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Abstract: Hospitals need to invest a lot of manpower to manually input the contents of medical
invoices (nearly 300,000,000 medical invoices a year) into the medical system. In order to help the
hospital save money and stabilize work efficiency, this paper designed a system to complete the
complicated work using a Gaussian blur and smoothing–convolutional neural network combined
with a recurrent neural network (GBS-CR) method. Gaussian blur and smoothing (GBS) is a novel
preprocessing method that can fix the breakpoint font in medical invoices. The combination of
convolutional neural network (CNN) and recurrent neural network (RNN) was used to raise the
recognition rate of the breakpoint font in medical invoices. RNN was designed to be the semantic
revision module. In the aspect of image preprocessing, Gaussian blur and smoothing were used to
fix the breakpoint font. In the period of making the self-built dataset, a certain proportion of the
breakpoint font (the font of breakpoint is 3, the original font is 7) was added, in this paper, so as to
optimize the Alexnet–Adam–CNN (AA-CNN) model, which is more suitable for the recognition of
the breakpoint font than the traditional CNN model. In terms of the identification methods, we not
only adopted the optimized AA-CNN for identification, but also combined RNN to carry out the
semantic revisions of the identified results of CNN, meanwhile further improving the recognition rate
of the medical invoices. The experimental results show that compared with the state-of-art invoice
recognition method, the method presented in this paper has an average increase of 10 to 15 percentage
points in recognition rate.

Keywords: medical invoices; breakpoint font; CNN; RNN; semantic revisions

1. Introduction

1.1. Detailed Introduction

A large number of paper medical invoices are produced in hospitals every day. If we only use
manpower to identify and classify these medical invoices, it is not only a waste of manpower, but also
cannot guarantee work efficiency after long working hours [1]. Compared to a similar field, such as for
face recognition, one of the best methods is based on Gabor jet feature extraction, filters, and Borda
count classification [2–5], which really point out that the faster the image features are processed,
the better the recognition they will present. In order to improve and stabilize the recognition efficiency
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of the medical invoices, we made a brand-new solution to deal with the problem facing the whole
medical system.

From the inchoate object recognition [6], we found that the recognition field became more and
more specific, as with face recognition [7–9], text recognition [10–12], and speech recognition [13,14].
In the text recognition area, there are some ways to achieve the recognition of traditional invoices,
such as the bank bill automation recognition based on the HMMs (hidden Markov models) method,
invented by Gui-Xin Wang [15] and recognition algorithms on bank invoice images with a BP (back
propagation) network, invented by Meng-di Han [16]. However, there is still a blank space for Chinese
medical invoices. Meanwhile, the traditional recognition methods could not achieve the goal of making
the whole process both efficient and reliant. Recently, image representations based on the convolutional
neural network (CNN) have attracted increasing interest in the community, and have demonstrated an
impressive performance [16], for example for Chinese handwriting recognition. As for the medical
area, CNN has been used in medical images processing [17], and recurrent neural network (RNN) has
been applied to solve the problem of language semantics [18]. The combination of CNN and RNN has
already been used in dealing with the recognition of handwritten English words [19], atmospheric
visibility from images [20], image visual recognition [21], and action capture [22]. It shows that the
mature framework could work in all kinds of image problems, including single layer and multiple
layer images [23].

However, the combination of CNN and RNN has not been used in the area of invoice recognition.
A paper by D. Lowe proposed a method for object recognition using distinctive image features—it
extracts the distinctive invariant features from the images that can be used to perform reliable matching
between different views of an object or scene. The features are invariant to the image scale and rotation,
and at the same time they are shown to provide robust matching across a substantial range of affine
distortions, change in 3D viewpoints, addition of noise, and change in illumination. The features are
highly distinctive, in the sense that a single feature can be correctly matched with a high probability
against a large database of features from many images [6]. This really inspired us in the field of
dealing with image feature processing. We came up with a way of combining artificial intelligence,
image preprocessing, deep learning, and CNN, along with RNN, as a new network model to deal with
this problem. In our project, we firstly used image grayscale and image binarization to extract the
features, then, we used the Gaussian blur and smoothing to fix the breakpoint font. We named this
image preprocessing method Gaussian blur and smoothing (GBS). We figured out a special connection
between the word datasets and the words we were trying to recognize by using a deep learning training
model developed by CNN, and built up another training model based on RNN about the meanings of
the words that we recognized from the CNN. To activate the features we got by image preprocessing
so as to match the datasets, we used a new method—using a single letter segmentation program that
we built to pre-cut the continuous characters into single characters, which we then sent to our CNN
and RNN network to recognize. The whole new model of the process that we made was named the
GBS-CR model. It really matches the advanced leading thinking of using deep learning and image
processing to upgrade the recognition technology from the traditional to advanced methods.

