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Abstract: In this paper, we present an estimation-based route planning (ERP) method for chemical
source searching using a wheeled mobile robot and validate its effectiveness with outdoor field
experiments. The ERP method plans a dynamic route for the robot to follow to search for a chemical
source according to time-varying wind and an estimated chemical-patch path (C-PP), where C-PP
is the historical trajectory of a chemical patch detected by the robot, and normally different from
the chemical plume formed by the spatial distribution of all chemical patches previously released
from the source. Owing to the limitations of normal gas sensors and actuation capability of ground
mobile robots, it is quite hard for a single robot to directly trace the intermittent and rapidly swinging
chemical plume resulting from the frequent and random changes of wind speed and direction in
outdoor field environments. In these circumstances, tracking the C-PP originating from the chemical
source back could help the robot approach the source. The proposed ERP method was tested in two
different outdoor fields using a wheeled mobile robot. Experimental results indicate that the robot
adapts to the time-varying airflow condition, arriving at the chemical source with an average success
rate and approaching effectiveness of about 90% and 0.4~0.6, respectively.

Keywords: wheeled mobile robot; chemical-source tracing; outdoor field environments;
chemical-patch path (C-PP); search-route planning

1. Introduction

Odor information is widely used by animals when searching for food, finding mates, exchanging
information, and evading predators. Inspired by these olfactory search activities, in the early 1990s,
researchers started trying to build mobile robots with similar olfaction abilities (or chemical sensing
capabilities in general) to replace trained animals [1–4]. It is expected that mobile robots developed
with such olfaction capabilities will play an increasing role in areas such as thwarting terrorist attacks,
finding toxic or harmful gas-leakage locations, checking for contraband (e.g., heroin), and searching
for survivors in collapsed buildings or in the water [5–7].
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Research into the use of one or more mobile robots equipped with odor/gas sensors (in some
research also with wind sensors) to search for chemical source(s) was called odor source localization
(OSL) [2,8]. To make the OSL research more general, here we call it chemical source searching
(CSS for short). The research into CSS can be roughly classified into behavior-based methods
and analytical-model-based methods [7], with most works focusing on behavior-based methods.
A behavior-based CSS procedure can commonly be decomposed into three subprocedures (namely,
plume finding, plume traversal, and source declaration), according to Hayes et al. [8]. During
the plume finding subprocedure, the robot tries to make contact with the chemical plume. Only
a few publications have discussed plume-finding methods. Hayes et al. [8] proposed an initial
outward spiral search pattern for plume finding. Recently, Marjovi et al. [9,10] discussed the
optimal spatial configuration of swarm robotic gas sensors for plume finding. Once the plume is
detected, the robot will switch to the second subprocedure, and begins tracing the chemical toward its
source. Most methods for this subprocedure are biologically inspired, such as the gradient-following
algorithms [11–14], the zigzagging algorithms [2,13], the upwind algorithms [8,15], adapted ant
colony optimization algorithm [16], particle swarm optimization algorithm and its variants [17–20],
the SPIRAL algorithm [21], and genetic programming algorithm [22]. During the plume tracing
procedure, how to re-contact a lost plume is also an important issue [23]. In the final phase, the robot
locates the source [24,25].

Conventional plume tracing methods, especially biologically inspired methods, make it quite
hard for a wheeled mobile robot equipped with normal gas sensors to approach a previously unknown
chemical source in outdoor airflow environments. This is because animals fundamentally differ in their
sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots [26]. The maximum
driving and steering speeds of normal wheeled mobile robots are limited by many factors, such as
kinematical constraints, ground conditions, and considerations for purposes of safety. Thus, outdoor
plumes usually change much faster than the speed of ground mobile robots. For example, according to
our measurements in real outdoor environments, the airflow speed is usually significant (typically
> 0.2 m/s, always above 1 m/s in windy days), and the airflow direction often changes randomly,
rapidly, and substantially. It is well known that the chemical dispersal in airflow environments
depends mainly on the transportation of turbulent airflow, forming an intermittent, patchy, sparse,
and even meandering plume. Furthermore, the response/recovery lag and relatively low sensitivity of
widely used metal-oxide-semiconductor gas sensors make the robot trace fast-changing and sparse
plume harder.

