliding
modes and the concepts of homogeneity [13–16]. However, the tuning of control parameters is
complicated, and the issue of high control gain always exists.

Motivated by the prescribed-time observer design in [17], the prescribed-time state feedback
controller design [18] and the prescribed-time output feedback for linear systems in controllable
canonical form in [19], in this paper, the containment control of multiple UUVs with faults and
uncertainties in prescribed-time is investigated. By employing the consensus variables, the consensus
problem is transformed into the stabilization of general MIMO systems. Due to the MIMO structure
of the considered system, the original multi-input system needs to be decomposed into the block
form [20]. However, due to the dimensions of the block subsystems being distinct, which increases
the difficulty for the prescribed-time controller design, the stabilization algorithms for a chain of
integrators lose efficacy and cannot be utilized directly. Thus, we propose a novel prescribed-time
state feedback controller for MIMO linear systems by employing a novel nonsingular coordinate
transformation function based on the block decomposition technique, which allows for both easy
prescriptions of the convergence times, and minimal tuning of the observer and controller parameters.
In addition, the bounds of the intermediate variables and the control inputs are obtained.

Compared with previous works [5–10,17–19], the contribution of this paper is at least threefold.
First, in contrast to [5–9], whose converge time is related to the initial values or cannot be preassigned
arbitrarily, the results obtained in this paper are the containment control scheme of multiple UUVs in
prescribed-time, which can be arbitrarily assigned regardless of the system restrictions or the initial
values. Moreover, the control law continuously avoids the signum function. Second, compared
with [10,17,18], where the system is SISO, in this paper the MIMO case is solved. Since the block
subsystems have distinct dimensions, the methods for the traditional chain system of the intermediate
variable are inapplicable. Hence the existing prescribed-time control laws cannot be used here.
To this end, different from [18] and [19], a novel intermediate variable dynamic system is introduced.
On this basis, by the induction method, the non-singular coordinate transformation for the distinct
dimension problem is proposed. Additionally, to confirm the relation between the UUV system and
the transformed one, a special inverse transformation analytic solution is used. It is proven that the
containment errors converge to zero, and the intermediate variables and the control input terms are
uniformly bounded in the prescribed time, which increase the difficulties and challenges. Moreover,
to reduce the magnitude of the bounds, a novel fixed-time observer of the fault is proposed. Third,
compared with the recent literature [19], the containment control system is limited to the simple single
Integrator system. The containment controllers proposed in this paper can be implemented in the
multi-agent UUV systems, which is more practical and meaningful.

Notations: In this paper, xT represents the transpose of x. The vector 1N is defined as
[1, 1, ..., 1]T ∈ RN . i ∈ I[1, N] means i = [1, . . . , N]T . Matrix IN is the N-dimensional identity matrix.
‖·‖ is represented as the Euclidean norm and ⊗ is the Kronecker product. Rm×n is the set of m× n
real matrices.
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2. Preliminaries and Problem Formulation

2.1. Preliminaries

Using graph theory, we can model the topology in a system consisting of N agents. Denoted by
∀i ∈ Γ the vertex set. Let g = {∆, E, A} be a directed graph of N orders, where ∆ = {v1, v2, · · · , vN}
is a finite nonempty set of nodes, and E ⊆ ∆ × ∆ is the set of edges. The weighted adjacency
matrix A = [aij] ∈ Rn×n is defined such that aij is positive if (vi, vj) ∈ E, while aij = 0 otherwise.
If (vj, vi) ∈ E is also satisfied, then the graph is undirected. The Laplacian matrix L = [lij]N×N is
defined as lii = ∑N

j=1,j 6=i aij and lij = −aij, i 6= j, ∀i, j ∈ 1N . Both the adjacency matrix A and Laplacian
matrix L are symmetric for undirected graphs. A directed graph contains a directed spinning tree if
there exists a directed path from the root to every other node in the graph.

Definition 1 ([21]). Given a set Ω ∈ Rm, ∀x ∈ Ω, y ∈ Ω, 0 ≤ γ ≤ 1, if (1− γ)x + γy ∈ Ω, then Ω is
convex. For a finite set of points y1, y2, · · · , yn ∈ Rm, the convex hull is

co{y1, y2, . . . yn} = {
n

∑
i=1

δiyi |δi ∈ R, δi ≥ 0,
n

∑
i=1

δi = 1} (1)

Consider M(M < N) followers labeled as 1 to M and N −M leaders labeled as N −M + 1 to N. Define
L as the Laplacian matrix of its corresponding topology. The matrix L can be described as

L =

[
L1 L2

0(N−M)×M 0(N−M)×(N−M)

]
(2)

where L1 = RM×M and L2 ∈ RM×(N−M).

Definition 2 ([21]). The containment control is achieved when the followers converge to the convex hull formed
by the leaders. That is to say, when t→ ∞, xi(t)→ co{xj(t) |i ∈ le}, i ∈ F.

Lemma 1 ([22]). In the directed graph, the matrix L1 ∈ RM×N is invertible if it contains a directed
spanning tree.

Lemma 2 ([23]). In a directed graph, if there is a directed spanning tree, the sum of the elements in each row of
the matrix L−1

1 L2 is 1.

2.2. Problem Formulation

Consider a network of a multi-agent UUV system consisting of M followers, labeled as UUV 1 to
M. The nonlinear maneuvering model of the UUV can be described below [Fossen, 2002]:

Mi ν̇i + C(νi)νi + D(νi)νi = −g(ηi) + τi,

η̇i = J(ηi)νi,
(3)

where ηi = [ni, ei, ψi]
T is the standard position vector in the inertial coordinate system, νi = [$i, vi, ϑi]

T

is the standard velocity vector in body coordinate system. ni, ei are, respectively, the position in north
and east, $i, vi are, respectively, the velocity in surge and sway. Moreover, the variables ψi and ϑi
are the angles and rates in yaw, respectively. Define pi = [ni, wi]

T and εi = [$i, vi]
T . The control

input vector τi = [τxi, τyi, τψi]
T is composed of surge force τxi, sway force τyi and yaw moment τψi.

