
sensors

Article

A Framework for Automated Acquisition and
Processing of As-Built Data with Autonomous
Unmanned Aerial Vehicles †

Henk Freimuth * and Markus König

Chair of Computing in Engineering, Ruhr-Universität Bochum, 44787 Bochum, Germany
* Correspondence: henk.freimuth@rub.de
† This paper is an expanded version of Freimuth, H.; König, M. A Toolchain for Automated Acquisition and

Processing of As-Built Data with Autonomous UAVs. In Proceedings of the 2019 European Conference on
Computing in Construction, Chania, Greece, 10–12 July 2019.

Received: 27 August 2019; Accepted: 11 October 2019; Published: 17 October 2019
����������
�������

Abstract: Planning and scheduling in construction heavily depend on current information about the
state of construction processes. However, the acquisition process for visual data requires human
personnel to take photographs of construction objects. We propose using unmanned aerial vehicles
(UAVs) for automated creation of images and point cloud data of particular construction objects.
The method extracts locations of objects that require inspection from Four Dimensional Building
Information Modelling (4D-BIM). With this information at hand viable flight missions around the
known structures of the construction site are computed. During flight, the UAV uses stereo cameras
to detect and avoid any obstacles that are not known to the model, for example moving humans or
machinery. The combination of pre-computed waypoint missions and reactive avoidance ensures
deterministic routing from takeoff to landing and operational safety for humans and machines.
During flight, an additional software component compares the captured point cloud data with the
model data, enabling automatic per-object completion checking or reconstruction. The prototype
is developed in the Robot Operating System (ROS) and evaluated in Software-In-The-Loop (SITL)
simulations for the sake of being executable on real UAVs.

Keywords: as-built; data acquisition; BIM; UAV; point cloud; octree; ROS; depth camera;
obstacle avoidance

1. Introduction

Large above-ground construction projects require construction management staff to efficiently
organise the work of many different contractors. The emergence of Building Information Modelling
(BIM) provided all parties involved with a standardised, unified way of managing building-related
information 4D-BIM, an extension to BIM that also accounts for change over time, enables management
staff to create and maintain schedules of all construction processes directly on the model data.
The advantage of this approach is that modifications can be made on a model that includes information
of all contractors. Conflicts, whether they are of organisational, spatial or technical nature, can be
avoided, because all relevant information is in one place. However, during construction, changes to
processes can occur and the model must stay updated at all times. Each process deviation, for example
delivery delays, must be accounted for in the model, because as soon as the model does not reflect
the actual situation on site, no valuable decisions can be made based on the model’s information.
Generation and integration of on-site information in BIM are commonly referred to as scan-to-BIM
or as-built [1,2]. A traditional method of producing as-built information is for personnel to go on
inspection rounds with printed check-lists and taking photographs for documentation. Afterwards, the

Sensors 2019, 19, 4513; doi:10.3390/s19204513 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0486-954X
https://orcid.org/0000-0002-2729-7743
http://www.mdpi.com/1424-8220/19/20/4513?type=check_update&version=1
http://dx.doi.org/10.3390/s19204513
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 4513 2 of 22

newly gathered information needs to be put into files and models and transferred to contractors and
all relevant staff. In other cases, contractors may communicate changes to management staff as they
occur but still, information must be communicated and the model needs to be updated manually. The
efforts of maintaining an updated model and schedule become increasingly complex with construction
projects that are large in spatial extent as well as in organisational terms.

As-built generation implies several different types of information. Many types of as-built
information are expressed in numbers or dates and are therefore of an organisational nature.
This includes material volumes and dates of process events (e.g., delivery dates) which must be
tracked to ensure a meaningful state of the planning model. Geometric information is required for
avoiding clashes of different objects, for example structural elements must preserve spaces for pipes or
general spatial constraints must be satisfied for mechanical, electrical and plumbing (MEP) works [3].
A valuable as-built method should produce visual representations of physical objects, as these are
fastest to evaluate for a human viewer. But more importantly, as-built artefacts should be analysable
and structured for purposes of automated processing and comparison operations with as-planned
model data. This requires as-built data to be segmented in semantic objects, compatible with the
object structure of as-planned BIM. Point clouds are the common data structure for scans of physical
objects. In practice, point clouds are generated either with Terrestrial Laser Scanning (TLS) devices
or image-based photogrammetry. Point clouds may be visualised for intuitive interpretation by the
human eye but they are also a suitable source of information for structured analysis. Each point has a
geometric location that may be attributed to model space given a correct registration of the point cloud.
While the process of creating a laser scan of a certain space is a straightforward task, the structured,
automatic creation of point clouds that cover relevant object surfaces involves substation manual
labour and expertise. While technical requirements increased in comparison to manual inspection
with photos and check-lists, modern as-built methods must also be more efficient in operational terms.
Increased construction complexity means more processes that need to be controlled. Furthermore, the
rate of producing as-built information must be increased from weekly inspections towards a workflow
that maintains correct information on a daily basis.

Unmanned aerial vehicles (UAVs), also referred to as drones, are expected to be of great value
for problems involving remote sensing in hard to reach locations and automation. The term UAV
applies to all types of unmanned aircraft, including plane-type aircraft with wings, multirotor aircraft,
palm-sized helicopters and blimps. The preferable form factor in this context are multirotor UAVs.
Their aerodynamic characteristics include vertical takeoff and landing, stable hover and the ability to
carry payloads like cameras and dedicated axis stabilisation gimbals. In civil engineering, research on
UAVs is targeted in different directions such as deterioration analysis in structural health monitoring
(SHM) [4], quality control [5,6] and digital reconstruction [7]. Effectively, UAVs are a utility for placing
exchangeable sensors in remote locations. The most advantageous of property of these devices lies
in the potential of autonomous operation. Autonomy in robots denotes a breaking point for tasks
that could not be automated before. Whereas every single acquisition of an as-built artefact involves
human effort, an autonomous agent can solve this task repeatedly at no additional cost. For these
reasons UAV technology should be investigated as the basis for an efficient as-built method. While
most applications focus on the ability to take measurements from remote location and rely on human
piloting, only few applications have made practical use of autonomy. Autonomy in this context is the
ability of a robotic agent to proactively follow a path towards a target location while avoiding collision
with physical objects on the way. This is the minimum requirement that must be satisfied to effectively
reduce the effort required by a UAV-based replacement for traditional sensing tasks.

Recent, publicly available work on the PX4 project in combination with the Robot Operating
System (ROS) reveals a robust foundation for applications of autonomous UAVs. The autonomous
flight control software, which is used in the prototype made for this paper, is proven to work on real
UAVs and encourages a development workflow with simulated tests prior to outdoor flight tests.



Sensors 2019, 19, 4513 3 of 22

PX4 is part of an open source robotics ecosystem with contributions from researchers, robotics
companies and enthusiasts. Apart from software, PX4 has already published several iterations
of the Pixhawk flight control, a reference design for flight control devices which is widespread
across commercial products and research UAVs. The framework presented in this work proposes
a combination of openly available robotics software and hardware, off-the-shelf stereo cameras as
main sensor and BIM data as a source for path generation and processing of as-built data. A software
prototype in the form of ROS packages was developed to demonstrate a fully automatic workflow
from controlling the UAV to analysing point clouds with the intention of matching scanned objects
with their BIM counterparts. Prior work in this ongoing project focused on pre-computing flight
missions for UAVs with the goal of taking photos of building facades for inspection purposes. The
concept was limited by only relying on global positioning system (GPS) for localisation of the aircraft,
which is unreliable in the vicinity of large building structures.

1.1. Contribution

This work proposes a framework for automated as-built data generation with autonomous UAVs.
A prototype of the framework was implemented in a toolchain which makes use of existing robotics
tools and adds new software to facilitate the automatic robot. The prototype demonstrates the feasibility
of the concept and allows a practical evaluation. This work is a continuation of an ongoing research
effort to employ UAVs for for inspection and monitoring purposes in construction [8]. The underlying
autopilot and robotics software are under active development. Earlier works demonstrated practical
limitations due to inaccurate localisation near buildings and unreliable collision avoidance [9]. The
framework overcomes these limitations by employing stereo cameras and point clouds for environment
perception, localisation and as-built generation. The concept continues to generate targeted flight
missions towards individual objects. The known environment is sourced from as-planned BIM,
assuming that a 4D-BIM provides a sufficiently complete representation of the construction site
environment for the time of the scanning procedure. Since the UAV produces as-built data itself,
objects that were detected in earlier flights but missing in the as-planned model, can also be accounted
for in subsequent flight missions. The vision-based environment sensor complements the concept,
allowing the UAV to actively avoid any physical object unknown at the mission generation stage.
Furthermore, the improved localisation of the UAV enables real time registration of the point clouds
for processing on the model data.

Apart from automatic acquisition of visual data, the framework defines a method for processing
point clouds and a segmentation process for object detection. The processing toolchain compares
the geometric representation of single as-planned objects with the input point clouds and segments
the unordered data. The object-point clouds are then used to analyse to what extent the input data
matches the as-planned object. This matching process enables an automatic identification of single
as-built objects and process finalisation checks.

2. State of Technology and Research

As-built data and reconstructed 3D geometry in general are valuable assets, which are used
for progress tracking [1,3,10], structural health monitoring [11,12], quality assessment [13–15] and
as-built modelling [16]. As-built information may also be used for increasing construction safety.
Alizadehsalehi et al. [17] conducted a study about the potential benefits of UAVs-based inspection
for the identification of hazardous zones. The proposed method implies UAVs as a tool to highlight
hazards in 4D-BIM models. Each of these tasks relies on efficient data generation methods as it can
only be conducted with current and accurate information at hand. Huber et al. [18] describe the process
of creating as-built data as time-consuming and error-prone, making it one of the key barriers to the
widespread use of as-built BIMs in industry.