The main contribution of this paper is that an estimation-based route planning (ERP) method
is proposed for controlling a single ground mobile robot to search for a chemical source according
to the historical trajectory by which a chemical patch detected by the robot has passed, namely the
chemical-patch path (C-PP), in the second subprocedure of CSS. Experimental results show that the ERP
method allowed the robot to successfully track intermittent, sparse and random chemical plumes and
finally approach the previously unknown source in two different outdoor environments of thousands
of square meters. To our knowledge, most existing CSS methods were designed for indoor airflow
environments, with little research involving real-robot platforms in outdoor field environments, and
there is no report of successfully solving the whole CSS problem using a single wheeled mobile robot
in thousands-of-square-meter outdoor environments. The ERP method not only takes into account the
fact that the airflow direction can change radically in outdoor natural-airflow environments, but also
has low requirements on gas sensors and the speed of robots. Thus, it can solve the primal problem of
plume sparsity and fluctuation in plume traversal subprocedure, which impose great difficulties on
conventional plume tracing methods.

The proposed ERP method consists of two steps. Firstly, the C-PP is estimated using historical
airflow speeds and directions when a chemical patch is detected by the robot. Secondly, a search
route is planned for the robot based on the estimated C-PP. In fact, the concerned chemical patch
originally comes from the source. Therefore, the source should be covered by the estimated C-PP if the
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C-PP is correctly reckoned back enough in the time. The search route is designed by aiming to find
more chemical patches and then re-calculate the C-PP, re-plan the search route, forming an iterative
searching procedure, and finally making the robot arrive at the source. A rule of thumb is that it is
easier to re-meet the chemical clue when the robot moves in the downwind region (than in the upwind
region) of the chemical source. Thus, in our method, the search route is planned in the downwind
region and close to the estimated C-PP.

The remainder of this paper is organized as follows. The proposed CSS solution, which includes
a C-PP estimation method, search-route planning method, and chemical-source searching procedure,
is described in Section 2. In Section 3, the experimental platform is introduced. Section 4 presents
the experiments I, which include the approximate uniformity test of wind field and determination of
probability-density threshold. The experiments II, i.e., the chemical source searching based on online
planned routes, are introduced in Section 5. Conclusions are given in Section 6.

2. The Proposed ERP Method

The proposed ERP solution consists of two main steps, C-PP estimation and search route planning,
in which the search route is planned based on the estimated C-PP and time-varying wind.

2.1. C-PP Estimation

2.1.1. Probability Model of Chemical Transportation

Because a wheeled mobile robot mainly moves in 2D (two dimensional) ground environments to
search for chemical sources, the wind field and gas dispersal are also assumed in a 2D horizontal plane.
We construct a time sequence of the airflow, {U(LR(ti))}k

i=0, in which U(LR(ti)) denotes the airflow
velocity [ux(LR(ti)), uy(LR(ti))]

T (i.e., the velocity components in the x and y directions) observed by
the robot at position LR(ti) at time ti. Here, times t0 and tk stand for the start time and current time,
respectively. Over a short time scale, the movement of the chemical patch can be modeled as a random
walk superimposed on a mean velocity [27–29]. Let p∗j(tl , tj) stand for the probability density that a
chemical patch detected by the robot at the position LR(tj) at time tj came from the position L∗ at time
tl (tj > tl). Then p∗j(tl , tj) can be expressed [29] as

p∗j(tl , tj) =
1

2π(tj − tl)σxσy
e
−

(∆x(tl ,tj))
2

2(tj−tl )σ
2
x e
−

(∆y(tl ,tj))
2

2(tj−tl )σ
2
y (1)

where [σ2
x , σ2

y ]
T, the variances of the airflow velocity, can be estimated online by the time sequence of

the airflow, ∆x(tl , tj) = xj − x∗ − sx(tl , tj), ∆y(tl , tj) = yj − y∗ − sy(tl , tj), where (x∗, y∗) and (xj, yj)

are the coordinates of the positions L∗ and LR(tj), respectively, and [sx(tl , tj), sy(tl , tj)]
T is the distance

traveled by the air mass carrying the chemical patch concerned during the period from time tl to tj.
With the assumption of approximately uniform airflow in an open field (see the test results

presented in Section 4.1), the distance traveled by the air mass carrying the chemical patch concerned
can be estimated as

[sx(tl , tj), sy(tl , tj)]
T ≈ ∆t∑j

i=l U(LR(ti)) (2)

where ∆t is the sampling period of the robot system (set to 0.5 s, in our experiments). Over a short time
scale, only the 20 most recent elements in the time sequence of the airflow are used in this research,
with a sampling period ∆t = 0.5 s. For these 20 most recent records, {U(LR(ti))}

j
i= f , the variance of

the airflow velocity [σ2
x , σ2

y ]
T in Equation (1) can be calculated online as

σ2
x = var(ux(LR(ti))), i = f , · · · j (3-a)