1.2. The Motivation and the Contribution of This Paper

Hospitals need to invest a lot of manpower to manually input the contents of medical invoices
into computer systems. In order to help hospitals save costs in this aspect, we designed a system
to complete a lot of complicated work. In cities like Shanghai, 300,000,000 medical invoices are
usually produced by hospitals, based on the population of 20 million. This means that the hospitals
need their employees to take up more workload to finish jobs with the invoices, in addition to other
vital paperwork. The workloads with the invoices include many terms, such as the management
of the medical invoices. In today’s situation, we are still using manpower to sort the invoices and
our introduced system would greatly help decrease the manpower and provide more productivity.
Our method is a pioneer step for combining artificial intelligence with medical system.
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Because the stylus printer uses a special font (breakpoint font) in medical invoices, the recognition
accuracy is lower than the normal font used in other invoices. So, this paper improved the recognition
accuracy of the breakpoint font from the following two aspects:

1. In terms of preprocessing, we abandoned the traditional methods, such as the wavelet-transform,
because of the worse feedback in the breakpoint font. We designed a brand-new preprocessing
method called Gaussian blur and smoothing (GBS), which can effectively repair the breakpoint
font and improve recognition accuracy;

2. Compared with a state-of-art text recognition system, such as optical character recognition (OCR),
we used the dual model network of CNN and RNN as the recognition module in order to improve
the recognition accuracy.

As a matter of fact, this system helps hospitals accomplish a large amount of complicated work.

2. Background

2.1. The Background of Deep Learning

Today, deep learning is already becoming a much-needed technology in many areas, especially
in recognition and further processing. As for the deep learning technology we currently put in use,
it started from the BP model, well-known as the multi-layer perceptron. It is the primary model of the
deep learning methods, but it is still limited by the lack of calculation power of computers. With the
development of computing power, more complex methods with better accuracy have appeared. In 2006,
Professor Geoffrey Hinton and his students published a paper on science, and pointed out that in many
areas, the gathering features of the datasets were more useful for describing themselves. In order to
overcome the difficulty of how to train a network model of deep learning, he presented a new idea
called layer-wise pre-training, and these two points are still what we are using nowadays in works
on deep learning. Deep-learning methods are representation-learning methods with multiple levels
of representation, obtained by composing simple but non-linear modules. These modules transform
each representation at one level (starting with the raw input), into a representation at a higher and
more abstract level. With the composition of enough transformations, very complex functions are
formed [24]. In 2012, Professor Geoffrey Hinton and his students performed a further study using
CNN to recognize images using only pixels. This is an advanced idea in image processing as well
as in all areas of image recognition, solving the problem of too many features of images that need
to be collected and replaced with pixels. In particular, CNN has achieved the top performance on
many image-based classification tasks, as its structure is very suitable for representing the image data.
For example, image classification used Chinese handwriting recognition [25], and it has been used
in the field of face recognition as well. For another framework, we used RNN. The recurrent neural
network is a powerful model for sequential data, which has been used widely in speech recognition
for combining the multiple levels of representation that have proven so effective in deep networks,
with flexible use in a long-range context [26–28]. The RNN also fits in the sentences semantic area [29].
A study by Cho, Kyunghyun shows that the proposed model (based on RNN) learns a semantically
and syntactically meaningful representation of linguistic phrases [30]. It has also been proven to play
an important role in the recognition of fast continuous Mandarin speech [31]. These areas have many
familiar parts with word or text recognition; in particular, the semantic part is still a very challenging
part of invoice recognition, which is why we fitted the RNN into our work smoothly.

2.2. The Status Quo of Invoices Recognition

So far, the deep learning algorithm has been applied to replace the original matching algorithm.
As for the text recognition, it has always been a long-standing topic in computer vision [32]. Recognition
methods in text are put forward, but are rarely based on deep learning. Another blank area is in the area
of medical invoices recognition. Traditional invoice recognition only focusses on general invoices and
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bank invoices, for example, the bank bill automation recognition based on HMMs method invented by
Gui-Xin Wang, the recognition algorithms of bank invoice images using a BP network invented by
Meng-di Han, and the spiral recognition methodology for the recognition of Chinese bank bills [33].