One method for acquiring geometric as-built information is to apply photogrammetric methods
on photos. Documenting and communicating the state of objects with photos is ubiquitous and



Sensors 2019, 19, 4513 4 of 22

experienced human viewers can intuitively recognise important features within an instant after
looking at a picture. Structured analysis and photogrammetry for as-built BIM however present
challenges towards the way photos are taken.

One approach is to take photos of objects and register them by estimating the camera pose, with
which the image was taken. A virtual camera in the model representation is given the reconstructed
pose of the photo. The image rendered from the virtual camera’s perspective is comparable to the real
photo and differences between the two may be extracted automatically [19–21]. Studies based on this
approach show qualitative statements about surface properties, spatial objects (also BIM elements)
and potential clashes.

The more common approach of producing as-built information with images is to apply structure
from motion (SfM) to derive 3D geometry in the form of dense point clouds. In order to achieve an
adequate point density, multiple overlapping photos must be taken for every feature of an object
that is relevant. The process is computationally intensive but the availability of streamlined software
applications has made the process widely available. Golparvar-Fard Mani et al. [22] present an
approach where feature points in the reconstructed point cloud are used to mark voxels in the
as-planned model as occupied or free. The discretised voxels mark spaces of objects where a physical
occupancy was detected and therefore, leading to an automated progress monitoring. Klein et al. [11]
conducted a study on generating exterior and interior as-built models with photogrammetry methods.
The authors acknowledge limitations regarding measurements of outer structures in upper stories,
a limitation that could be mitigated by using UAVs for image acquisition.

UAVs can significantly improve the image acquisition process common in these approaches.
Especially the camera registration, required in all works, can be solved by using a UAV that already
constantly localises itself for navigation purposes. The requirement for repeatedly taking photos from
identical perspectives also becomes effortless with a UAV that may be sent to take a photo from the
same position every day.

Besada et al. [23] propose a UAV mission generation approach for inspection purposes. The
application allows surveyors to place geometric shapes on objects represented on a 3D map and creates
waypoint missions for UAVs along the surface of the geometric shape.

Braun and Borrmann [24] propose a method for automated progress monitoring based on aerial
images captured by a UAV with an emphasis on detecting BIM elements in 2D images. A Convolutional
Neural Network (CNN) was used for detection and classification of BIM elements in images with the
goal of creating a method for automatically checking individual elements of as-planned processes.
The tedious and also automation inhibiting aspect of creating training datasets was bypassed by
generating labelled data from aerial images automatically. By projecting BIM elements onto images
and generating labelled datasets from those parts of images that lie within the projected area, no
manual cropping and labelling were necessary. The camera poses required for the projection step
were derived from photogrammetric camera pose estimation. The achievements of this work could
benefit from introducing automation to the process of capturing visual data with autonomous UAVs.
Furthermore, a deterministic approach to guiding an autonomous UAV around the construction site
could systematically avoid some types of occlusions, a problem also acknowledged by the authors.

Reconstruction of geometry with Terrestrial Laser Scanning (TLS) is a common method that
is generally more straightforward and accurate than photogrammetry. The method, however, has
other drawbacks compared to image-based approaches. TLS devices require steady placement during
scan time which introduces a setup time before each scanning operation. The scanning process itself
consumes further time, during which no work can be done in the scanning area. Conventional TLS
only reconstructs geometry, whereas photogrammetry also preserves colour values to be mapped on
each point in the resulting point cloud. Furthermore, reconstruction of objects with surfaces oriented
in multiple directions requires multiple scans which introduces registration tasks for each scan [16].
Reconstruction of a single object may be more accurate with TLS but the implied effort is not agreeable
with as-built applications, where multiple reconstructions are required on a daily basis.



Sensors 2019, 19, 4513 5 of 22

In conclusion, the two presented methods for geometry reconstruction complement each
other. With photogrammetry, ease of use introduces a drawback in accuracy, whereas TLS requires
extensive efforts and provides higher accuracy. Setup and operation of TLS-based inspections are
time-consuming and cause interferences with other construction tasks [16]. Considering, that as-built
tasks aim to make construction management more efficient, image-based methods are preferred.

Point cloud data, regardless of the acquisition method, has no inherent alignment in the model
space. Point clouds derived from images have no accurate position information, eventually present
GPS information provided by some cameras is neglected in this case for reasons of accuracy and
sensitivity to disturbances. Another approach to point cloud registration implies the placement
of markers on scanned objects. While markers simplify a single registration process, the method
would require visible placement of markers for every structural element, an impractical effort that
thwarts the automation requirement. Mentasti and Pedersini [25] propose a method for scanning
large objects with UAVs based on physical markers that are being laid out around each target
object. Automatic registration approaches imply techniques like Iterative Closest Point (ICP) or
the 4-Points Congruent Sets method [26–28] and an adaptation for registration of point clouds
on planes of meshed model geometry. The registration of point clouds with different geometric
representations such as meshes, found in BIM models, poses special problems. Bueno et al. [29]
adapted the 4-Points Congruent Sets method as 4-Plane Congruent Set algorithm with robust results
albeit being computationally expensive.

Park et al. [30] propose a method for registration of point clouds with UAVs and unmanned
ground vehicles (UGVs) for extended visual coverage. The authors made use of real-time kinematic
(RTK) technology to improve localisation to an expected 2.5 cm. While RTK significantly improves
localisation accuracy, it is still susceptible to multipathing effects and other perception issues like all
common global navigation satellite system (GNSS) methods. Furthermore, RTK does not improve on
reliability and safe operation since there is no means of perceiving objects in the environment.

After acquisition and registration of geometry information, the point cloud is still unstructured in
comparison to the target BIM. At this stage, only a human viewer can intuitively attribute points to
different objects. A segmentation is therefore required that separates point clouds into groups of single,
smaller point clouds that describe individual objects. Approaches include colour-based segmentation
with region growing [31] or shape/plane detection [32,33].

2.1. Choosing a Suitable Platform for UAV Development

Employing UAVs in the context of an application like as-built BIM poses special requirements
towards interoperability of the device. Common commercial UAVs support following GPS waypoints
and offer basic mission flight modes. Mission flight modes are limited to the extent that waypoints
can only be set manually through a smartphone application or a comparable interface that is
integrated within the remote control. Some manufacturers offer optional development programs
in the form of Software Development Kits (SDKs). While SDKs provide limited access for integrating
commercial UAVs within specialised applications, the commitment to a proprietary interface implies
an unnecessary dependency towards the company to maintain and support the hardware and software.
Open robotics platforms fill this gap by adhering to open standards using established tools.

PX4 is an open source software and hardware platform for UAVs. It was initially founded as
a research platform for vision-based autonomy and became a widely adopted UAV platform. PX4
provides full control over the UAV and extensive compatibility with the Robot Operating System (ROS).
Developers and testers provides feedback and analysable flight logs before proposed changes are
accepted for roll-out to users in releases. This denotes a significant advantage in quality control over
many other platforms.

The project PX4/avoidance is a further basis of this work. It is focused on reactive autonomy
and obstacle avoidance with path planning in known and unknown environments. The avoidance
technique is regularly evaluated in simulated and real flight tests [34].



Sensors 2019, 19, 4513 6 of 22

ROS is an open source pseudo operating system for the development of and execution of robotics
software on robot hardware. At the core of the ROS concept is a graph architecture, which considers
all robot-related processes and entities as distinct nodes while messages passed among nodes are
considered edges. Nodes are executed as independent system processes on the host operating system
and adhere to the ROS interface. Apart from the architectural aspect, ROS is also a large collection of
established robotics modules that come from an international community. Abstraction of message
types and networking communication allows single modules of robotic systems to be executed on
different computer systems. Furthermore, the modular architecture makes nodes exchangeable under
the premise of conformity with the required message protocol. This is an essential aspect for research
purposes, as it allows developers to change certain functionality of a robot with little effort.

Hrabia et al. [35] conducted a case study on supporting firefighters with UAVs for safety
management in emergency situations. The authors chose ROS and PX4 as the basis for a UAV system
that implements high-level mission planning, Simultaneous Localisation and Mapping (SLAM) on
stereo images and object recognition based on CNN.

Iterative changes in code need testing and verification but conducting outdoor experiments for
every test is impracticable. Malfunctioning code could destroy hardware or even put humans in
danger when testing flying robots. Therefore, simulation driven development and testing have become
indispensable utilities.

2.2. Simulation in Robotics

This work substantially builds on the premise that the simulation of the robotic system,
implemented in ROS, is realistic enough to indicate that the same behaviour of the robot can be
expected when executed on the real aircraft. Simulation does not completely replace real flight tests,
which will be subject of further studies but is considered a practical tool during prototyping stages.

Simulation is a key method for the development of robots, especially with autonomous UAVs,
where malfunction on the device causes crashes, destroys hardware and possibly causes harm to
bystanders and objects. Outdoor experiments with untested features significantly slow down the
development process and pose unwanted risks and costs. For these reasons a robotics development
workflow emerged that employs realistic simulations up to a point of validation where real world
experiments can be conducted [36–38].

Gazebo is a popular simulator with deep integration in ROS [39,40]. Koenig and Howard [39]
present an overview of the design and usage concepts that went into the creation of Gazebo. While
the application has evolved substantially since the initial publication, the core principles still hold
up. At its core is the world model, a hierarchical representation of user-defined robot environments.
The simulator can be configured to use exchangeable physics engines and a plugin system enables
integration of new virtualised sensors, such as virtual cameras.