σ2
y = var(uy(LR(ti))), i = f , · · · j (3-b)
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where f is the subscript for the time corresponding to the earliest element in the most recent 20 airflow
records and can be calculated by

f = max(0, j− 20) (4)

2.1.2. C-PP Estimation Algorithm

When a chemical patch is detected by the mobile robot at LR(tj), its historical trajectory (i.e., the
C-PP) can be estimated [30] as

OW(tj) =
j−1
∪

l= f
OS(tl , tj) (5)

where OS(tl , tj) is the area covering the possible locations of the concerned chemical patch at time tl
(l ≤ j). Therefore, OW(tj) represents all the areas through which the chemical patch possibly passed
from time t f to time tj−1. To cut down the calculation, OS(tl , tj) can be estimated as

OS(tl , tj) =
{

L∗ ∈W
∣∣p∗j(tl , tj) ≥ η

}
=
{

L∗ ∈W
∣∣[∆x(tl , tj)/σx]

2
+ [∆y(tl , tj)/σy]

2 ≤ 2(tj − tl)K(tl)
} (6)

where W is defined as the 2D workspace in which the robot searches for the chemical source, η is the
probability-density threshold and

K(tl) = − ln[2πη(tj − tl)σxσy] (7)

The center of the area OS(tl , tj), denoted by

Lmax(tl) = [xj − sx(tl , tj), yj − sy(tl , tj)]
T (8)

has the maximal probability density in OS(tl , tj), and the sequence {Lmax(tl)}
j
l= f forms the most likely

C-PP.

2.2. Search-Route Planning

The search route is planned online based on the estimated C-PP. Theoretically, the chemical source
might be somewhere in the area described by the estimated C-PP. As a rule of thumb, the chemical is
more likely to be detected in a downwind location of the source than in an upwind location. Therefore,
the search route is designed near and within the downwind area of the estimated C-PP, to be followed
by the robot to verify the area covered by the estimated C-PP. Searching by following the online
planned route is carried out in the expectation of catching the chemical plume again, to perform the
next iteration of searching, guiding the robot to gradually approach the source.

2.2.1. Illustration of the Online Planned Search Route

A schematic diagram of the search-route planning step is shown in Figure 1. The gray strip
originating from the chemical source indicates the plume, which is usually unknown to the robot; the
ensemble of the blue ellipses denotes the estimated C-PP, and the red dash-dot line represents the most
likely C-PP expressed in Equation (8).

The blue-black line SLu and the cyan line SLd constitute the online planned route SL for the robot
to follow, i.e., SL = {SLu, SLd}, with the priority decreasing from left to right. SLu and SLd, the two
parts of the online planned route deviating from the estimated C-PP in the downwind direction, are in
roughly the upwind and downwind directions of the robot, respectively. The search route is planned
online, aiming to make the robot re-meet the chemical clue. Normally, most areas covered by the
estimated C-PP are in the roughly upwind direction of the robot. To be more likely to find chemical
clues again, the robot should check these areas first. Therefore, SLu is chosen as the first subroute for
the robot to follow.
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Figure 1. Chemical-source localization by following the online planned route. The planned route is
represented by two colors, i.e., blue-black and cyan, corresponding to the two different parts SLu and
SLd, respectively. The wind initially blows from left to right (marked with “Direction 1”) for a period
in (a), and then changes by about 30 degrees (marked with “Direction 2”) for another period in (b). It is
assumed that the wind is uniform throughout the planar space around the robot during each period
(See 4.1 for more details). All chemical patches previously released from the chemical source therefore
form the plume shown by the gray strip. The chemical patches in (a) are collectively transported in
wind direction 2 in (b). When a chemical-detection event happens in (b), a C-PP, i.e., the ensemble of

the elliptic areas
{

OS(tl , tj), l = f , f + 1, . . . , j− 1
}

, is estimated, and then a search route is planned
online to make the robot attempt to re-meet the chemical clue. The robot will finally approach the
source through an iterative searching procedure.

If another chemical patch is detected during the search along the planned subroutes SLu and SLd,
a new C-PP will be estimated, and a new search route (including new subroutes SLu and SLd) will be
planned online for the robot to follow. If there is no chemical patch detected during the subroute SLu,
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the robot has to return to the subroute SLd to check the remaining areas covered by the estimated C-PP.
Real-robot experiments show that the robot does not often follow the subroute SLd, but it is necessary,
because the subroute SLd can be used to deal with two possible problems. One problem is that the
robot might search for the chemical source in the wrong direction because of the improper estimation
of the C-PP, such as in cases where the assumption of approximately uniform airflow occasionally fails.
With the subroute SLd, the robot can return to the search area where the most recent chemical-detection
event occurred and try for the next possible meeting with the plume. The other problem occurs when
the chemical source is near the location of the most recent chemical-detection event, but the robot
passes the source, being unaware of its arrival at the source.