For traditional recognition, it only can recognize the continuous characters where every word
is printed clearly and smoothly. A lot of methods are based on OCR, but it is already out of date
in the invoice recognition area. In recent years, deep learning methods have really outperformed
traditional methods in the OCR research field, which proposes the idea that CNNs on large-scale
annotated datasets can be efficiently transferred to other visual recognition tasks with a limited amount
of training data [34], which gave us the idea of combining the deep learning methods with our dual
model system.

2.3. The Innovation of GBS-CR

As we all know, for printed text, the main difficulty still comes from severely merged or
degraded characters. Even now, the incorrect recognition of merged characters is still one of the
main problems [35], both in printed letters and handwriting [36], but medical invoices are different.
They not only have the problem above, but also medical invoices are mostly printed using the stylus
printer. This means that there will many breakpoints reserved in every character, but at the moment,
traditional recognition cannot recognize words with breakpoints very well. To perfectly solve the
problem, we found that Gaussian blur and smoothing is an excellent method, by expanding the
character itself while still being able to recognize it. In the field of face recognition, the Gaussian filter
has been used as a tool to help deal with preprocessing and after blurring. We found a mature method
named the scale-invariant feature transform (SIFT), proposed by David Lowe, which provided a
solution to extract the features and re-match with the database. SIFT is a powerful set of local, invariant
features or key-point descriptors for detecting local structures in different image views. The noises are
blurred, but the details on edges remain unaffected in this scale space. Compared with traditional
SIFT-based matching methods [37–39], the features extracted by AAg-SIFT [40–43] are more stable and
precise [44–47]. This method has normally been seen in image recognition [48,49], and inspired us
with how to preprocess the breakpoint character. In our work, we figured out a way to preprocess
the image by using a Gaussian filter to process the words and to reach a point where the breakpoint
was fixed smoothly and the necessary features were left over clearly. Thus, we could still extract the
invariant features. We also applied the deep learning model to upgrade the speed in order to solve the
problem of the low recognition rate of the traditional method.

This paper proposes a new image preprocessing method named GBS and a medical invoice
recognition algorithm which combines CNN and RNN together, in order to recognize medical invoices,
which greatly improves the performance of medical invoice recognition, after having studied the
existing achievements in signal processing and deep learning in our laboratory [50–52]. In the algorithm
combining the Alexnet with Adam optimization algorithm, using the Adam optimization algorithm
can make the network convergence fast and reduce the loss of the advantages of network training,
greatly improving the recognition rate.

3. Dual Model Medical Invoice Recognition Methods

This paper introduces the optimization and acceleration of the GBS-CR model from the following
aspects, the framework of which is shown in Figure 1.
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Figure 1. The framework of the Gaussian blur and smoothing–convolutional neural network combined
with a recurrent neural network (GBS-CR). RNN—recurrent neural network.

As shown in Figure 1, the GBS-CR system proposed in this paper was divided into the following
two modules:

1. Model training (offline);
2. Recognition (online).

In the first module, we only needed two models trained by Alexnet-Adam-CNN and RNN. Then,
we could upload these models to the cloud and save it.

In the second module, as there is a large amount of professional terminology in medical invoices,
this paper combined AA-CNN and RNN in sequence. After AA-CNN outputs recognized the results,
RNN was used to carry out the semantic revisions obtained by the recognized results of CNN,
and modified some professional terminology in the medical invoices.

3.1. AA-CNN Model Training for Recognition

After obtaining the font images of the medical invoices, we carried out the image preprocessing in
order to obtain the training set required by the AA-CNN network, which integrates the Alexnet and
Adam optimization algorithm, and we started network training with the primary character dataset.
In the end, we could save the trained model to the local and identify the images. The specific process is
shown in Figure 2.
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First, we got the single Chinese character images from the TTF font file, then we put all of
these images together to form a primary character dataset, which included 525,700 images from 3755
commonly used Chinese characters.

Second, because of the differences between the common invoices and medical ones, we added
the appropriate percentage of simulated breakpoint fonts to build a new dataset, which included
225,300 images from 3755 commonly used Chinese characters.

In view of the different fonts between the normal notes and medical invoices, we designed a
method to imitate the breakpoint font. The comparison of these two kinds of invoices is shown in
Figure 3.
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We can clearly see from Figure 4 that the font of the general invoice is continuous, while the
medical one is broken.
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Therefore, we simulated the breakpoint effect on the original font according to the principle of the
printing breakpoint font, and used them to form a new dataset (self-built dataset), which included
751,000 images—525,700 images from the primary dataset, and 225,300 images from the new dataset
(this kind of structure will be explained in Section 4.3.1). It is shown in Figure 5.
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To illustrate our figure clearly, we added English translations to help understand the figure. At the
left side is an example of the original dataset (https://github.com/AstarLight/CPS-OCR-Engine/blob/

master/ocr/gen_printed_char.py). The Chinese character on the image means “content” in English.
On the right side is an example of the Chinese characters from our self-built dataset—the meanings of
the Chinese characters are “great”, “real”, “time”, “boy”, “modest”, and “normal”. Both datasets are
expanded by rotating at different angels.