When used for UAV development, the control software of the UAV is executed on the development
machine (SITL) and its input/output is coupled to Gazebo instead of real sensors and actuators. In brief,
the procedure can be summarised as follows: If the UAV-instance outputs a motor signal, the propellers
of the simulated vehicle will start spinning. According to the physical description of the vehicle, the
spinning propeller will generate thrust and autorotation. The physics engine processes the thrust
and eventually the vehicle will lift off the ground as soon as the generated thrust is greater than the
gravitational force which accelerates the vehicle in the opposite direction. At the same time, forces
affecting the vehicle are registered by the UAV’s inertial measurement unit (IMU), where the feedback
loop will compute the next set of motor signals for stabilisation. Given an accurate model of physical
properties and effects, the same setup will behave virtually identical in the real world.

The real benefit here is that experiments carried out in the simulation run the same code as the
real UAV in outdoor usage. When transitioning from simulator experiments to outdoor execution,
only the virtual sensors need to be replaced by their real counterparts. As shown in the works above,
this type of simulation is proven to be transferable to the real world.



Sensors 2019, 19, 4513 7 of 22

Hardware-In-The-Loop (HITL) is a similar approach to SITL that uses the actual autopilot device
to execute on the simulated data. HITL is more interesting for performance-related tasks, where the
actual timings of the microcontroller are required. Wang and Cheng [41] used a manually controlled,
HITL-simulated PX4 UAV for a study on detecting MEP-work (pipes) with CNN.

3. Concept and Prototype

The objective of this paper is the development of a novel method for measuring the as-built
status with autonomous UAVs. The integration of UAVs requires a technological bridge between
model information and controlling the autonomous aircraft. Control in this context means being able
to interface with the path planning unit of the UAV’s flight control. The UAV considered for this
work is able to autonomously position itself along commanded waypoints. Waypoints are defined as
geographic locations with an altitude determined either relative to sea level or relative to the takeoff
altitude. This functionality is commonly known as waypoint navigation and typically aided by a GPS
sensor. The UAV considered for this work is based on state-of-the-art technology that enables the
vehicle to sense objects in its environment and avoid collisions while reaching the next target location.
The collision avoidance is based on point clouds derived from depth camera systems. These point
clouds are also used for reconstruction and analysis of the as-built status. In order to achieve the
expected degree of automation, the UAV must be given correct target locations of construction objects
and furthermore knowledge of all known structures from the BIM. The following sections present all
relevant components that constitute this automatic system.

3.1. Simulating Automated As-Built Inspections with UAVs

Simulation is an important utility in this work. It enables full control over tests and input data,
which is not feasible in outdoor tests. Point clouds, the main information input, are created in real time
from camera images on synthetic data. Gazebo provides a stereo camera plugin for streaming images
from the UAV’s point of view. Simulated cameras are defined by various properties such as resolution,
field of view, frame rate, distortion and noise. These parameters make the virtual cameras configurable
to resemble the properties of the real camera used on the robot. This allows working with synthetic
visual sensors as input for robot perception. Since navigation and as-built generation are based on
visual information, the visual preparation of the virtual as-built scenes is a crucial task. As-built scenes
are defined in world files which describe the composition and properties of physical objects including
the ground profile, building structures, the UAV and additional objects like machinery.

Figure 1 shows two examples of a simulated UAV navigating in synthetic as-built scenes.
The aircraft is controlled by the actual autopilot and actively avoiding collisions by visual environment
perception. Working with synthetic data allows developers to consciously create situations where
as-built deviates from as-planned by modifying the BIM that is the as-built source. BIMs are sourced
from the Industry Foundation Classes (IFC) exchange format. IFC implements the standardised
information exchange concept of BIM and represents the as-planned state that is used in construction
projects. In order to create a synthetic as-built scene, the geometry information in the IFC file is
converted to a Collada 3D asset file. Collada is a modern and open 3D asset exchange format which is
maintained by the Khronos Group. The conversion is achieved with a tool based on xBim [42].
The definition of simulation scenes is straightforward, however one additional step was found
necessary in the preparation of experiments. In the first tests of the vision-based navigation on
synthetic data, the UAV started behaving erratically as soon as its cameras were oriented towards
the building in the as-built scene. The converted building models were found to expose only few
visible surface features. This is due to the fact, that visual material representations of surfaces in
BIM models are only described by colours on plain surfaces. The generation of depth maps for
navigation greatly depends on distinct surface features. Figure 1a shows an example of such plain
surfaces with little distinct properties. Figure 1b shows a modified as-built representation on which
building surfaces were given additional photo-realistic brick and concrete textures. After adding



Sensors 2019, 19, 4513 8 of 22

realistic surface representations to the as-built structures, the vision-based navigation was restored,
also clearly comprehensible in the number of depth pixels in the resulting depth maps of the stereo
camera component.

The mission flight mode of PX4 is capable of cooperating with an obstacle avoidance mechanism.
The path planner node in ROS is responsible for analysing the environment and computing paths
towards singular target points. There are two instances of planning nodes, the local_planner and
global_planner. The local planner is able to navigate in a previously unknown environment and find
ways around obstacles that come up during the course towards a waypoint. The local planner leverages
a key data structure to maintain the current representation of free and blocked directions. The Three
Dimensional Vector Field Histrogram (3DVFH+) [43] is a computationally efficient two-dimensional
array of potential motion directions that are either free or blocked. The elements of the array are
a projection of a sphere around the UAV described in polar coordinates and therefore represent
3D motion vectors in all directions. The cell’s values are updated in real-time by mapping the
distance of the UAV to the next object to a value in the 3DVFH+ that represents the respective
flight direction. The global_planner additionally recognises a previously known environment and
maintains a global representation of the explored and known environment in a navigation space
representation. Both variants of the planner continuously exchange messages with the autopilot
through the mavros interface. This allows a separation of PX4 autopilot tasks that typically run on
micro-controller devices and more intensive computations in the ROS which can be executed on an
on-board companion computer.

(a) (b)
Figure 1. The simulated unmanned aerial vehicle (UAV) autonomously navigates around virtual
Building Information Modelling (BIM)-derived building scenes. (a) Example of a building model with
few surface details. (b) Example of a building with realistic textures. The additional surface features
greatly improve depth sensing in simulation.

3.2. Components of the Toolchain

The prototype implementation of the presented framework is a fully functional ROS project.
The modular architecture of ROS and the data flow from camera to as-built information makes it
behave like a toolchain with subsequent stages of data processing. The toolchain makes use of existing
structures from the PX4/avoidance project with additional modules developed specifically for the
purpose of measuring the as-built status of construction sites and BIM.

Figure 2 provides an overview of the toolchain with an emphasis on the data flow between its
modules. Each node in the graph is a software component that handles a certain task and will be
presented individually in the following subsections. The relations between nodes denote data exchange
and resemble dependencies. The top group labelled Data sources includes nodes that generate the
required stream of point cloud data. This stream either comes from stereo cameras on the UAV with
integrated depth-image functionality (e.g., Intel RealSense) or from virtual cameras that emulate
the real device by capturing images with comparable properties in the 3D simulation environment.
The point cloud stream (upper blue node) is needed for obstacle avoidance and for reconstruction of
as-built structures, illustrated by the outgoing split data flow.



Sensors 2019, 19, 4513 9 of 22

The stereo_image_proc node (included in recent ROS distributions) is responsible for processing
the stereo image stream of the simulated 3D environment.

Data sources

Companion Computer pointcloud_proc

depth camera
e.g. Intel Realsense

stereo_image_proc

gazebo

point cloud
stream

as-is information

local_planner

mavros

pcl_filter

pc_subtractor

pc_assembler
output: point cloud

inspection_planner

PX4
autopilot firmware

inspection
object volume
as-built information

reconstructed
volume

octree of matched

structures

stereo images

MAVLink
PointCloud

PointCloud

MAVLink

OctreeOctree

Octree

Waypoints

PointCloud PointCloud

PointCloud

Figure 2. The component architecture of the proposed toolchain. Green nodes represent individual
software modules, red nodes indicate simulation components and data artefacts are represented by
blue nodes. Solid black arrows represent point cloud data, blue arrows represent access on octrees, any
other data is represented by dashed arrows.

It computes a disparity image, in which each pixel value represents the depth of the same pixel
in the rectified input image. Crucial to its ability to derive depth information from stereo images is
the semi-global matching (SGM) which identifies matching parts of objects in each pair of images [44].
Figure 3 shows an example of the binocular camera image and the resulting colour-coded disparity
map with a gradient between blue and red resembling distances near and far. With depth information
and colour available, the node is further capable of producing a ROS typed PointCloud2 message.
PointCloud2 is the default type for all further message passing of point cloud data and is compatible
with the pcl::PointCloud data structure from the PointCloud Library which offers comprehensive point
cloud processing methods, essential to the toolchain’s further operations. The flow of the resulting
point cloud data splits at this point, as it is being used as input stream for both the collision avoidance
system and the nodes in the subgroup pointcloud_proc. Devices like Intel RealSense can compute
disparity maps on their own. The accuracy and performance of an integrated depth camera will
be evaluated in upcoming work but is expected to make the processing chain more CPU-friendly.
Furthermore, real objects should yield more complete disparity maps than those based on synthetic
images which expose fewer visual features.



Sensors 2019, 19, 4513 10 of 22

(a) (b) (c)
Figure 3. A visualisation of the generation of the disparity map. (a,b) Images from cameras mounted
next to each other. (c) The resulting disparity map with a colour gradient indicating perceived depth.

The subgroup pointcloud_proc encapsulates software modules for real-time processing of point
cloud streams and analysis in the octree-based navigation space.