The matrix C(νi) represents rigid-body Coriolis-centripetal matrix and D(νi) is the damping matrix.
g(ηi) is the matrix of restoring forces. J(ηi) denotes the kinematic transformation matrix from the
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body-fixed reference frame to the inertial frame. They are assumed to be known matrices of compatible
dimensions. Moreover,

Mi = diag{m− X$̇i , m−Yv̇i , Iz}

C(νi) =

 0 0 −mvi + Yv̇i vi
0 0 mρi − X$̇i $i

mvi −Yv̇i vi −m$i + X$̇i $i 0


D(νi) = diag{−X$i − X$i |$i ||$i|,−Yvi −Yvi |vi ||vi|,−Nϑi − Nϑi |ϑi ||ϑi|}.

where X$̇i and Yv̇i are added mass terms.

Lemma 3. Define x f i = [pT
i , εT

i ]
T as the position and velocity of the i-th UUV, then the nonlinear UUV

maneuvering System (3) can be equivalent to the dynamics below,

ẋ f i = Aix f i + Bτ′i ,

y f i = Cx f i,
(4)

ψ̇i = ϑi

ϑ̇i = −
d33

m33
ϑi +

1
m33

τψi

(5)

with

Ai =

[
0 I
0 Aλi

]
, Aλi = diag{ d11

m11
,

d22

m22
}, B =

[
0
I

]
, C =

[
I 0

]
, τ′i = R(ψi)M−1

1 τi = [τ′i1; τ′i2],

R(ψi) =

[
cos(ψi) −sin(ψi)

sin(ψi) cos(ψi)

]
, τi =

[
τxi
τyi

]
.

Proof. See Appendix A.

Due to the complex ocean environment, UUVs are inevitably affected by uncertainties or suffer
from faults. Hence, this paper solves the containment control of multi-agent UUV systems with faults
and uncertainties. Then the dynamics of Equation (4) can be extended as follows,

ẋ f i = Ax f i + Bτ′i + Fa fi + Ddi,

y f i = Cx f i, i ∈ F
(6)

where the symbol F represents the set of followers, x f i ∈ Rn is the state of the i-th UUV, τ′i ∈ Rm and
y f i ∈ Rr are, respectively, the input and output state, di ∈ Rq represents the disturbances on sensors
and inputs, fai ∈ Rm is the actuator faults. Moreover, we assume that the disturbances di and faults fai
are matched, e.g., Fa = BF′a and D = BD′ where F′a and D′ have appropriate dimensions.

Consider the dynamics of the virtual leader UUV as follows,

ẋri = Axri,

yri = Cxri, i ∈ le
(7)

where the symbol le represents the set of leaders, xri(t) ∈ Rn is the state of leaders and yri (t) ∈ Rr is
the output of the leader.
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2.3. Objective

This paper aims to design a prescribed-time containment control law for the multi-UUV System
(3) under uncertainties and actuator faults, such that the trajectories of UUVs converge to the convex
hull spanned by the leaders; i.e.,

lim
t→T

dist{x f i(t), co{xrj(t)|i ∈ F, j ∈ le}} = 0 (8)

where T is the prescribed time constant.
The main significance of the prescribed-time control lies in achieving the objective within the

desired time without oscillations. For this, it is important for the multi-UUV system to perform some
time-related tasks. Meanwhile, actuator faults have not been considered in the previous prescribed-time
control research and make the problem more challenging.

In the following design, we first present a novel fixed-time observer to estimate the faults,
which will reduce the magnitudes of the containment error variable and intermediate variables
introduced in the prescribed-time control law. Next, to achieve the containment control for UUVs,
a prescribed-time control law is proposed for a generalized MIMO system. Then, we employ the
prescribed-time control method to develop the prescribed-time containment controllers for UUVs in
Section 3.

3. Main Results

3.1. Model Transformation

Introduce the local neighborhood error variable below,

ri =
M

∑
j=1

aij(xi − xj)+
N

∑
k=M+1

aik(xi − xk), i ∈ 1, · · · , M (9)

and the relative output information can be represented as

ξi = ∑
j∈Ni

aij(yi − yj) (10)

According to Dynamic (6), by taking the derivative of the containment variable Dynamic (9),
we have

ṙ = (L1 ⊗ I)ẋ f + (L2 ⊗ I)ẋr (11)

Then it holds that

ṙ = (IM ⊗ A) r + (IM ⊗ B) u + (IM ⊗ B) f + (IM ⊗ D) d (12)

where u = (L1 ⊗ Im)τ′, f = (L1 ⊗ Im) f , d = (L1 ⊗ Iq)d. Thus, Dynamic (12) is equivalent to the
subsystems below,

ṙi = Ari + Bui + Fa f i + Ddi (13)

Combined with the relative output information of Equation (10), we get the following subsystems,

ṙi = Ari + Bui + Fa f i + Ddi

ξi = Cri
(14)
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Then the prescribed-time containment control problem is transformed into the prescribed-time
stabilization of Dynamic (14).

3.2. Fault Estimation

Define δi = [r̄T
i , f̄ T

i ]
T , then Dynamic (14) can be written as

δi(t) = Āδi(t) + B̄ui + D̄β̄i

ξ̄i(t) = C̄δi(t),
(15)

with Ā =

[
A F
0 0

]
, δi =

[
r̄i
f̄i

]
, B̄ =

[
B
0

]
, β̄i =

[
d̄i
˙̄fi

]
, D̄ =

[
D 0
0 I

]
, C̄ =

[
C 0

]
. Design the fixed time

fault estimator below,

żi = Mi1zi + Giui + Riξi

ˆ̄fi1 = zi + Hiξi
(16)

żi = Mi2zi + Giui + Riξi

ˆ̄fi2 = zi + Hiξi
(17)

Theorem 1. Consider the Dynamic (14) and the Observers (16) and (17), the fault estimation error dynamic

is fixed-time bounded. Define ρi =

[
ˆ̄fi1
ˆ̄fi2

]
, then with t > τ, τ > 0 the fault can be approximately estimated

as ˆ̄fi = Ki(ρi(t)− eM̄iτρi(t− τ)), Ki = [I 0]

[
I eM̄i1τ

I eM̄i2τ

]−1

, M̄i =

[
Mi1 0

0 Mi2

]
, Ḡi =

[
Gi
Gi

]
, R̄i =

[
Ri
Ri

]
,

while satisfying the following matrix matching equations

MiTi + RiC̄− Ti Ā = 0

Gi − TiB = 0

Ti = L′ − HiC̄

Mi1 and Mi2 are Hurwitz.