Finally, as we already know that so many CNN models have been used in many other areas,
in order to find an appropriate one, we used some known CNNs, such as Googlenet, Caffenet,
and Alexnet, to select a better network that is suitable for our goal.

From the data shown in Table 1, we can see that Alexnet has a higher accuracy when distinguishing
the medical invoices; therefore, we chose Alexnet to continue further with our experiment.

Table 1. Different CNNs and their recognition accuracy.

Convolutional Neural Network (CNN) Accuracy (%)

Googlenet 81.05
Caffenet 84.25
Alexnet 87.65

During the Alexnet training, any change of the parameters in a layer would result in changes in the
following parameters, leading to the network needing to constantly adapt to the new data distribution.
It required more parameters to adjust the vector, and it was harder to train a network because of
the existence of the nonlinear problems in the activation function of the operation. From what we
discussed above, the input data of each layer of the neural network were normalized to the standard
normal distribution, which can solve the problems above, reduce the training time of the network
significantly, and accelerate the network convergence effectively.

For further improving accuracy and reducing loss, in the second stage, image preprocessing
methods such as binarization were added to obtain a small sample dataset, and the training was
conducted again.

We used AA-CNN to train the character dataset and the Relu activation function to reduce the
computing costs. The Relu equation is shown in Equation (1):

f (x) = max(0, x). (1)

Next, we will explain how the AA-CNN network worked.

https://github.com/AstarLight/CPS-OCR-Engine/blob/master/ocr/gen_printed_char.py
https://github.com/AstarLight/CPS-OCR-Engine/blob/master/ocr/gen_printed_char.py
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As shown in Figure 6, a Chinese character image with a size of 300 × 300 pixels was input into
the input layer, and then, after five convolutions (the kernel size of the first convolutional layer was
11 × 11 pixels, while the others’ kernel size was 3 × 3 pixels) and two max-poolings connected to two
fully-connected layers, and it finally output 3755 categories—the validation split value was 375,500
and the batch size was 128.
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In this article we chose Alexnet in order to make this network more suitable for training the
self-built dataset. We made a series of modifications to it, such as the kernel size of the convolutional
layer. We also used the Adam optimization algorithm to further reduce the loss value of Alexnet.

The reasons for using AA-CNN for training in this paper were as follows:

1. Local connection and weight sharing: to reduce a large number of parameters, the speed of seal
recognition, and classification;

2. Downsampling: to improve the robustness of the model, that is, to improve the accuracy of the
medical invoice recognition and model stability;

3. Local response normalization: this normalization was applied after using the nonlinear activation
function of ReLu;

4. Overlapping pooling: to reduce the overfitting of images caused by the operation of the
non-overlapping adjacent units.

At the same time, three different optimization algorithms were selected based on the Alexnet
network, which were as follows:

1. SGD optimization algorithm;
2. Adam optimization algorithm;
3. AdaGrad optimization algorithm.

In Figure 7, we can see the Adam optimization algorithm (Adam curve: train “accuracy/train”
loss, SGD curve: train accuracy/train loss, AdaGrad curve: train accuracy”’/train loss”’)—the loss rate
was reduced and the recognition accuracy was improved.
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In the procedure of the back propagation, the chain rule was applied on the loss function.
The normalized layer was determined by the type of back propagation gradient, including a summation
calculation with a small data batch. The calculation equation is shown below:

∂L
∂σ2 = −

1
2

∑s

i=1

∂L
∂gi

(ei − µ)
(
σ2

)− 3
2 ; (2)

∂L
∂µ

=

(∑s

i=1

∂L
∂gi

−1
σ

)
+
∂L
∂σ2

−2
∑s

i=1(ei − µ)

s
; (3)

∂L
∂ei

=
∂L
∂gi

1
σ
+
∂L
∂σ2

2(ei − µ)

s
+

1
s
∂L
∂µ

. (4)

3.2. RNN Model Training for Semantic Revisions

This paper introduced the optimization and acceleration of the BPTT-RNN model from the
following aspects. The framework is shown in Figure 8.
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First, we downloaded the medical terminology from the CNKI (China National Knowledge
Infrastructure) and PubMed, making the linguistic dataset include more than 7000 medical terms.