See Figure 4 for a detailed illustration of the components. pcl_filter is the first node in the subgroup
to process the incoming point cloud stream. It is a Point Cloud Library (PCL)-based pass-through
filter for eliminating all points outside a certain spatial range in one dimension. In this case, the
pass-through filter is used to eliminate all points near ground by discarding all points within a certain
margin around takeoff altitude. Figure 4 shows an input point cloud with green patches from the
simulation environment. After the passing the filter, the point cloud only contains points of the building
structure. The purpose of this filter is not to work perfectly accurate but to eliminate a large share of
points that need not be processed in subsequent processes at little computational cost. Ground points
are relevant to the obstacle avoidance but since the objective of this toolchain is the measurement of
building structures, ground points are of no further interest in the following processing steps. The filter
operation increases the performance of all subsequent operations. PCL implements further filtering
routines. The statistical outlier removal is one notable filter by which point clouds can be freed from
outlier points that do not represent solid structures. During evaluation the result were significantly
improved by integrating the statistical outlier removal. See Section 4 for discussion and observations.
After pre-processing and filtering, the point cloud data is passed to the subtractor node (pc_subtractor).

3.3. The Point Cloud Subtractor

The point cloud subtractor (pc_subtractor) is the second stage in the pointcloud_proc subgroup
and implements the key functionality of the toolchain. It reduces and separates input point clouds into
groups of points that belong to distinct inspection objects. The node constantly analyses the ratio of
matched parts of the as-planned status and produces point clouds that describe individual objects.
This enables matching point clouds of construction objects with as-planned model data and thereby
drawing conclusions about diverging as-built objects.

The point cloud subtractor requires a spatial description of as-planned object. Point locations
in point clouds, especially if captured from a flying vehicle, have a certain error. Two points in
slightly different locations may represent the same point in reality. Therefore, an approximation is
necessary when using point clouds to match model objects. Furthermore, the geometry of BIM objects
is commonly described as meshes, with triangles and polygons representing object surfaces. Checking
if a point lies within a surface of an object is too computation intensive considering a camera stream of
thousands of points within each frame. Octrees are the ideal data structure for analysing occupancy of
spaces that reflect real world environments. An octree is an efficient representation of occupied space
as it recursively subdivides space into eight cubes that may either be occupied or free. The cubes are
ordered in a tree data structure which allows quick lookup and accelerates lookup times for larger
occupied areas.



Sensors 2019, 19, 4513 11 of 22

ground filtered

input pointcloud

pcl_filter pc_assembler

as-planned octree input pointcloud

matched octree after subtraction

pc_subtractor

Figure 4. Components of the point cloud processing subgroup. The pcl_filter removes all points
at ground-level. The pc_subtractor processes the incoming point cloud with the as-planned octree
from the BIM. It generates a matched octree with with occupied cells where physical surfaces were
detected. The second output is the object point cloud that represents the target object. The pc_assembler
optionally collects all subtracted point clouds and accumulates them for complete coverage.

Octrees are also the basis for the UAV’s representation of navigable space. Octomap [45]
dynamically manages a representation of occupied space in the UAV’s environment, which is needed
for mapping of and navigation in environments that are being explored. Pre-loading the octomap
with the known occupied space of the building model has a positive effect on the UAV’s capability
of finding a shortest viable path, since all known structures are automatically included in the path
planning of the local planner.

In order to accurately register the incoming point clouds with the existing environment
representation, the current position and orientation of the UAV is required. Since the PX4 autopilot
constantly localises itself in space by fusing all sensory inputs in a state estimator, each incoming point
cloud can be associated with the UAV’s current position. The mavros node publishes each newly
perceived pose in space together with a timestamp of the running ROS session. Registering a point
cloud is ideally done by associating a point cloud with the pose measured at the time of creation of the
source images. Despite being fast enough, the computation of disparity maps takes a small amount of
time. Therefore it is important to preserve the timestamp of each frame of the stereo camera to find the
matching pose of the UAV to associate with with generated point cloud.

Figure 5a shows the initial status of data as it arrives in the node. The existing structures are
displayed as boxes with thick solid outlines and the input data is illustrated by red points. The boxes
represent leafs of the octree, which is an efficient discretisation of the building geometry. Some points
are placed within a box of the octree, others are outside the octree. Since the octree is a discretised
representation of the as-planned model, all points inside the octree shall be discarded. The goal is to
efficiently identify all points, that lie outside the octree. The point cloud subtractor makes use of the



Sensors 2019, 19, 4513 12 of 22

PCL data structure OctreePointCloud and its function isVoxelOccupiedAtPoint to test each input point
within in the octree and keep a set of outlier points, marked as blue points in Figure 5b,c.

(a) (b) (c)
Figure 5. Simplified illustration of the point cloud subtractor using the octree to subtract points that
do not belong to the as-planned representation of an inspection object. (a) Input point cloud (red
points) aligned with voxels of as-planned representation (solid boxes). (b) Elimination process: discard
points that do not match an octree leaf (blue points). (c) Result: matched octree leafs are marked
occupied (red).

The result of this operation is a point cloud frame that represents only objects that are new or
modified compared to the previous model of as-built or as-planned status. Furthermore, the octree
leafs are now marked occupied where points of the physical object were registered.

Figure 4 illustrates an exemplary subtractor operation. The input data of the point cloud subtractor
consists of a point cloud frame and the as-planned octree which is derived from the BIM. In this case,
the as-planned octree represents the upper part of the wall, seen in the input point cloud. After the
subtraction operation, the point cloud only shows points that belong to the target object. The point
cloud has semantic value and can be attributed to a specific BIM object. The number of occupied cells
in the matched octree represents the degree to which the target object is matched. The matched octree
is updated continuously with each incoming point cloud frame. Provided with point clouds that cover
the whole surface of the target object, all cells in the matched octree should be updated. The matched
octree shown in Figure 4 exhibits some holes in parts of the structure that were not yet covered by
incoming point clouds. The matched octree completes the concept of detecting the presence of physical
objects for the verification of process finalisation.

The subtracted point clouds are transferred to the point cloud assembler.

3.4. The Point Cloud Assembler

The point cloud assembler (see pc_assembler in Figures 2 and 4) has the purpose of creating a
complete point cloud representation of a target object. This accumulated point cloud is meant for
storing a visual as-built representation of the reconstructed object and is not relevant to the presence
detection described in Section 3.3.

During each flight, the UAV captures extensive amounts of point cloud data. Subsequent point
cloud messages are assembled at the end of the toolchain with the intention to create complete views
on objects from all perspectives. Although the input rate can be throttled to a value lower than that of
the navigation system, it must be fast enough to ensure that no objects are overlooked while the UAV
is moving. The information of single frames, accumulated intervals of frames or even whole flight
sequences is too large to make sense to a human operator when simply displayed on a screen.

Each point cloud frame, regardless of it being generated by a TLS or a flying stereo camera, can
only represent points visible from the location of the sensor. For 3D mesh reconstruction purposes,
point clouds of objects should be complete. In order to create complete point clouds of physical objects,
point clouds must be created from multiple perspectives and then these frames must be aligned and
joined. The point cloud assembler (pc_assembler) collects point cloud frames and their respective
transforms, a ROS description of pose, orientation and the scale of objects. It joins multiple frames and
its output is a single, accumulated point cloud.

Whereas the localisation error found in single frames can be accounted for, the accumulation of
multiple point clouds also accumulates the errors of each frame. Furthermore, the overlapping sections



Sensors 2019, 19, 4513 13 of 22

of point cloud frames accumulate points for the same parts of surfaces. These issues can be addressed
in different ways. The toolchain only accepts point clouds that were captured when the UAV’s current
motion was low. Acceleration values present in the mavros interface provide the necessary information.
Furthermore, the statistical outlier removal and VoxelGrid filter found in PCL help maintaining an
assembled point cloud. The statistical outlier removal effectively removes points that are not needed.
The VoxelGrid filter periodically downsamples the point cloud to remove duplicate points in similar
locations, also keeping the point cloud at a computation friendly size. An evaluation of the point cloud
assembler is not in the scope of this work which has the primary goal of automatically detecting the
presence and finalisation state of BIM objects.

The last step is the pcd_export node, which receives point cloud messages and writes artefact
files in the common PCD file type.

3.5. The Inspection Planner

Apart from processing visual information and checking the status of as-built objects, the toolchain
manages the UAV’s flight tasks. The autonomous capabilities of PX4 coupled with avoidance
functionality, relevant to this use case, may be summarised as follows:

1. Fly towards target positions determined by geocoordinates.
2. Avoid obstacles that appear on the way.
3. Repeat 1 and 2 for waypoint mission behaviour.

Being able to dynamically detect and avoid obstacles is the most important aspect for automated
and safe operation of UAVs in applications like construction inspection. However, one other crucial
aspect needs to be considered for this application. The UAV’s navigation space is empty and is only
being fed information about occupied space during flight. With no knowledge about its environment,
the UAV’s path planning unit cannot make informed decisions about how to reach its target locations.
Given a location as navigation target, the UAV would start exploring its environment with a general
orientation towards the target. If it encounters a blocked path, for example building structures in
between, it changes its course and attempts to circumvent the obstacle. Without knowing whether
circumventing an obstacle to the left, to the right or flying over it leads to the ideal path, the UAV
needs substantial exploration time before even reaching its target. The inspection planner node fills
this gap by utilising the georeferenced BIM data as a priori knowledge. Based on the octree derived
from BIM data, the inspection planner generates complete inspection missions. Missions include short
paths towards the inspection object, circling around the object to gather complete visual information
and the way back towards a designated landing position. The waypoints of the inspection pattern are
generated as follows:

1. Create an object-aligned bounding box around the inspection object.
2. Reduce the bounding box to an area of four vectors at half the height of the former box.
3. Expand the area by a pre-defined distance in each lateral dimension.
4. Place waypoints on each edge of the expanded area, with a pre-defined distance

between waypoints.