(18)

with L′ = [0 I], Ti = L′ − HiC̄.

Proof. See Appendix B.

Remark 1. The fixed-time observer design for the existing faults are necessary, which reduces the magnitude of
intermediate variables and the control input. More details will be discussed in the next section.

3.3. Prescribed Time Consensus Controller Design

In this section, the prescribed-time containment controller for multiple UUVs is considered. In fact,
due to the system dynamics structure of Dynamic (14), the prescribed-time control of Dynamic (14)
can be transformed to stabilized the generalized linear model in prescribed-time below,

ẋ (t) = Ax (t) + Bu (t) + δ(t, x(t)) (19)

where x ∈ Rn is the state vector, u ∈ Rm is the control input. The term δ(t, x(t)) = Bγ(t, x(t))
represents the matched faults and uncertainties. It is clear that the matrix pair (A, B) is controllable.
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To sum up, the prescribed-time state for linear systems in the controllable canonical form is
investigated [10,17,18]; however, due to the MIMO structure of the considered system, the original
multi-input system needs to be decomposed into the block form, see [20]. However, due to the
dimensions of the block subsystems being distinct, which increases the difficulty for the controller
design, the prescribed-time stabilization algorithms of a chain of integrators lose efficacy and cannot be
utilized directly. To further illustrate the prescribed-time containment control for UUVs, some results
need to be given in advance.

3.3.1. Block Decomposition

Let us initially decompose the original multi-input System (19) to a block form [24]. Below we
use the known block decomposition procedure discussed in [25,26]. Let the orthogonal matrices
Ti be defined by the following algorithm: Initialization: A0 = A, B0 = B, T0 = In, k = 1.

While rank(Bk) =rown(Ak) do Ak+1 = B⊥k Ak
(

B⊥k
)T

, Bk+1 = B⊥k Ak B̂k, Tk+1 =

(
B⊥k
B̂k

)
, k = k + 1

and B⊥k =
(
null

(
BT

k
))T , B̂k =

(
null

(
B⊥k
))T

.
Then the orthogonal matrix G is obtained

G =

(
Tk 0
0 Iwk

)(
Tk−1 0

0 Iwk−1

)
· · ·
(

T2 0
0 Iw2

)
T1 (20)

with wi = n− rown(Ti) and

GAG =


A1,1 A1,2 0 · · · 0
A2,1 A2,2 A2,3 · · · 0
· · · · · · · · · · · · · · ·

Ak−1,1 Ak−1,2 · · · Ak−1,k−1 Ak−1,k
Ak,1 Ak,2 · · · Ak,k−1 Ak,k

 (21)

GB =
(

0 0 · · · 0 AT
k,k+1

)T

with Ak,k+1 = B̂0B0, Aij ∈ Rni×nj , ni = rank(Bk−i), i, j = 1, 2, · · · , k and rank(Ai,i+1) = ni.
It is clearly noted that the MIMO structure of System (19) is the specific one where k = 0. Since

rank Ai,i+1 = ni = rown(Ai,i+1), then Ak, k+1 is invertible, and A+
i,i+1 = AT

i, i+1

(
Ai, i+1 AT

i, i+1

)−1
is the

right inverse matrix of Ai, i+1. Introduce the linear coordinate transformation s = Φy, s = (s1, · · · , sk)
T ,

si ∈ Rni , y = (yi, · · · , yk)
T , yi ∈ Rni by the formulas:

si = yi + φi, i = 1, · · · , k (22)

φi = 0, φi+1 = A+
i,i+1(

i

∑
j=1

Aijyj+
i

∑
r=1

∂φi
∂yr

r+1

∑
j=1

Arjyj) (23)

The presented coordinate transformation is linear and nonsingular. The inverse transformation
y = φ−1s is defined as follows:

yi = si + ψi, i = 1, · · · , k (24)

ψ1 = 0, ψi+1 = A+
i,i+1(

i

∑
k=1

∂ψi
∂sk

Ai,i+1sk+1+
i

∑
j=1

Ai,j(sj + ψj)) (25)
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Then applying the transformation s = ΦGx, one has

ṡ =


0 A1,2 0 · · · 0
0 0 A2,3 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 0 Ak−1,k

Ãk,1 Ãk,2 · · · Ãk,k−1 Ãk,k

 s + B
′
(u + γ(t, s)) (26)

with B
′
= ΦGB =

(
0 0 · · · 0 AT

k,k+1

)T
.

Next, we will propose a novel prescribed-time state feedback controller for MIMO linear
systems by employing a novel nonsingular coordinate transformation function based on the block
decomposition technique, which allows for both easy prescriptions of the convergence times,
and minimal tuning of the observer and controller parameters. In addition, the bounds of the
intermediate variables and the control inputs are obtained.

3.3.2. Prescribed-Time Controller Design

To obtain the prescribed-time controller, both [17] and [18] introduce the scaling function
as follows,

µ1 (t− t0, T) :=
1

T + t0 − t
, t ∈ [t0, t0 + T] (27)

which is positive monotonic. When t = t0, µ1 = 1
T and when t = T + t0, µ1 = 1. In addition, T > 0

is freely prescribed by the user and independent of initial conditions. Following the above results,
we propose the coordinate transformation w = P(s) by the following formulas:

Lemma 4. Consider the coordinate transformation w = P(s) for t ∈ [0, T) as follows,

wi =
si

T − t
+ pi, p1 = 0, (28)

pi+1 =
i

∑
j=1

ai+1,j

(T − t)i+2−j sj, 1 ≤ j ≤ i ≤ k (29)

where the coefficients ai,j are a constant matrix to be determined as,

ai,0 = 0 (30)

ai,q = 0, q > i (31)

and the recursion relations

ai+1,j = A+
i,i+1

(
ai,j (i + 1− j + k1) + ai,j−1 Ai−1,j

)
. (32)

Then it holds that

ẇi =
−k1

T − t
wi + Ai,i+1wi+1, i = 1, · · · , k− 1 (33)

Proof. See Appendix C.
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Lemma 5. The inverse coordinate transformation s = P−1(w) for t ∈ [0, T) can be described as follows,

si = wi(T − t) + li, l1 = 0, (34)

li+1 =
i

∑
j=1

bi,j (T − t)1−i+j wj, 1 ≤ j ≤ i ≤ k (35)

where the coefficients bi,j are constant matrix to be determined as,

bi,0 = 0 (36)

bi,q = 0, q > i (37)

and the recursion relations

bi+1,j = A+
i,i+1

(
−bi,j (1− i + j + k1) + bi,j−1 Aj−1,j

)
. (38)

Proof. See Appendix D.