Then, we needed to vectorize the linguistic dataset, preparing for network training.
Finally, in order to obtain the linguistic model, the dataset was applied on the network training.
The RNN was applied to do the semantic revisions using the results of CNN. Then, we gave a

brief introduction of BPTT-RNN.
The circulation layer structure is shown in Figure 9.
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Figure 9. Structure of the circulation layer.

As is shown in Figure 9, the output of the hidden layer was ot using xt as input data. The point is,
the value of s depended not just on xt, but on st−1. We can use the following equations to express the
calculation procedure of cyclic neural network:

ot = g(Vst); (5)

st = f (Uxt + Wst−1). (6)

Equation (5) is the output layer calculation function. The output layer was a full connection layer.
V is the weight matrix of the output layer, and g is the activation function. Equation (6) is the hidden
layer (circulation layer) calculation function. U is the weight matrix for the input x, W is the value for
the last time, st−1 is the input weight matrix for this time, and f is the activation function (ReLU).
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The BPTT algorithm is a training algorithm for a cyclic layer. Its basic principle is the same as the
BP algorithm, and it also contains the same three steps:

1. Forward calculation of each neuron output value;
2. The error term δ j value of each neuron is calculated reversely. It is the partial derivative of the

error function E to the weighted input net j of the neuron j;
3. Calculate the gradient of each weight.

Finally, we used the stochastic gradient descent algorithm to update the weight, using the previous
Equation (6) to carry out forward calculation for the circulation layer:

Then, we expanded Equation (6) to get Equation (7):
st

1
...

st
n

 = f(


u11 · · · u1m

...
. . .

...
un1 · · · unm




x1
...

xm

+


w11 · · · w1n
...

. . .
...

wn1 · · · wnn




st−1
1
...

st−1
n

). (7)

The left side of Equation (7) is an output vector, st, with a size of n.
The right side of Equation (7) has an input vector, x, with a size of m; the dimension of matrix U is

n*m; and the dimension of matrix W is n*n.
st

n represents the value of the nth element of the vector s at time t, unm means the weight from the
mth neuron in the input layer to the nth neuron in the circulation layer, and wnn means the weight from
the nth neuron at time t−1 of the circulation layer to the nth neuron at time t of the circulation layer.

3.3. Recognition

After the CNN and RNN model training, the recognition module could carry out the offline
operation. The specific procedure is shown in Figure 10.
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We got the image of the original medical invoice obtained by a scanner, then extracted the parts
we needed to identify through the color threshold.

Finally, extracted text preprocessing (breakpoint processing) was performed. Breakpoint
processing is a process with two steps. The first one is Gaussian blur (in this paper, a Gaussian
blur with a 0.3 pixel radius was adopted for the medical invoices). The Gaussian blur equations are
shown as follows:

f(x) =
1

σ
√

2π
e−(x−µ)

2/2σ2
; (8)

G(x, y) =
1

2πσ2 e−(x
2+y2)/2σ2

. (9)

In the equations above, σ means the radius of the pixels, the radius of the Gaussian distribution
(σ) is 0.5, µ is the central point, which is generally zero, and (x,y) are the relative coordinates of
the peripheral pixels to the center ones. In Equation (8), f(x) is the density function of the normal
distribution in one dimension, also known as the Gaussian distribution. In Equation (9), G(x,y) is the
two-dimensional Gaussian equation derived from Equation (8).

After the Gaussian blur processing, the image was further enhanced by a smoothing operation.
In order to get a clearer outline (high frequency and intermediate frequency information of the image)
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of the breakpoint font, we used the mean value filtering to process the image after the Gaussian blur.
The equations are shown in Equations (10) and (11):

g(x, y) =
1

mn

∑
(x,y)∈Sxy

f (s, t); (10)

g(x, y) =

∑a
s=−a

∑b
t=−b w(s, t) f (x + s, y + t)∑a
s=−a

∑b
t=−b w(s, t)

. (11)

A kernel with the size of m*n (m, n is odd) was applied on the image as the mean filtering, and the
value of the intermediate pixel was replaced by the pixel average of the region covered by the kernel,
g(x, y) means the center point at (x, y) with the size of the m*n filter window, and f (s,t) means the
activation function. It is calculated as Equation (10).

For the images of size M*N, the weighted mean filter whose window was the size of M*N is
calculated as Equation (11).