The distance parameters in steps 3 and 4 should be chosen according to the camera’s properties.
Waypoints placed too far away from the object or from each other may result in incomplete coverage
of the object, depending on the camera’s resolution and field of view. This is considering that the
UAV can only point its stereo camera towards the inspection object while halting at waypoints. While
reaching for the next waypoint, the UAV must point its stereo camera in forward flying direction. This
limitation may be avoided by installing a second depth camera on the UAV that points sideways. Since
the inspection planner always generates waypoints around target objects in clockwise manner, the
second depth camera must point to the right.



Sensors 2019, 19, 4513 14 of 22

4. Evaluation

The proposed toolchain was evaluated with the same simulation environment it is developed
in. The simulation environment is an ideal tool to assess the individual components of the presented
method. The ability to control, repeat and compare test runs is a necessary prerequisite for finding
the right sets of parameters and locating error sources in case of unexpected results. The intention
behind the following evaluation is to demonstrate the feasibility of the proposed method and identify
technical capabilities and limitations of the implementation. The main emphasis of the method is
automation and therefore the evaluation is carried out solely on the presented software components
with no human intervention required. The only exception is the visual preparation of the simulation
environment as discussed in Section 3.1. Flight tests on real buildings will reveal further insight about
the method but are not within the scope of this work. After consolidating the general feasibility of the
proposed approach, an evaluation on hardware will be carried out.

It is expected that, apart from mandatory calibration of the flight control, no further work is
required to execute the toolchain on a UAV with a sufficiently powerful companion computer and
integrated stereo vision hardware. Intel Aero satisfies all requirements of the toolchain and should
therefore be mentioned as a suitable hardware platform. Aero includes a PX4 compatible flight control
and a depth camera, which replaces the software-based disparity computation of the stereo_image_proc
node. An essential aspect to consider is the on-board companion computer that is responsible for
both obstacle avoidance and analysis of structural elements. Aero’s companion computer is equipped
with an Intel Atom processor with a maximum frequency of 2.56 GHz on four native threads. The
complete toolchain, including the software-based disparity computation and 3D visualisation of the
simulation scene, was built and tested on a Celeron CPU (2.5 GHz and four native threads) and showed
no performance issues. Considering that the execution on the UAV does not require CPU time for
disparity computation, visualisation and execution of the SITL firmware, performance is sufficient.

The simulation-based evaluation involves some data preparation which shall be described before
going into detail about the observations and adjustments that were made during the evaluation.

4.1. Setting up Simulation Experiments

In order to evaluate a flight mission for analysing the state of a construction site, a virtual as-built
state of the construction site needs to be constructed. Furthermore, the simulation of vision-based
autonomous flight in ROS requires visual information as input for the cameras. The Gazebo simulation
application works with world descriptions that provide realistic robot environments with complex
mesh data, lighting, collisions and physical aspects like friction and gravity. The building data for the
as-built representation is imported in the form of 3D asset files. Common compatible asset formats
include Collada, STL and OBJ. Apart from STL, which only describes geometry, all asset formats
also include information about surface materials, textures and shading, which are important when
creating a realistic environment for visual navigation. Exemplary BIM projects were embedded
in realistic scenes to represent the real state of the construction site for each experiment. Figure 6
illustrates the three construction scenes that were created for development and evaluation purposes.
The as-built states were derived from IFC files and converted to Collada format. The conversion
process is accomplished with a conversion application based on xBim [42]. Initial tests on converted
building models yielded poor disparity maps due to the plain surfaces of the Collada exports.

The creation of disparity maps and further point clouds in simulation is based on semi-global
matching (SGM) [44]. SGM and its block matching variant rely on visual features in image pairs
to identify matching pixels or blocks. Parts of images that have little distinctive visual features are
known to cause wrong disparities [44]. This is a crucial aspect when generating disparity maps from
synthetic video feeds in the simulation. Scene objects with no textures or other surface properties
cause erroneous disparity maps and therefore bad distance readings for the obstacle avoidance system.
The quality of the reconstructed point clouds also determines the ability of the subtractor node to
correctly match perceived geometry with the model’s properties. The material properties of IFC



Sensors 2019, 19, 4513 15 of 22

objects are represented by coloured surfaces but lack a realistic visual representations in the form of
textures. The quality of disparity maps generated from synthetic data was greatly improved by adding
photo-realistic textures of typical construction materials to facade elements. This is a limitation that
only applies to the simulation. Camera input from physical objects under natural lighting exposes
more visual features than a simulation.

(a) (b) (c)
Figure 6. Three simulation scenes with construction states derived from BIM. (a) Duplex apartment
building. (b) Mefisto construction model. (c) Hochschule Bochum (HSBO) building model.

Figure 7 shows visualisations of two recorded flights with an obstacle in the desired flight path
of the UAV. The flight trajectory is represented by a red line. The UAV was given a flight mission
with first task being vertical takeoff and the second task being a waypoint a few metres away. After
takeoff the UAV would begin flying towards the waypoint in straight forward flight but the obstacle
avoidance system recognised the girders of the crane. Next, the local planner starts creating a flight
path along the unoccupied parts of the navigable space, resulting in a curve around the object. While
circumventing the object, the local planner visibly tries to direct the UAV back on the original flight
path. As soon as there is no object block the path towards the waypoint, the local planner lets the UAV
continue on its straight path to the target.

(a) (b)
Figure 7. Two flight trajectories (red line) of the UAV avoiding collision with a crane soon after takeoff.
(a) The trajectory shows a clockwise motion around the crane. (b) In another flight the crane was
circumvented in a counter-clockwise motion.

In the simulation-based evaluation the exemplary BIM projects serve two purposes, one being
the representation of the as-built state, the other being the source for deriving the as-planned state.
Internally, the as-planned state is managed in the form of an octree for efficient analysis of spatial
occupation between model and point clouds. Figure 8 shows an example of a simulation representation
of a BIM derived from IFC and its corresponding octree representation. In contrast to the manual
creation of the simulation-specific 3D scenes, the as-planned representation is created completely
automatic. A script in the toolchain invokes binvox [46,47] for voxelisation of the model data and
binvox2bt [45] for creating the octree of the voxel data.



Sensors 2019, 19, 4513 16 of 22

(a) (b)
Figure 8. The octree of the building model at present state is used as a computationally efficient
representation of navigation space and for the comparison of model geometry vs. reconstructed
geometry. (a) A BIM with additional textures rendered in Gazebo for a realistic representation of the
as-built state. (b) The corresponding octree for navigation and point cloud processing represents the
as-planned state.

The preparation of experiments required making structural changes to BIMs as they would occur
between states of a 4D-BIM and exporting these states as individual IFC artefacts. With different states
at hand, it is then possible to set up two different types of experiments. One type describes a scenario
in which the as-is and as-planned representation are identical. In this scenario, the UAV should reliably
detect the inspection object. The other scenario is built with an as-is representation that deviates from
as-planned. The real world equivalent of this test is a due date for a specific structural element which
is not present at the time of inspection. In this scenario the as-is representation lacks the inspection
object and the UAV is expected to conclude that this specific object is not present in the as-is scene.

4.2. Case Study

The proposed method was evaluated in tests on three different BIMs. The tests revealed
practical insights of the toolchain’s capabilities and limitations. Each of the tests was conducted
with the complete toolchain to demonstrate that all presented components work together and not just
individually. Apart from the manual preparation of two visual simulation scenes per test, described in
Section 4.1, each test finished fully automatic by the following procedure:

1. Parse the BIM artefact with new structures and generate an octree of the geometric extent of
the structures.

2. Generate the flight mission in geodetic coordinates that guides the UAV around the target region.
3. Initialise the navigation space for the UAV with known structures as pre-loaded environment

knowledge for the local planner node.
4. Switch to Mission flight mode with obstacle avoidance enabled and arm the UAV.
5. During flight the UAV captures point cloud data of objects in the target region with registration

of each frame of points according to the UAV’s current position.
6. Points are continuously accumulated in a second octree that resembles the reconstructed structure.
7. Each new measurement is processed in the subtractor node.
8. After finishing the flight mission, the two octrees, model and reconstruction, can be compared.

The toolchain’s functionality and performance were evaluated in two simulated test scenarios
with three experiments each. These experiments should provide an understanding of whether the
proposed method is able to discern individual structural elements and produce a numerical statement
about an inspection object being present or missing. True negatives were not tested because the
subtractor is implemented to only consider points that lie inside the space of the as-planned object.
Therefore, all other points (true negatives) are automatically discarded.



Sensors 2019, 19, 4513 17 of 22

The first scenario is a true positive test for each of the three scenes. Figure 9 shows a visualisation
of the three experiments conducted in this scenario. True positive in this context means that as-is
and as-planned are identical and therefore the matched structures of the subtractor node are correctly
classified. The subtractor matches leafs of the as-planned octree as occupied if points were detected
in the leaf’s space. Therefore, the quality of a matching procedure can be assessed by counting the
number of occupied leafs of the reconstructed octree in relation to the number of leafs in the as-planned
octree. An ideal matching is defined as a reconstruction octree having the the exact same leafs marked
occupied as the as-planned version. Realistically though, the geometry reconstruction has a certain
error. The goal of this scenario is to show if this error affects the matching procedure.