Remark 2. If k = 3, then

w =


1

T−t In1 0 0
A+

12(k1+1)

(T−t)2
1

T−t In2 0

A+
23 A+

12(k1+1)(k1+2)

(T−t)3
A+

23(k1+1)(A+
12 A12+1)

(T−t)2
1

T−t In3

 s

s =

 (T − t)In1 0 0
−A+

12(k1 + 1) (T − t)In2 0
A+

23 A+
12(k1 + 1)k1(T − t)−1 −A+

23(k1 + 1)(A+
12 A12 + 1) (T − t)In3

w

where n1, n2, n3 are the dimensions of subsystems.

Remark 3. Due to the dimensions of the block subsystems being distinct, the traditional chain system of the
intermediate variable proposed in [18,19] is not applicative, and a novel intermediate variable dynamic system
is introduced as Equation (28). To achieve the prescribed-time control, the novel coordinate transformation
w = P(s) and the inverse coordinate transformation s = P−1(w) based on the block decomposition technique
are introduced to deal with the difficulty caused by distinct dimensions.

Applying the transformation w = P(s), we obtain the derivative of wk,

ẇk =
sk

(T − t)2 +
ṡk

T − t
+

k−1

∑
j=1

ak,j(k + 1− j)

(T − t)k+2−j sj +
k−1

∑
j=1

ak,j Aj, j+1

(T − t)k+1−j sj+1

=
sk

(T − t)2 +
Ak,k+1(∑

k
q=1 Ãk,qsq + u + γ (t, w))

T − t

+
k−1

∑
j=1

ak,j(k + 1− j)

(T − t)k+2−j sj +
k−1

∑
j=1

ak,j Aj, j+1

(T − t)k+1−j sj+1

(39)

Then the prescribed-time stabilization control for System (19) can be summarized as follows,
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Theorem 2. Given the coordinate transformation in Lemmas 4 and 5, the block subsystems of dynamics w can
be presented,

ẇ1 = − k1

T − t
w1 + A1,2w2

ẇ2 = − k1

T − t
w2 + A2,3w3

...

ẇk−1 = − k1

T − t
wk−1 + Ak−1,kwk

ẇk = −
k1

T − t
wk +

Ak,k+1

T − t
γ (t, w)

(40)

with the controller designed as

u = −
k

∑
q=1

Ãk,qsq + (T − t) A+
k,k+1(−

sk
(T − t)2 −

k−1

∑
j=1

ak,j(k + 1− j)

(T − t)k+2−j sj

−
k−1

∑
j=1

ak,j Aj, j+1

(T − t)k+1−j sj+1 −
k1

T − t
wk)

(41)

Then the intermediate variable w and the control input are prescribed-time uniformly bounded, and the
states of x and s are prescribed-time stabilized for t ∈ [0, T) .

Proof. Denote Vi =
wT

i wi
2 , i = 1, . . . , k, whose derivative along the solution of Equation (40) is

V̇k = −
k1

T − t
wT

k wk +
1

T − t
wT

k Ak,k+1γ (t, w) (42)

By applying Young’s inequality with λ > 0,

V̇k ≤ −
(k1 − λ) ‖ Ak,k+1 ‖2

T − t
wT

k wk +
1

4 (T − t) λ
γ2 (t, w)

≤ −
2 (k1 − λ) ‖ Ak,k+1 ‖2

T − t
Vk(t) +

1
4 (T − t) λ

γ2 (t, w)

(43)

Then

Vk (t) ≤ exp−2(k1−λ)‖Ak,k+1‖2∫ t
0

1
(T−τ)

dτ V(0) +
1

4λ

∫ t

0
exp−2(k1−λ)

∫ t
τ

1
((T−s) ds

γ2(τ, w)
1

T − τ
dτ

≤ exp−2(k1−λ)‖Ak,k+1‖2[ln(T)−ln(T−t)]V(0) +
‖ γ(t, w) ‖2

[0,t]

4λ

∫ t

0
exp2(k1−λ)(

∫ τ
0

1
T−s ds−

∫ t
0

1
T−s ds) 1

T − τ
dτ

≤ exp−2(k1−λ)‖Ak,k+1‖2[ln(T)−ln(T−t)]V(0)

+
‖ γ(t, w) ‖2

[0,t]

4λ
exp−2(k1−λ)

∫ t
0

1
T−s ds

∫ t

0
exp2(k1−λ)

∫ τ
0

1
T−s dsd

∫ τ

0

1
T − s

ds

= ∆1(t) +
‖ γ (t, w) ‖2

[0,t]

4λ
exp−2(k1−λ)

∫ t
0

1
(T−s) ds 1

2(k1 − λ)
exp2(k1−λ)

∫ τ
0

1
(T−s) ds |t0

= ∆1(t) +
‖ γ (t, w) ‖2

[0,t]

4λ
exp−2(k1−λ)

∫ t
0

1
(T−s) ds 1

2(k1 − λ)
(exp2(k1−λ)

∫ t
0

1
(T−s) ds − 1)

= ∆1(t) +
‖ γ (t, w) ‖2

[0,t]

4λ

1
2(k1 − λ)

(1− exp−2(k1−λ)
∫ t

0
1

(T−s) ds
)

(44)
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where ∆1(t) = exp−2(k1−λ)‖Ak,k+1‖2[lnT−ln(T−t)]V (0), and if t = 0, ∆1 (0) = 1 and t = T, ∆1 (T) =