4. Experimental Results and Analysis

4.1. Experimental Settings

The experiments conducted in this paper were as follows: the operating system was Ubuntu 16.04;
the GPU was NVIDIA GEFORCE GTX 1060; the memory size was 16 GB; and the software platform
was python tensorflow.

The workflow of the whole system is shown in Figure 11.

4.2. Comparisons of the Experimental Results

In Section 4.2, the experimental results are compared, as shown in Figure 12.

4.2.1. Comparison of Preprocessing

In this paper, in order to achieve a better recognition effect, we used two different preprocessing
methods to process the medical invoices, namely:

1. Original preprocessing: wavelet transform based on different wavelet basis functions;
2. GBS preprocessing: Gaussian blur and smoothing processing.

Wavelet-Transform Preprocessing

In traditional image preprocessing, we used wavelet-transform based on different wavelet basis
functions to enhance the original image, such as haar, db2, coif, and bior. The results are shown in
Figure 13.

Based on the images above, we found that the difference was not obvious between the four kinds
of wavelet-transform, so we selected two of them (haar and db2) to continue the following experiment.

The detailed cumulative histogram images by wavelet-transform based on the haar and db2
wavelet basis functions are shown in the Figures 14 and 15. We observed that the image after the haar
wavelet-transform had a more stable peak value from 0 to 25, but wavelet-transform based on the db2
basis function only had a peak value from 0 to 20. So, the wavelet-transform based on the haar basis
function was more applicable to this experiment. However, the breakpoint font was still not addressed
very well.
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Breakpoint Processing

In this paper, a breakpoint processing method was proposed, as shown in Figure 16, based on
Gaussian blur and smoothing (GBS).
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We found that all of the breakpoint fonts were fixed after GBS preprocessing.
In order to further confirm the validity of the breakpoint processing, we carried out the following

experiments. We selected a medical invoice randomly, and identified it after the wavelet-transform
and GBS preprocessing with our program. The whole process is shown in Figures 17–19.
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Figure 18. The effect of two preprocessing methods. (a) GBS preprocessing;
(b) wavelet-transform preprocessing.

In total, there were 157 Chinese characters in this medical invoice. We found that in Figure 19a,
138 Chinese characters were right, while in Figure 19b, only 115 Chinese characters were right.
The recognition accuracy of these two methods is shown in Table 2.

Table 2. The recognition accuracy of wavelet-transform preprocessing and Gaussian blur and smoothing
(GBS) preprocessing.

Preprocessing Mode Recognition Accuracy (%)

Wavelet-transform preprocessing 73.25
GBS preprocessing 87.91

From the data in Table 2, it is not hard for us to see that the GBS preprocessing obtained a higher
recognition accuracy in this experiment.
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4.2.2. Comparison of Normal CNN and AA-CNN

In this section, we will compare the normal CNN with AA-CNN in the same training procedures
(training set: 751,000; test set: 37,550; base learning rate: 0.01; iteration: 9000). The training curve is
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From Figure 20, we observed that the AA-CNN achieved a higher accuracy and lower loss
compared with the normal CNN.

4.2.3. Comparison of Semantic Revisions (RNN)

In this experiment, CNN and RNN were combined to form a parallel computing system. After the
CNN recognition result was obtained, RNN was applied to conduct a semantic revision based on
the CNN recognition result, which could greatly improve the recognition accuracy of our system for
medical invoices.

In order to further confirm the validity of the semantic revisions, we selected a medical invoice
randomly, and carried out the following experiments.

From Figure 21a, we can see that some medical terms were wrongly recognized, such as “serum”,
“hepatitis B”, and “nonesterified fatty acid”, which were wrongly recognized in Figure 21a, while in
Figure 21b, because of incorporating the semantic revisions module, all of the medical terms were
recognized properly.
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There were a total of 209 Chinese characters in the selected medical invoice and 175 of them were
recognized correctly in Figure 21a, while 191 of them were recognized correctly in Figure 21b. Table 3
shows the accuracy comparison of the recognition results with or without semantic revisions.
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Table 3. The accuracy comparison of the recognition results with or without semantic revisions.

Semantic Comparison Accuracy (%)

GBS + CNN 83.73
GBS + CNN + RNN 91.39

As shown in Table 3, as we added a semantic revision module, it examined the recognition results
of CNN by medical terminology, so that some characters that were difficult to recognize in CNN could
be revised in this module. Thus, the recognition accuracy was higher.

4.2.4. Comparison of Other Machine Learning Techniques

In this experiment, CNN and RNN were combined to form a parallel computing system. In order
to further confirm the validity of our method, we selected the same medical invoice used in Section 4.2.3,
and carried out the following experiments with HMMs and other DCNN [53,54].