(a) (b) (c)
Figure 9. Results of true positive tests (scenario 1). Structural objects are indicated by the schedule and
fully present in the as-built scenes. Green annotations show octree leafs that were correctly matched
during flight. (a) a single wall in scene 1 (94.8%). (b) multiple columns and a slab in scene 2 (76.53%).
(c) a complete structure on a roof in scene 3 (82.16%).

Experiment 1 (see Figure 9a) resulted in 94.8% correctly matched octree leafs. Visual observation
revealed that the disparity maps, the basis of the point clouds, were very accurate. This is probably
due to two reasons. First, the inspection object is of little geometric complexity. With the camera being
pointed almost perpendicularly towards the object’s surface, large areas of each image pair can be
identified as connected. In contrast, curved surfaces are harder to reconstruct for the stereo image
processor. A second factor might be the photo-realistic brick texture applied to the surface, which is
also beneficial to the generation of the disparity maps. The missing 5.2% can be explained by occlusion.
The inspection object, a wall, is seated on another wall. There is no way for the cameras to capture
visual information about the downside of the object.

Experiment 2 (see Figure 9b) yielded a correct matching of 76.53%. As mentioned above,
the accuracy of disparity maps degrades with curved surfaces and surface not perpendicular with the
camera’s view. On visual inspection the curved sections of the object revealed higher inaccuracies
than other surfaces. Another section of inaccuracy is the large slab on top of the object. There
are visible spots with missing green annotations, which were not matched during the procedure.
The inspection planner currently generates flight paths that guide the UAV around inspection objects,
making visual coverage of larger horizontal areas more difficult. This problem can be countered with a
path generation procedure that also considers flight paths above objects above a certain lateral extent.

Experiment 3 (see Figure 9c) came out at 82.16% correctly matched volume. Visual inspection of
the reconstructed octree shows that occlusion and horizontal surfaces were, again the main reason for
unmatched surface areas.

Concluding the evaluation of scenario 1, all objects were detected with true positive matching
scores greater than 75%. The experiments exposed problems with inaccuracies, however, the quality of
reconstruction seems to improve with more realistic surface properties.

The second scenario tested for false positives. The detection procedure should not only positively
identify objects that are present (scenario 1), it should also conclude reliably that a specific object is not
present when it is in fact missing. Figure 10 shows a visualisation of the three experiments of scenario 2.
The experiments are identical to the ones of scenario 1, the only difference being that the inspection
objects from as-planned are missing in the as-is representation of the simulation. Each experiment
should ideally finish with 0% matched volume. Realistically though, the point cloud-based matching



Sensors 2019, 19, 4513 18 of 22

procedure receives erroneous points with inaccurate locations. Such inaccuracies mean uncertainty.
Therefore, the goal of scenario 2 is to ascertain whether the degree of uncertainty is low enough to
reliably detect missing objects.

(a) (b) (c)
Figure 10. Results of false positive tests (scenario 2). Objects from Figure 9 are required by the schedule
but missing in the as-built scenes. Red annotations show parts of the inspection object being matched
erroneously. (a) Several false positives occurred closely above the top face of another wall object
(12.74%). (b) Some false positives above neighbouring columns (2.32%). (c)Few false positives with
seemingly random distribution (0.12%).

Experiment 4 (see Figure 10a) resulted in 12.74% falsely matched volume, the highest number
among the measurements taken in scenario 2. There distribution of red annotations, denoting falsely
matched octree leafs, shows that all wrong measurements were taken at the bottom part of the missing
object. This is caused by inaccurate points that were captured from the visible upper surface of the
neighbouring wall. Some points reconstructed from that surface fell into the space of the search volume
and triggered false matches. A possible countermeasure to this phenomenon could be to exclude
border regions between the inspection object and other connected objects from the matching procedure.

Experiment 5 (see Figure 10b) produced a falsely matched volume of 2.32% the size of the search
volume. Upon visual inspection, a majority of the points triggering false matches occurred on top of
column elements from the storey beneath the inspection object. The 3D geometry of the model exposed
Z-fighting in those locations. It is a phenomenon where congruent faces of 3D meshes cause rendering
engines show flickering surfaces. Each subsequent image pair from the stereo camera therefore showed
different wrong visual representations in these locations and therefore the point cloud reconstruction
was affected.

Experiment 6 (see Figure 10c) resulted in 0.12% falsely matched volume. In this experiment, the
search volume was cropped in the border region at the bottom, to avoid the problem observed in
experiment 4. There are only few false positives with random distribution.

Concluding the experiments of scenario 2, the matching performance shows sufficient accuracy in
detecting missing objects.

The tests for true positives and false positives show that, considering error thresholds, the
automated inspection system is able to determine whether single BIM objects are present or missing
in the UAV’s environment (see Table 1). The tests also revealed some limitations of the system, with
occlusion being the most notable. As shown in the experiments, the system is only intended for
use on exterior building structures but occlusions cannot be ruled out and single objects may be
encompassed by others. If a majority of an object’s surface is occluded, the performance of the point
cloud reconstruction degrades significantly. This is a systemic limitation of all vision and camera-based
approaches to as-built generation. However, this limitation only applies to the data processing aspect
of the presented approach. The concept of automated data acquisition with UAVs is not affected by
this limitation as it is independent of the processing procedure. Regarding the acquisition method,
UAVs offer the highest potential for maximising visual coverage as they can obtain virtually any
vantage point.



Sensors 2019, 19, 4513 19 of 22

Table 1. Comparison of octree volumes for each evaluation case.

Volume As-Planned (m3) True Positive (m3) False Positive (m3) True Positive (%) False Positive (%)

duplex 3.65 3.46 0.47 94.80 12.74
mefisto 98.80 75.61 2.29 76.53 2.32

hsbo 121.48 99.80 0.15 82.16 0.12

The inspection planner requires setting two parameters: the distance between UAV and object
surface and the distance between waypoints (see Section 3.5). These parameters, along with the depth
of the octrees, were determined by the following considerations.

The distance between UAV and object surface (step 3) not only determines the coverage of the
stereo camera but also the resolution in points per cm on the surface. In the case study, a distance of
3.5 m was used, along with a Field of View (FoV) of 80◦ and a resolution of 720 × 720 points. These
parameters determine a resolution of 1.22 points per cm. For comparison, the horizontal FoV Intel
Realsense D435 is 87◦ at an output resolution of up to 1280 × 720 points, determining a maximum
resolution of 2.03 points per cm at the given distance. In regard to checking octree cells, the resolution
should allow for every cell of the octree to be matched by at least one point of the point cloud. The
octrees in all experiments were generated with a depth level of 16. The resulting octree resolutions (size
of the smallest octants) used in the experiments are in the range of ∼6.5 cm to ∼24 cm. Considering
object sizes in the range of 8 m to 30 m, these resolutions were found to be of sufficient detail to
describe the target object’s shape. With an octree depth set to 16, the resolution of the octree increases
proportionally to object size. In order to maintain the ability to match every octant with a point cloud,
the minimum octant size should not fall short of the expected point cloud resolution. This set of
parameters is suitable for objects greater than 1 m. For objects smaller than that, either the distance of
the UAV should be reduced or a lower octree depth may be applied.

5. Conclusions and Outlook

This work is a study on automating and improving the process of as-built data generation.
Construction management requires more information on the as-built state at increasing rates in order
to make informed decisions. Only a fully automated method can effectively satisfy this demand. The
framework employs autonomous UAVs as a utility for fully automatic acquisition of ordered and
meaningful information on the state of structural objects. The prototype of the proposed framework
is capable of guiding a UAV around building structures, effectively enabling it to capture as-built
information on an object level. The vision-based collision avoidance functionality of the UAV ensures
safe and efficient operation, without interfering with ongoing construction work. The self-localising
UAV significantly improves the process, as scanned point clouds can inherit the UAV’s position
information for each frame. Therefore, no additional point cloud registration is required. Furthermore,
the toolchain’s ability to eliminate all points of known or unmodified objects greatly improves the value
of the as-built data. Despite being under active development, the open source autopilot software and
the Robot Operating System (ROS) provide a solid foundation for practical applications of autonomous
UAVs. The main focus of this work is employing UAVs for capturing as-built data. As referred to in
the Section State of Technology, there are many approaches of analysis and decision-making that rely
on structured and repeatable data acquisition. This work aims to provide a framework for efficiently
capturing the input data for all kinds of analysis purposes that require structured and repeatable
as-built information. The presented approach for segmenting point clouds and detecting distinct
objects shows that these expectations are met by the autonomous UAV and the software that controls it.
This is a work in progress. Following the simulation-based tests, the toolchain will be evaluated on
real hardware and in practical case studies. The isolated groups of new or modified objects will be
used for automated progress monitoring of processes in 4D-BIM.

The proposed approach could be improved in the following ways: the application sources its
information from BIM data. After finishing an inspection flight, results should be persisted in IFC files



Sensors 2019, 19, 4513 20 of 22

that include all detected objects. The geometry of objects should be imported from the as-planned
model and linked to the captured as-built data, stored as point cloud data and images.

The fixed depth of octrees used in the case study determines that octants increase or decrease in
size proportionally to object size. Octant size and point cloud resolution directly determine the quality
of the presence detection. The robustness of the presence detection could possibly be improved by
optimising the desired octant size and computing the required octree depth for each object.

Furthermore, the case study showed that ignoring border regions to surfaces of adjacent objects
reduce the number of false positives in the matching procedure. This improvement could be added to
the automatic octree generation.

Author Contributions: Conceptualization, H.F.; Investigation, H.F.; Methodology, H.F.; Software, H.F.;
Supervision, M.K.; Visualization, H.F.; Writing—original draft, H.F.; Writing—review & editing, M.K.