0. The function ∆1 (t) monotonically decreases. Thus, Vk ≤ 1 +
‖γ(t,w)‖2

[0,t]
8λ(k1−λ)

, and ‖ wk ‖∞≤√
2 +

‖γ(t,w)‖2
[0,t]

4λ(k1−λ)
= εk. Under the condition, if γ (t, w) ≡ 0, then limt→T Vk (t) = 0. With ẇk−1 =

− k1
T−t wk−1 + Ak−1,kwk, define the Lyapunov function Vk−1 =

w2
k−1
2 , the derivative of Vk−1,

V̇k−1 = wk−1ẇk−1 = − k1

T − t
wT

k−1wk−1 + wT
k−1 Ak−1,kwk

≤ − k1

T − t
wT

k−1wk−1+ ‖ Ak,k+1 ‖2 λwT
k−1wk−1

T − t
+ (T − t)

wT
k wk

λ

≤ −
k1 − λ ‖ Ak,k+1 ‖2

T − t
wT

k−1wk−1 +
Tε2

k
λ

(45)

it holds that

V̇k−1 ≤ −
2k1 − 2λ ‖ Ak,k+1 ‖2

T − t
Vk−1 +

Tε2
k

λ
(46)

V̇k−1 +
2k1 − 2λ ‖ Ak,k+1 ‖2

T − t
Vk−1 ≤

Tε2
k

λ
(47)

Define k2 = 2k1 − 2λ ‖ Ak,k+1 ‖2, εk−1 =
Tε2

k
λ . Then

V̇k−1 +
k2

T − t
Vk−1 ≤ εk−1 (48)

˙
(e
∫ t

0
k2

T−s dsVk−1) ≤ e
∫ t

0
k2

T−s dsεk−1
(49)

with the fact that

e
∫ t

0
k2

T−s ds = ek2(− ln(T−s) |t0) =

(
T

T − t

)k2
(50)

one has (
T

T − t

)k2

Vk−1 ≤ Vk−1 (0) + εk−1

∫ t

0

(
T

T − s

)k2

ds (51)

Thus

Vk−1 ≤
(

T − t
T

)k2
(

Vk−1 (0) +
εk−1Tk2

k2 − 1
(

1

(T − t)k2−1 −
1

Tk2−1 )

)

=

(
T − t

T

)k2

Vk−1 (0) +
εk−1Tk2

k2 − 1
(

T − t
Tk2

− (T − t)k2

T2k2−1 )

(52)

when t = T, Vk−1 = 0, then wk−1 = 0. Similarly, for i = k− 2, · · · , 1, wi = 0. Then the intermediate
variable w is prescribed-time uniformly bounded. With s = ΦGx, s = P−1w, Φ and G are nonsingular
transformation; we can know that the states of x and s are prescribed-time stabilized.

Since

ẇi−1 = − k1

T − t
wi−1 + Ai−1,iwi (53)
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then

˙
(e
∫ t

0
k1

T−s dswi−1) ≤ e
∫ t

0
k1

T−s ds Ai−1,iwi
(54)

Since

e
∫ t

0
k1

T−s ds = ek1(− ln(T−s) |t0) =

(
T

T − t

)k1
(55)

then (
T

T − t

)k1

wi−1 ≤ wi−1 (0) + Ai−1,iwi

∫ t

0

(
T

T − s

)k1

ds

≤ wi−1 (0) + Ai−1,iwi
Tk1

k1 − 1
(

1

(T − t)k1−1 −
1

Tk1−1 )

(56)

then one holds

wi−1 ≤ wi−1 (0)
(

T − t
T

)k1

+ Ai−1,iwi
1

k1 − 1
((T − t)− (T − t)k1

Tk1−1 )

= wi−1 (0)
(

T − t
T

)k1

+ Ai−1,iwi
(T − t)
k1 − 1

− Ai−1,iwi (T − t)k1

Tk1−1(k1 − 1)

(57)

Since ‖ wk ‖∞≤ εk, then

wk−1 ≤ (T − t)

(
wk−1 (0)

(T − t)k1−1

Tk1
+ Ak−1,kwk

1
k1 − 1

(
1− (T − t)k1−1

Tk1−1

))
= (T − t) Dk−1

(58)

where Dk−1 is bounded. Then

wk−2 ≤ wk−2 (0)
(

T − t
T

)k1

+ Ak−2,k−1wk−1
(T − t)
k1 − 1

−
Ak−2,k−1wk−1 (T − t)k1

Tk1−1(k1 − 1)

= wk−2 (0)
(

T − t
T

)k1

+ Ak−2,k−1Dk−1
(T − t)2

k1 − 1
−

Ak−2,k−1Dk−1 (T − t)k1+1

Tk1−1(k1 − 1)

= (T − t)2

(
wk−2 (0)

(T − t)k1−2

Tk1
+ Ak−2,k−1Dk−1

1
k1 − 1

(
1− (T − t)k1−1

Tk1−1

))
= (T − t)2 Dk−2

(59)

Then we can have wk−q ≤ (T − t)q Dk−q, q = 1, · · · , k− 1.
With the coordinate transformation s = P−1(w), then

sj+1 =
j+1

∑
q=1

bj+1,q (T − t)−j+q wq (60)



Sensors 2019, 19, 4515 13 of 25

and the control input is written as

u = (T − t) (A+
k,k+1(−

k

∑
q=1

Ãk,qsq −
sk

(T − t)2 )

−
k−1

∑
j=1

ak,j (k + 1− j)

(T − t)k+2−j sj −
k−1

∑
j=1

ak,j Aj, j+1

(T − t)k+1−j

j+1

∑
q=1

bj+1,q (T − t)−j+q wq −
k1

T − t
wk)

− (T − t) A+
k,k+1

k

∑
q=1

Ãk,qsq −
sk

T − t
−

k−1

∑
j=1

ak,j (k + 1− j)

(T − t)k+1−j sj −
k−1

∑
j=1

j+1

∑
q=1

ak,j Aj, j+1bj+1,q

(T − t)k−q wq − K1wk

(61)

According to the fact that wk = sk
T−t + ∑k−1

j=1
ak,j

(T−t)k+1−j sj is bounded, − sk
T−t − ∑k−1

j=1
ak,j(k+1−j)

(T−t)k+1−j sj

is bounded. Further, because wk−q ≤ (T − t)q Dk−q, by the simple transformation, let k − q = l,
then wl = (T − t)k−l Dl , one can know that wq

(T−t)k−q is bounded. Then the control input is bounded.