From Table 4, we can see that, compared with other machine learning techniques, the GBS-CR
method proposed in this paper still maintained a good performance in recognition. This is because of
two main reasons. Firstly, we cited a new preprocessing method (GBS), which could fix the special
font in the medical invoices, while the other methods could not. Secondly, after the CNN output its
recognition results, we used them as the input of RNN (the semantic revision part) and the RNN gave
out the final revised results. In conclusion, there was an average increase of 7 to 12 percentage points
in the recognition rate due to our new method.

Table 4. Other machine learning techniques and their recognition accuracy compared with GBS-CR.

Other Machine Learning Techniques Accuracy (%)

GBS-CR 91.39
HMMs 81.05

Caffenet 79.25
Googlenet 84.65

4.3. Experimental Analysis

4.3.1. Analysis of the Dataset

In this section, we analyzed the dataset in the same training procedures (network: AA-CNN;
base learning rate: 0.01; iteration: 8000). We adopted two kinds of datasets, one was the primary font
dataset including 3755 commonly used Chinese characters, all of which were continuous, and the
other was the self-built dataset mixed with both a continuous and a breakpoint font. Throughout the
experiment process, we found that the training accuracy of the model would vary with the different
proportions of the breakpoint font, as shown in Figure 22.

It can be seen from Figure 22 that the precision of the model training reached the highest point
when the proportion was 7:3 (the font of breakpoint was 3, the original font was 7), while the recognition
accuracy was 93.49%.

So, in the other experiments carried out in this paper, we chose this proportion of dataset
(self-built dataset).
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4.3.2. Analysis of Generalization Ability

In daily life, invoices are not usually kept in a perfect environment. There are a lot of invoices that
will be conveniently put in a place, such as in a pocket, and then soaked by water, or rubbed by hands.
Therefore, in this section, we focus on the generalization ability of the proposed method, and have
made a comparison of the recognition accuracy.

Hand-Rubbed Medical Invoices

In this part, we selected a medical invoice randomly, and carried out the following experiments.
As shown in Figure 23b, it was a hand-rubbed medical invoice, and we did the contrast experiments
with the original one in the Figure 23a. We first used the GBS-CR method proposed in this paper
to identify the two invoices and to count their accuracy. Then, OCR was used to identify the same
hand-rubbed invoice, and its accuracy was compared with the GBS-CR method.Sensors 2019, 18, x FOR PEER REVIEW  19 of 26 
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Figure 23. Normal and hand-rubbed medical invoices.

As shown in Figure 24, we used the red box to interpret part of the recognition results. From the
comparison of the red box in Figure 24a,b, we observed that some key information was omitted from
the hand-rubbed invoice, and some of the results were wrong. According to the statistics, 163 of the
177 characters were correctly identified in the normal medical invoice, while 151 of the 177 characters
were correct in the hand-rubbed one. The recognition accuracy is shown in Table 5.
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Table 5. Recognition accuracy of the normal medical invoice and hand-rubbed one.

Recognition Environment Accuracy (%)

Normal 92.09
Hand-rubbed 85.31

It can be seen from Table 5 that although the invoice had been hand-rubbed, our system
(GBS-CR) could still maintain a good performance (only 8 of the 177 characters were omitted or
recognized wrongly).

Then, we did the same experiment with another text recognition method called optical character
recognition (OCR), and compared the recognition accuracy with our method. According to the statistics,
151 of the 177 characters were correctly identified in the GBS-CR method, while 119 of the 177 characters
were correct in OCR (a part of the recognition results is shown in Figure 25).

From Figure 25, we observed that many characters were omitted and even recognized wrongly
with the OCR method, and the recognition accuracy is shown in Table 6.
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OCR 67.19
GBS-CR 85.31

Waterlogged Medical Invoices

In this part, we also randomly selected a medical invoice and carried out the following experiments.
As shown in Figure 26b, it was a waterlogged medical invoice, and we did contrasting experiments
with the original one in Figure 26a. We first used the GBS-CR method proposed in this paper to identify
the two invoices and to count their accuracy. Then, OCR was used to identify the same waterlogged
invoice, and its accuracy was compared with the GBS-CR method.Sensors 2019, 18, x FOR PEER REVIEW  21 of 26 
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We first used the GBS-CR method proposed in this paper to identify the two invoices and to count
their accuracy. The results are shown in Figure 27a,b.