Funding: We acknowledge support by the DFG Open Access Publication Funds of the Ruhr-Universität Bochum.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bosché, F.; Ahmed, M.; Turkan, Y.; Haas, C.T.; Haas, R. The Value of Integrating Scan-to-BIM and Scan-vs-BIM
Techniques for Construction Monitoring Using Laser Scanning and BIM: The Case of Cylindrical MEP
Components. Autom. Constr. 2015, 49, 201–213, doi:10.1016/j.autcon.2014.05.014. [CrossRef]

2. Xiong, X.; Adan, A.; Akinci, B.; Huber, D. Automatic Creation of Semantically Rich 3D Building Models
from Laser Scanner Data. Autom. Constr. 2013, 31, 325–337, doi:10.1016/j.autcon.2012.10.006. [CrossRef]

3. Bosché, F.; Adrien, G.; Yelda, T.; Haas, C.T.; Haas, R. Tracking the Built Status of MEP Works:
Assessing the Value of a Scan-vs-BIM System. J. Comput. Civil Eng. 2014, 28, 05014004,
doi:10.1061/(ASCE)CP.1943-5487.0000343. [CrossRef]

4. Eschmann, C.; Kuo, C.M.; Kuo, C.H.; Boller, C. Unmanned Aircraft Systems for Remote Building Inspection
and Monitoring. In Proceedings of the 6th European Workshop on Structural Health Monitoring, Dresden,
Germany, 2–6 July 2012; pp. 1–8.

5. Wang, J.; Sun, W.; Shou, W.; Wang, X.; Wu, C.; Chong, H.Y.; Liu, Y.; Sun, C. Integrating BIM and LiDAR for
Real-Time Construction Quality Control. J. Intell. Rob. Syst. 2015, 79, 417–432, doi:10.1007/s10846-014-0116-8.
[CrossRef]

6. Morgenthal, G.; Hallermann, N. Quality Assessment of Unmanned Aerial Vehicle (UAV) Based Visual
Inspection of Structures. Adv. Struct. Eng. 2014, 17, 289–302, doi:10.1260/1369-4332.17.3.289. [CrossRef]

7. Wefelscheid, C.; Hänsch, R.; Hellwich, O. Three-Dimensional Building Reconstruction Using
Images Obtained by Unmanned Aerial Vehicles. ISPRS Archives 2011, 3822, 183–188,
doi:10.5194/isprsarchives-XXXVIII-1-C22-183-2011. [CrossRef]

8. Freimuth, H.; König, M. A Toolchain for Automated Acquisition and Processing of As-Built Data with
Autonomous UAVs. In Proceedings of the 2019 European Conference on Computing in Construction,
Chania, Greece, 10–12 July 2019; pp. 9–18, doi:10.35490/EC3.2019.137. [CrossRef]

9. Freimuth, H.; König, M. Planning and Executing Construction Inspections with Unmanned Aerial Vehicles.
Autom. Constr. 2018, 96, 540–553, doi:10.1016/j.autcon.2018.10.016. [CrossRef]

10. Son, H.; Bosché, F.; Kim, C. As-Built Data Acquisition and Its Use in Production Monitoring and Automated
Layout of Civil Infrastructure: A Survey. Adv. Eng. Inf. 2015, 29, 172–183, doi:10.1016/j.aei.2015.01.009.
[CrossRef]

11. Klein, L.; Li, N.; Becerik-Gerber, B. Imaged-Based Verification of As-Built Documentation of Operational
Buildings. Autom. Constr. 2012, 21, 161–171, doi:10.1016/j.autcon.2011.05.023. [CrossRef]

12. Jiang, R.; Jáuregui, D.V.; White, K.R. Close-Range Photogrammetry Applications in Bridge Measurement:
Literature Review. Measurement 2008, 41, 823–834, doi:10.1016/j.measurement.2007.12.005. [CrossRef]

13. Chen, L.; Luo, H. A BIM-Based Construction Quality Management Model and Its Applications. Autom.
Constr. 2014, 46, 64–73, doi:10.1016/j.autcon.2014.05.009. [CrossRef]

https://doi.org/110.1016/j.autcon.2014.05.014
http://dx.doi.org/10.1016/j.autcon.2014.05.014
https://doi.org/10.1016/j.autcon.2012.10.006
http://dx.doi.org/10.1016/j.autcon.2012.10.006
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000343
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000343
https://doi.org/10.1007/s10846-014-0116-8
http://dx.doi.org/10.1007/s10846-014-0116-8
https://doi.org/10.1260/1369-4332.17.3.289
http://dx.doi.org/10.1260/1369-4332.17.3.289
https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-183-2011
http://dx.doi.org/10.5194/isprsarchives-XXXVIII-1-C22-183-2011
https://doi.org/10.35490/EC3.2019.137
http://dx.doi.org/10.35490/EC3.2019.137
https://doi.org/10.1016/j.autcon.2018.10.016
http://dx.doi.org/10.1016/j.autcon.2018.10.016
https://doi.org/10.1016/j.aei.2015.01.009
http://dx.doi.org/10.1016/j.aei.2015.01.009
https://doi.org/10.1016/j.autcon.2011.05.023
http://dx.doi.org/10.1016/j.autcon.2011.05.023
https://doi.org/10.1016/j.measurement.2007.12.005
http://dx.doi.org/10.1016/j.measurement.2007.12.005
https://doi.org/10.1016/j.autcon.2014.05.009
http://dx.doi.org/10.1016/j.autcon.2014.05.009


Sensors 2019, 19, 4513 21 of 22

14. Tang, P.; Anil, E.B.; Akinci, B.; Huber, D. Efficient and Effective Quality Assessment of As-Is
Building Information Models and 3D Laser-Scanned Data. In Proceedings of the International
Workshop on Computing in Civil Engineering 2011, Miami, FL, USA, 12–22 June 2011; pp. 486–493,
doi:10.1061/41182(416)60. [CrossRef]

15. Kim, M.K.; Cheng, J.C.P.; Sohn, H.; Chang, C.C. A Framework for Dimensional and Surface Quality
Assessment of Precast Concrete Elements Using BIM and 3D Laser Scanning. Autom. Constr. 2015,
49, 225–238, doi:10.1016/j.autcon.2014.07.010. [CrossRef]

16. Tang, P.; Huber, D.; Akinci, B.; Lipman, R.; Lytle, A. Automatic Reconstruction of As-Built Building
Information Models from Laser-Scanned Point Clouds: A Review of Related Techniques. Autom. Constr.
2010, 19, 829–843, doi:10.1016/j.autcon.2010.06.007. [CrossRef]

17. Alizadehsalehi, S.; Yitmen, I.; Celik, T.; Arditi, D. The Effectiveness of an Integrated BIM/UAV
Model in Managing Safety on Construction Sites. Int. J. Occup. Saf. Ergon. 2018, 1–16,
doi:10.1080/10803548.2018.1504487. [CrossRef]

18. Huber, D.; Akinci, B.; Anil, E.; Okorn, B.E.; Xiong, X. Methods for Automatically Modeling and Representing
As-Built Building Information Models. In Proceedings of the NSF CMMI Research Innovation Conference,
Atlanta, GA, USA, 4–7 January 2011.

19. Lukins, T.C.; Trucco, E. Towards Automated Visual Assessment of Progress in Construction Projects. In
Procedings of the British Machine Vision Conference, Coventry, UK, 10–13 September 2007; pp. 1–10,
doi:10.5244/C.21.18. [CrossRef]

20. Golparvar-Fard, M.; Peña-Mora, F.; Savarese, S. D4AR–a 4-dimensional augmented reality model for
automating construction progress monitoring data collection, processing and communication. J. Inf. Technol.
Constr. 2009, 14, 129–153.

21. Ibrahim, Y.M.; Lukins, T.C.; Zhang, X.; Trucco, E.; Kaka, A.P. Towards Automated Progress Assessment of
Workpackage Components in Construction Projects Using Computer Vision. Adv. Eng. Inf. 2009, 23, 93–103,
doi:10.1016/j.aei.2008.07.002. [CrossRef]

22. Golparvar-Fard M.; Peña-Mora F.; Savarese S. Automated Progress Monitoring Using Unordered Daily
Construction Photographs and IFC-Based Building Information Models. J. Comput. Civ. Eng. 2015,
29, 04014025, doi:10.1061/(ASCE)CP.1943-5487.0000205. [CrossRef]

23. Besada, J.A.; Bergesio, L.; Campaña, I.; Vaquero-Melchor, D.; López-Araquistain, J.; Bernardos, A.M.;
Casar, J.R. Drone Mission Definition and Implementation for Automated Infrastructure Inspection Using
Airborne Sensors. Sensors 2018, 18, 1170, doi:10.3390/s18041170. [CrossRef]

24. Braun, A.; Borrmann, A. Combining Inverse Photogrammetry and BIM for Automated Labeling
of Construction Site Images for Machine Learning. Autom. Constr. 2019, 106, 102879,
doi:10.1016/j.autcon.2019.102879. [CrossRef]

25. Mentasti, S.; Pedersini, F. Controlling the Flight of a Drone and Its Camera for 3D Reconstruction of Large
Objects. Sensors 2019, 19, 2333, doi:10.3390/s19102333. [CrossRef]

26. Hichri, N.; Stefani, C.; Luca, L.D.; Veron, P.; Hamon, G. From Point Cloud to BIM: A Survey of
Existing Approaches. In Proceedings of the 24th International CIPA Symposium, Strasbourg, France,
2–6 September 2013, doi:10.5194/isprsarchives-XL-5-W2-343-2013. [CrossRef]

27. Besl, P.J.; McKay, N.D. A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992,
14, 239–256, doi:10.1109/34.121791. [CrossRef]