The proof is completed.

Immediately, the prescribed-time containment controller for UUVs can be given as follows,

Theorem 3. Consider the i-th UUV System (4) with fixed-time fault Observers (16) and (17) and the controller
as follows

ui = −
k

∑
q=1

Ãk,qsq + (T − t) A+
k,k+1(−

sk
(T − t)2 −

k−1

∑
j=1

ak,j(k + 1− j)

(T − t)k+2−j sj

−
k−1

∑
j=1

ak,j Aj, j+1

(T − t)k+1−j sj+1 −
k1

T − t
wk)− F′a

ˆ̄fi,

τψi = d33/m33ϑ2 + (T − t) (− ϑ2

(T − t)2 −
2a2,1

(T − t)3 ϑ1 −
a2,1

(T − t)2 ϑ2 −
k1

T − t
w′2)

(62)

where k = 2, Ã2,1 = 0, Ã2,2 = Aλi , A12 = I2, A11 = 0, a21 = 1 + k1 with designed parameter k1, w = P(s)
and w′ = P(ϑ), then the containment control objective of Equation (1) is achieved in prescribed-time, e.g., the
containment variable ri = 0. Moreover, the intermediate variable w and the control input u are prescribed-time
uniformly bounded for t ∈ [0, T) .

Proof. Due to the fact that Vk ≤ 1+
‖γ(t,w)‖2

[0,t]
8λ(k1−λ)

, the existence of the fixed-time observer f̂i transforms the

term ‖ γ (t, w) ‖2
[0,t]= f 2

i + d2
i into the value relative to α2

i + d2
i , which reduces the magnitude of bounds

by choosing appropriately the initial values of the observers and the parameter λ. The remaining proof
is similar to Theorem 1. Due to the limited space, the proving process is omitted here.

4. Simulation

In this section, two examples are given to demonstrate the merits and effectiveness of the
prescribed-time controller.

Example 1. Consider a benchmark example, System (2), with A =

 1 −3 2
−2 0 3
0 −1 4

, B =

 2 0
−1 1
0 −3

,

G =

 0.4286 0.8571 0.2857
−0.8571 0.4857 −0.1714
−0.2857 −0.1714 0.9429

, A11 = −0.5918, A12 =
[
−0.4449 4.9469

]
, A21 =
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[
1.2980 0.7184

]
, A23 =

[
−2.2000 1.0000
−0.4000 −3.0000

]
, A22 =

[
3.0612 −0.8367
−0.5510 2.5306

]
, Ã21 =

[
1.1660
1.0246

]
,

Ã22 =

[
3.0565 −0.7839
−0.4982 1.9435

]
, Φ =

 1.0000 0 0
0.0107 1.0000 0
−0.1187 0 1.0000

. According to the prescribed-time

Controller (41), the desired convergence time is T = 1 s. Compared with [26], Figures 1 and 2 show evolutions
of the system states for x0 = (0.5, 0.2, 0.3). It is clearly shown that the convergence time of the fixed-time control
cannot be precisely fixed, except before the given time Tmax = 1 s . However, in the prescribed-time control
process, the system states are stable just at the settling time T = 1 s. Figures 3 and 4 present the plots of the
control magnitude. It is proven that the control magnitude is bounded by the prescribed-time strategy in Figure 3,
but the excessive control gain by the fixed-time controller may exist while choosing the control parameters.

Example 2. The model parameters of UUVs are adapted as follows in [27] and [28]: m11 = 200 kg, m22 =

250 kg, m33 = 80 kg, d11 = (70 + 100|ρ|) kg/s, d22 = (100 + 200|v|) kg/s, d33 = (50 + 100|ϑ|) kg/s.
There are three vehicles which are initialized as follows: (x1, y1) = (5 m, 5 m), (x2, y2) = (5 m,−5 m),
(x3, y3) = (1 m, 2 m), (x4, y4) = (5 m, 1 m), (x5, y5) = (−2 m, 3 m), (x6, y6) = (2 m, 3 m), ρ1 = v1 =

ρ2 = v2 = ρ3 = v3 = ρ4 = v4 = ρ5 = v5 = ρ6 = v6 = 0 m/s, ψ1 = ψ2 = ψ3 = ψ4 = ψ5 = ψ6 =

0.1 rad, ϑ1 = ϑ2 = ϑ3 = ϑ4 = ϑ5 = ϑ6 = 0.1 rad/s. (xrx1, xry1) = (5 m, 5 m),(xrx2, xry2) = (−5 m, 2 m),
(xrx3, xry3) = (2 m, 1 m). The prescribed-time is T = 3 s. The matrices L1 = [3 0 0 − 1 − 1 − 1; −
1 1 0 0 0 0; − 1 − 1 2 0 0 0; − 1 0 0 2 0 0; 0 0 0 − 1 2 0; 0 0 0 0 − 1 2], L2 = [0 0 0; 0 0 0; 0 0 0; 0 0 −
1; 0 − 1 0; − 1 0 0].

Figure 5 shows the evolution of the containment consensus variable r(t) for the multiple UUVs
converge to zero in the prescribed-time T = 3 s. Figures 6 and 7 are the standard position variables of
UUVs in north and east, it shows that the position variables of the followers n1, · · · , n6, i = 1, · · · , 6
and e1, · · · , e6, i = 1, · · · , 6 converge into the convex hull formed by the leaders’ positions nr1, nr2, nr3

and er1, er2, er3, respectively. Figures 8 and 9 are the standard velocity variables of UUVs in surge and
sway; they show that the velocity variables of the followers ρ1, · · · , ρ6, i = 1, · · · , 6 and v1, · · · , v6, i =
1, · · · , 6 converge to zero in the prescribed-time T = 3 s. Figures 10–14 show the trajectories of
intermediate variables and the control inputs. Figure 10 shows that the variable w1 converges to zero
in the prescribed-time T = 3 s. Figure 11 shows that the variable w2 is prescribed-time uniformly
bounded, which proves that the intermediate variable w is bounded. In Figures 12 and 13, the control
input τ′1 and τ′2 are shown to be prescribed-time uniformly bounded. In Figure 14, the intermediate
state s(t) which is equivalent to r(t) converges to zero in the prescribed time. The effectiveness of the
proposed prescribed-time controller is demonstrated.