Sensors 2019, 18, x FOR PEER REVIEW  21 of 26 

  
(a) Normal medical invoice. (b) Waterlogged medical invoice. 

Figure 26. Normal and waterlogged medical invoices. 

We first used the GBS-CR method proposed in this paper to identify the two invoices and to 
count their accuracy. The results are shown in Figure 27a,b. 

 
(a) Recognition results of the normal medical invoice 

 
(b) Recognition results of the waterlogged invoiced 

Figure 27. Recognition results of two kinds of medical invoices. 

As shown in Figure 27, we also used the red box to interpret part of the recognition results. 
From the comparison of the red box in Figure 27a,b, we found that just a little information was 

Figure 27. Recognition results of two kinds of medical invoices.

As shown in Figure 27, we also used the red box to interpret part of the recognition results.
From the comparison of the red box in Figure 27a,b, we found that just a little information was omitted
from the waterlogged invoice; however, some results were recognized wrongly as well. According to
the statistics, 116 of the 127 characters were correctly identified in the normal medical invoice, while 106
of the 127 characters were correct in the waterlogged one. The recognition accuracy is shown in Table 7.

Table 7. Recognition accuracy of the waterlogged medical invoices.

Recognition Environment Accuracy (%)

Normal 91.34
Waterlogged 83.46

It can be seen from Table 7 that although the invoice was waterlogged, our system (GBS-CR) could
still maintain a good performance (only 11 of the 127 characters were omitted or recognized wrongly).

Then, we did the same experiment with the OCR method, and compared the recognition accuracy
with ours. According to the statistics, 83 of the 127 characters were correct with OCR (a part of the
recognition results is shown in Figure 28).
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From Figure 28, we observed that many characters were omitted and even recognized wrongly
with the OCR method, and the recognition accuracy is shown in Table 8.

Table 8. Recognition accuracy of waterlogged invoice with different methods.

Recognition Methods Accuracy (%)

OCR 65.35
GBS-CR 83.46

From Table 8, we can see that, compared with the OCR method, the GBS-CR method proposed in
this paper maintained a good performance in the generalization ability, and had an average increase of
10 to 15 percentage points in the recognition rate.

4.4. Summary of Experiment Analysis

From the analysis above, we have summarized the following points:

1. By careful design, we adjusted and modified the existing CNN network, and combined it with an
Adam optimization algorithm to derive a new CNN network, called AA-CNN;

2. We proposed a novel preprocessing method, consisting of a Gaussian blur and smoothing
operation (GBS), in order to fix the breakpoint font. This could improve the recognition accuracy
to a certain extent;

3. We designed a medical semantic revision module, which was presented in this paper. It had an
average increase of seven to eight percentage points in the recognition rate;

4. We built a new dataset, with an optimal performance comparable to the state-of-the-art method,
which used a self-built dataset combining the features of continuous Chinese characters and
breakpoint font in medical invoices;

5. In this paper, the generalization ability of our system also had a good performance.

5. Conclusions and Future Work

This paper proposed a dual model medical invoice recognition method based on deep learning,
which can extract and accurately recognize many breakpoint fonts in real medical invoices, and can
solve the problem of the complexity and high error rate of manual classification output in practical
applications. In addition, for breakpoint font, a bidirectional approximation method was used to solve
the problem of the difficult recognition of the breakpoint font in an impact printer. On the one hand,
in the preprocessing section, GBS (Gaussian blur and smoothing) was used to preprocess the collected
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images of the medical invoices, and the font of the breakpoint can be well recovered. Furthermore,
in the training of the AA-CNN model, a self-built dataset with a 7:3 proportion (the font of breakpoint
is 3, the original font is 7) of the breakpoint font was used to further improve the recognition accuracy
of the system for the typeface of the breakpoint printed by the impact printer. In the process of
training the AA-CNN network, a fine-tuned CNN combined with an Adam optimization algorithm
was selected for training. Compared with the traditional network, it greatly accelerated the network
convergence speed, reduced the loss value, and improved the recognition accuracy. It solved the
problem of the low recognition rate of the text recognition methods (OCR) in identifying the breakpoint
font in medical invoices. The algorithm designed in this paper achieved a higher recognition accuracy
by GBS preprocessing, and the combination of AA-CNN and the semantic revision module based
on RNN. Both the theoretical tests and the results of the contrast experiments show that the method
proposed in this paper has more advantages in processing the breakpoint font in medical invoices.
In the future, we will also focus on improving the preprocessing methods such as restricted Boltzmann
machines (RBMs) [55–58], and applying our approach to more areas like 3D object recognition and
fMRI [59–62].
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