28. Theiler, P.W.; Wegner, J.D.; Schindler, K. Keypoint-Based 4-Points Congruent Sets – Automated
Marker-Less Registration of Laser Scans. ISPRS J. Photogramm. Remote Sens. 2014, 96, 149–163,
doi:10.1016/j.isprsjprs.2014.06.015. [CrossRef]

29. Bueno, M.; Bosché, F.; González-Jorge, H.; Martínez-Sánchez, J.; Arias, P. 4-Plane congruent sets for
automatic registration of as-is 3D point clouds with 3D BIM models. Autom. Constr. 2018, 89, 120–134,
doi:10.1016/j.autcon.2018.01.014. [CrossRef]

30. Park, J.; Kim, P.; Cho, Y.K.; Kang, J. Framework for Automated Registration of UAV and UGV Point
Clouds Using Local Features in Images. Autom. Constr. 2019, 98, 175–182, doi:10.1016/j.autcon.2018.11.024.
[CrossRef]

31. Zhan, Q.; Liang, Y.; Xiao, Y. Color-Based Segmentation of Point Clouds. Laser Scanning 2009, 38, 155–161.

https://doi.org/10.1061/41182(416)60
http://dx.doi.org/10.1061/41182(416)60
https://doi.org/10.1016/j.autcon.2014.07.010
http://dx.doi.org/10.1016/j.autcon.2014.07.010
https://doi.org/10.1016/j.autcon.2010.06.007
http://dx.doi.org/10.1016/j.autcon.2010.06.007
https://doi.org/10.1080/10803548.2018.1504487
http://dx.doi.org/10.1080/10803548.2018.1504487
https://doi.org/10.5244/C.21.18
http://dx.doi.org/10.5244/C.21.18.
https://doi.org/10.1016/j.aei.2008.07.002
http://dx.doi.org/10.1016/j.aei.2008.07.002
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000205
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000205
https://doi.org/10.3390/s18041170
http://dx.doi.org/10.3390/s18041170
https://doi.org/10.1016/j.autcon.2019.102879
http://dx.doi.org/10.1016/j.autcon.2019.102879
https://doi.org/10.3390/s19102333
http://dx.doi.org/10.3390/s19102333
https://doi.org/10.5194/isprsarchives-XL-5-W2-343-2013
http://dx.doi.org/10.5194/isprsarchives-XL-5-W2-343-2013
https://doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/34.121791
https://doi.org/10.1016/j.isprsjprs.2014.06.015
http://dx.doi.org/10.1016/j.isprsjprs.2014.06.015
https://doi.org/10.1016/j.autcon.2018.01.014
http://dx.doi.org/10.1016/j.autcon.2018.01.014
https://doi.org/10.1016/j.autcon.2018.11.024
http://dx.doi.org/10.1016/j.autcon.2018.11.024


Sensors 2019, 19, 4513 22 of 22

32. Ning, X.; Zhang, X.; Wang, Y.; Jaeger, M. Segmentation of Architecture Shape Information from 3D Point
Cloud. In Proceedings of the 8th International Conference on Virtual Reality Continuum and Its Applications
in Industry, Yokohama, Japan, 14–15 December 2009; pp. 127–132, doi:10.1145/1670252.1670280. [CrossRef]

33. Rusu, R.B.; Cousins, S. 3D Is Here: Point Cloud Library (PCL). In Proceedings of the 2011 IEEE
International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4,
doi:10.1109/ICRA.2011.5980567. [CrossRef]

34. PX4/Avoidance. Available online: https://github.com/PX4/avoidance (accessed on 14 October 2019).
35. Hrabia, C.E.; Hessler, A.; Xu, Y.; Seibert, J.; Brehmer, J.; Albayrak, S. EffFeu Project: Towards Mission-Guided

Application of Drones in Safety and Security Environments. Sensors 2019, 19, 973, doi:10.3390/s19040973.
[CrossRef]

36. Visser, A.; Dijkshoorn, N.; van der Veen, M.; Jurriaans, R. Closing the Gap between Simulation and Reality in
the Sensor and Motion Models of an Autonomous AR.Drone. In Proceedings of the 2011 International Micro
Air Vehicle Conference and Flight Competition Summer edition, Elburg, The Netherlands, 9 September 2011,
doi:10.4233/uuid:3ddf7e58-b499-4e03-ad57-7eddcd3f0728. [CrossRef]

37. Symington, A.; Nardi, R.D.; Julier, S.; Hailes, S. Simulating Quadrotor UAVs in Outdoor Scenarios. In
Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL,
USA, 14–18 September 2014; pp. 3382–3388, doi:10.1109/IROS.2014.6943033. [CrossRef]

38. Olivares-Mendez, M.A.; Kannan, S.; Voos, H. Setting up a Testbed for UAV Vision Based Control Using
V-REP & ROS: A Case Study on Aerial Visual Inspection. In Proceedings of the 2014 International
Conference on Unmanned Aircraft Systems (ICUAS),Orlando, FL, USA, 27–30 May 2014; pp. 447–458,
doi:10.1109/ICUAS.2014.6842285. [CrossRef]

39. Koenig, N.; Howard, A. Design and Use Paradigms for Gazebo, an Open-Source Multi-Robot Simulator.
In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Sendai, Japan, 28 September–2 October 2004; pp. 2149–2154, doi:10.1109/IROS.2004.1389727. [CrossRef]

40. Meyer, J.; Sendobry, A.; Kohlbrecher, S.; Klingauf, U.; von Stryk, O. Comprehensive Simulation of Quadrotor
UAVs Using ROS and Gazebo. In Lecture Notes in Computer Science, Proceedings of the Third International
Conference, SIMPAR 2012, Tsukuba, Japan, 5–8 November 2012; Noda, I., Ando, N., Brugali, D., Kuffner, J.J.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 400–411, doi:10.1007/978-3-642-34327-8_36.
[CrossRef]

41. Wang, K.; Cheng, J.C. Integrating Hardware-In-the-Loop Simulation and BIM for Planning UAV-Based
As-Built MEP Inspection with Deep Learning Techniques. In Proceedings of the 36th International
Symposium on Automation and Robotics in Construction, Banff, AB, Canada, 21–24 May 2019; pp. 310–316,
doi:10.22260/ISARC2019/0042. [CrossRef]

42. Lockley, S.; Benghi, C.; Černý, M. Xbim.Essentials: A Library for Interoperable Building Information
Applications. J. Open Source Softw. 2017, 2, 473, doi:10.21105/joss.00473. [CrossRef]

43. Vanneste, S.; Bellekens, B.; Weyn, M. 3 DVFH + : Real-Time Three-Dimensional Obstacle Avoidance Using an
Octomap. 2014, pp. 89–100. Available online: http://ceur-ws.org/Vol-1319/#morse14_paper_08 (accessed
on 14 October 2019).

44. Hirschmüller, H. Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Trans. Pattern
Anal. Mach. Intell. 2008, 30, 328–341, doi:10.1109/TPAMI.2007.1166. [CrossRef]

45. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An Efficient Probabilistic
3D Mapping Framework Based on Octrees. Auton. Robots 2013, 34, 189–206, doi:10.1007/s10514-012-9321-0.
[CrossRef]

46. Min, P. Binvox. Available online: http://www.patrickmin.com/binvox (accessed on 14 October 2019).
47. Nooruddin, F.S.; Turk, G. Simplification and Repair of Polygonal Models Using Volumetric Techniques.

IEEE Trans. Visual Comput. Graph. 2003, 9, 191–205, doi:10.1109/TVCG.2003.1196006. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1145/1670252.1670280
http://dx.doi.org/10.1145/1670252.1670280
https://doi.org/10.1109/ICRA.2011.5980567
http://dx.doi.org/10.1109/ICRA.2011.5980567
https://github.com/PX4/avoidance
https://doi.org/10.3390/s19040973
http://dx.doi.org/10.3390/s19040973
https://doi.org/10.4233/uuid:3ddf7e58-b499-4e03-ad57-7eddcd3f0728
http://dx.doi.org/10.4233/uuid:3ddf7e58-b499-4e03-ad57-7eddcd3f0728
https://doi.org/10.1109/IROS.2014.6943033
http://dx.doi.org/10.1109/IROS.2014.6943033
https://doi.org/10.1109/ICUAS.2014.6842285
http://dx.doi.org/10.1109/ICUAS.2014.6842285
https://doi.org/10.1109/IROS.2004.1389727
http://dx.doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1007/978-3-642-34327-8_36
http://dx.doi.org/10.1007/978-3-642-34327-8_36
https://doi.org/10.22260/ISARC2019/0042
http://dx.doi.org/10.22260/ISARC2019/0042
https://doi.org/10.21105/joss.00473
http://dx.doi.org/10.21105/joss.00473
http://ceur-ws.org/Vol-1319/#morse14_paper_08
https://doi.org/10.1109/TPAMI.2007.1166
http://dx.doi.org/10.1109/TPAMI.2007.1166
https://doi.org/10.1007/s10514-012-9321-0
http://dx.doi.org/10.1007/s10514-012-9321-0
http://www.patrickmin.com/binvox
https://doi.org/10.1109/TVCG.2003.1196006
http://dx.doi.org/10.1109/TVCG.2003.1196006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Contribution

	State of Technology and Research
	Choosing a Suitable Platform for UAV Development
	Simulation in Robotics

	Concept and Prototype
	Simulating Automated As-Built Inspections with UAVs
	Components of the Toolchain
	The Point Cloud Subtractor
	The Point Cloud Assembler
	The Inspection Planner

	Evaluation
	Setting up Simulation Experiments
	Case Study

	Conclusions and Outlook
	References