0 0.5 1 1.5
Time (s)

-15

-10

-5

0

5

10

15

20

25

30

35

Figure 1. States x(t) by the prescribed-time controller.
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Figure 2. States x(t) by the fixed-time controller in [26].
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Figure 3. Control input u(t) by the prescribed-time controller.
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Figure 4. Control input u(t) by the fixed-time controller in [26].
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Figure 5. Containment consensus variable r(t) by the prescribed-time Controller (62).
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Figure 6. Position states n(t) by the prescribed-time Controller (62).
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Figure 7. Position states e(t) by the prescribed-time Controller (62).
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Figure 8. Velocity states ρ(t) by the prescribed-time Controller (62).
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Figure 9. Velocity states v(t) by the prescribed-time Controller (62).

0 0.5 1 1.5 2 2.5 3
Time (s)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 10. Intermediate states w1(t) by the prescribed-time Controller (62).
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Figure 11. Intermediate states w2(t) by the prescribed-time Controller (62).

0 0.5 1 1.5 2 2.5 3
Time (s)

-4

-2

0

2

4

6

8

10

12

14

Figure 12. Control input τ′1(t) by the prescribed-time Controller (62).
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Figure 13. Control input τ′2(t) by the prescribed-time Controller (62).
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Figure 14. Intermediate states s(t) by the prescribed-time Controller (62).

To make the experimental results more comparative, consider the prescribe time as T = 8 s.
Then the validity of the proposed fixed-time observer is verified and the magnitudes of intermediate
variables and containment control states can be effectively reduced in the following figures. The fixed
time constant τ = 1.5 s, and matrix Fa = [0, 1], the existing actuator faults are given below,

fa1 = 0.50× (1.2− exp(−0.03t))

fa2 = 0.15× (3.2− exp(−0.1t))

fa3 = 0.25× (1.5− exp(−0.02t))

fa4 = 0.25× (1.1− exp(−0.015t))

fa5 = 0.50× (2.3− exp(−0.01t))

fa6 = 0.35× (1.7− exp(−0.1t))

(63)

For reasons of length and simplicity, only the estimation process of f̄5(t) is shown. The trajectories
of states f̄5(t), ˆ̄f51(t), ˆ̄f52(t) and ˆ̄f5(t) are given in Figure 15. It is shown that f̄5(t) can be estimated by
ˆ̄f5(t) at time t = 1.5 s, while ˆ̄f51(t) and ˆ̄f52(t) can estimate f̄5(t) as time goes to infinity. In Figures 16

and 17, the effect of the observer on the containment variable r and intermediate variable w are given.
When t > τ the fixed-time observer can work and effectively reduce the magnitude of the containment
variable r(t) and the intermediate variable w(t). The effectiveness of the proposed fixed-time algorithm
is proved.
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Figure 15. States ˆ̄f (t), ˆ̄f51(t), ˆ̄f52(t), ˆ̄f5(t) by the fixed-time reduced-order controller.
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Figure 16. States ‖ r ‖ with and without observer.
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Figure 17. States ‖ w ‖ with and without observer.

5. Conclusions

The paper presents the prescribed-time containment consensus control for multiple UUV systems
with nonlinear uncertainties and disturbances. The control design procedures utilize the block
decomposition technique and Lyapunov control theorem. This approach allows us to converge the
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containment consensus variable in the prescribed time. In addition, intermediate variables and control
input are also shown to remain uniformly bounded. To reduce the magnitude of the bounds, a novel
fixed-time observer for the faults is proposed. Due to the fact that the sensor fault may exist, and the
event-triggered mechanism can reduce the burden of communication that may be interesting and
meaningful for the complex ocean environment; both of these will be chosen as our future directions.
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Appendix A. Proof of Lemma 3

We can rewrite the position and orientation transforms described in System (3) as [29]

p̈i = Ṙ(ψi)εi + R(ψi)ε̇i = R(ψi)S(ϑi)εi + R(ψi)ε̇i

= R(ψi)[S(ϑi)−M−1
1 P(ϑi, |$i|, |vi|)]R−1(ψi) ṗi + R(ψi)M−1

1 τi

= G(ψi, ϑi, |$i|, |vi|) ṗi + H(ψi)τi

(A1)

with G(ψi, ϑi, |$i|, |vi|) = R(ψi)[S(ϑi) − M−1
1 P(ϑi, |ρi|, |vi|)]R−1(ψi), S(ρi) =

[
0 −ρi
ρi 0

]
, M1 =[

m11 0
0 m22

]
, P(ϑi, |$i|, |vi|) =

[
d11 −m22ϑi

m11ϑi d22

]
. With x f i = [pT

i , εT
i ]

T , we can easily obtain Dynamic

(4). The proof is completed. For more details see [29].

Appendix B. Proof of Theorem 1

Let ei(t) = [( ˆ̄fi1(t)− f̄i(t))T ( ˆ̄fi2(t)− f̄i(t))T ]T ; the estimation error dynamics ėi can be obtained

ėi(t) =

[
Mi1 0

0 Mi2

]
ei(t)− ∆i(t) (A2)

with ∆i =

[
TiD̄
TiD̄

]
β̄i. Then

ei(t− τ) = e−M̄iτei(t)−
∫ t

t−τ
eM̄i(t−s−τ)∆i(s)ds (A3)

Then when t > τ we have

ˆ̄fi(t) = Ki(ρi(t)− eM̄iτρi(t− τ))

= f̄i(t) + [I 0]

[
I eM̄i1τ

I eM̄i2τ

]−1

(ρi(t)− 1 f̄i(t)− eM̄iτ(ρi(t− τ)− 1 f̄i(t− τ)))

= f̄i(t) + [I 0]

[
I eM̄i1τ

I eM̄i2τ

]−1

(ei(t)− eM̄iτei(t− τ))

= f̄i(t) + [I 0]

[
I eM̄i1τ

I eM̄i2τ

]−1 ∫ t

t−τ
eM̄i(t−s)∆i(s)ds

(A4)
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with the fact K1 = I and KeM̄iτ1 = 0. Due to the fact that ∆i(s) is bounded, we known the last integral
term is bounded. Then we can find a constant α such that | ˆ̄fi(t)− f̄i(t)| < α.

Further, the existence of matrices Mi, Gi, Ri satisfying Conditions (18) can be found in [30], which
is omitted here. The proof is completed.

Appendix C. Proof of Lemma 4

Due to the fact that the desired transformed system is

ẇi =
−k1

T − t
wi + Ai,i+1wi+1 (A5)

to guarantee the coefficient of aii will be an identity matrix, we design the feasible solution as follows,

wi+1 = A+
i,i+1

(
ẇi +

k1

T − t
wi

)
+ (I − A+

i,i+1 Ai,i+1)
si+1

T − t
(A6)

In fact, the solutions to wi+1 are infinite, the choice of (I− A+
i,i+1 Ai,i+1)

si+1
T−t results in the coefficient

of controller u being A+
k,k+1, which is row full rank.

According to the general form of wi, the derivative of wi is obtained as

ẇi =
si

(T − t)2 +
Ai,i+1si+1

T − t
+

i−1

∑
j=1

ai,j(i + 1− j)

(T − t)i+2−j sj +
i−1

∑
j=1

ai,j Aj, j+1

(T − t)i+1−j sj+1 (A7)

Put Equation (A7) into Equation (A6), then one has

wi+1 = A+
i,i+1(

si

(T − t)2 +
Ai,i+1si+1

T − t
+

i−1

∑
j=1

ai,j(i + 1− j)

(T − t)i+2−j sj +
i−1

∑
j=1

ai,j Aj, j+1

(T − t)i+1−j sj+1

+
k1

T − t
(

si
T − t

+
i

∑
j=1

ai,j

(T − t)i+1−j sj)) + (I − A+
i,i+1 Ai,i+1)

si+1

T − t

(A8)

Thus,

wi+1 = A+
i,i+1(

si

(T − t)2 +
Ai,i+1si+1

T − t
+

i−1

∑
j=1

ai,j(i + 1− j)

(T − t)i+2−j sj +
i−1

∑
j=1

ai,j Aj, j+1

(T − t)i+1−j sj+1 +
k1si

(T − t)2

+
i

∑
j=1

k1ai,j

(T − t)i+2−j sj) + (I − A+
i,i+1 Ai,i+1)

si+1

T − t

=
si+1

T − t
+ A+

i,i+1

(
(k + 1)si

(T − t)2 +
i−1

∑
j=1

ai,j(i + 1− j + k1)

(T − t)i+2−j sj +
i−1

∑
j=1

ai,j Aj, j+1

(T − t)i+1−j sj+1

)

=
si+1

T − t
+ A+

i,i+1

(
i

∑
j=1

ai,j(i + 1− j + k1)

(T − t)i+2−j sj +
i−1

∑
j=1

ai,j Aj, j+1

(T − t)i+1−j sj+1

)
(A9)

Extracting the coefficients of the term sj from ∑i−1
j=1

ai,j Aj, j+1

(T−t)i+1−j sj+1, then we have

wi+1 =
si+1

T − t
+ A+

i,i+1

(
i

∑
j=1

ai,j (i + 1− j + k1)

(T − t)i+2−j sj +
i

∑
j=1

ai,j−1 Aj−1, j

(T − t)i+2−j sj

)
Then we have

wi+1 =
si+1

T − t
+ A+

i,i+1

(
i

∑
j=1

ai,j (i + 1− j + k1) + ai,j−1 Aj−1, j

(T − t)i+2−j sj

)
(A10)
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To satisfy Condition (28), we obtain

ai+1,j = A+
i,i+1

(
ai,j (i + 1− j + k1) + ai,j−1 Ai−1,j

)
(A11)

The proof is completed.

Appendix D. Proof of Lemma 5

Take the derivative of Equation (34) on both sides,

Ai,i+1si+1 =
i−1

∑
j=1
−bi,j(1− i + j) (T − t)−i+j wj +

i−1

∑
j=1

bi,j (T − t)1−i+j (− k1

T − t
wj + Aj,j+1wj+1)

− (k1 + 1)wi + Ai,i+1wi+1(T − t)

=
i−1

∑
j=1
−bi,j(1− i + j + k1) (T − t)−i+j wj +

i−1

∑
j=1

bi,j (T − t)1−i+j Aj,j+1wj+1 − (k1 + 1)wi

+ Ai,i+1wi+1(T − t)

=
i

∑
j=1
−bi,j(1− i + j + k1) (T − t)−i+j wj + bi,i (1 + k1)wi +

i−1

∑
j=1

bi,j (T − t)1−i+j Aj,j+1wj+1

− (k1 + 1)wi + Ai,i+1wi+1(T − t)

=
i

∑
j=1
−bi,j(1− i + j + k1) (T − t)−i+j wj +

i

∑
j=1

bi,j−1 (T − t)−i+j Aj−1,jwj + Ai,i+1wi+1(T − t)

(A12)

with bi,q = 0, bi,0 = 0. Then

si+1 = A+
i,i+1

i+1

∑
j=1

(
−bi,j (1− i + j + k1) + bi,j−1 Aj−1,j

)
(T − t)−i+j wj

+ A+
i,i+1 Ai,i+1wi+1(T − t) +

(
I − A+

i,i+1 Ai,i+1

)
wi+1(T − t)

= A+
i,i+1

i+1

∑
j=1

(
−bi,j (1− i + j + k1) + bi,j−1 Aj−1,j

)
(T − t)−i+j wj + (T − t)wi+1

(A13)

One has

bi+1,j = A+
i,i+1

(
−bi,j (1− i + j + k1) + bi,j−1 Aj−1,j

)
(A14)

Thus

si+1 =
i

∑
j=1

bi+1,j (T − t)−i+j wj + (T − t)wi+1

The proof is completed.
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