Through an iterative searching process (details see Section 2.3), the robot could gradually approach
the chemical source. It is worth noting that, if the airflow direction remains stable before and after
a new chemical-detection event, the online planned route would be almost a straight line along the
upwind direction, and in such a case, the robot would perform a searching behavior just like for a
simple upwind action.

2.2.2. Mathematical Description of the Planned Search Route

As mentioned above, according to the current location of the robot and the current wind direction,
the online planned route can be divided into two parts, i.e., the subroutes SLu and SLd, which are
located in the roughly upwind and downwind directions of the robot, respectively. Suppose the robot
has detected a chemical patch at LR(tj) at time tj, with the current time being tk (tj ≤ tk). SLu and SLd
are expressed as

SLu =
{

Lo f f (tl) |
∣∣∣ϕ− θ(tk)

∣∣∣> π/2
} f

l=j
(9-a)

SLd =
{

Lo f f (tl) |
∣∣∣ϕ− θ(tk)

∣∣∣≤ π/2
}j

l= f
(9-b)

where Lo f f (tl) is a point deviating from the estimated C-PP in the downwind direction, ϕ is the angle
of the vector from LR(tk) to Lo f f (tl), and θ(tk) is the short-time-average airflow direction at the current
time tk. Lo f f (tl) is shown in Figure 2 and determined by

Lo f f (tl) = Lmax(tl) + (dell(tl) + dbas) ·
[

cos θ(tk)

sin θ(tk)

]
(10)

where (dell(tl) + dbas) · [cos θ(tk), sin θ(tk)]
T

is the offset from Lmax(tl) (see Equation (8)), and dbas is
an extra offset (set to 0.1 m in our experiments). Here,

dell(tl) =
√

2(tj − tl)K(tl) ·
√
(σx cos ψ)2 + (σy sin ψ)2 (11-a)

ψ = tan−1[σx/σy · tan θ(tk)] (11-b)

where ψ is the eccentric angle of the crossing point X on the elliptical outline of OS(tl , tj) in Figure 2,
and θ(tk) can be determined by

θ(tk) = tan−1
(
∑k

i= f ′ uy(LR(ti))/∑k
i= f ′ ux(LR(ti))

)
(12)

where [ux(LR(ti)), uy(LR(ti))]
T is the airflow velocity observed by the robot at position LR(ti) at time

ti, and
f ′ = max(0, k− 20) (13)
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2.3. Procedure of CSS

The proposed CSS is an iterative procedure, and its details are shown in Figure 3. The linear
search described in Russell et al. [13] is adopted by the robot to find chemical clues, whereby the robot
travels at an angle of 35◦ with respect to the upwind direction. To make the robot move smoothly in the
chemical-clue-finding phase, we use the current short-time-average airflow direction as the reference
of wind direction. When the robot moves near the boundaries of the search area or encounters an
obstacle, it will turn back and make another linear search. When a chemical-detection event occurs, the
robot switches to the ERP method to trace the two parts of the newly planned route SL = {SLu, SLd}
with a left-to-right priority. It is worth noting that the search route SL will be updated at each time
step according to the short-time-average airflow direction determined by Equation (12), so the route
SL tracked by the robot is time-varying.

During the tracking of the search route SL, whenever a new chemical-detection event occurs, a
new C-PP is estimated, and the search route is re-planned. If there is no chemical-detection event
after the robot has finished the search-route tracking, the chemical is considered to have been lost,
and the robot will switch to the chemical-clue-refinding phase, which uses the same method with the
chemical-clue-finding phase. When the distance between the robot and the chemical source is less
than 2.5 m (an obstacle-avoidance request would arise in this case), it is considered that “the robot has
arrived at the chemical source”, and the robot will be stopped manually. Here, the final stage of CSS,
the chemical-source declaration, is left for future work and is not discussed in this paper.

3. Experimental Platform

The experimental platform is shown in Figure 4. The robot used was a refitted Pioneer 3-AT
(Adept Mobilerobots, Amherst, NH, USA) named MrSOS (Mobile Robot for Searching Odor Source),
which is driven and steered differentially by four wheels, two mounted on the left and two on the right.
A gas sensor (MiCS 5135, SGX sensor Technology, Co. Ltd., Chelmsford, Essex, UK), an anemometer
(Windsonic, Gill Instruments Ltd., Lymington, Hampshire, UK), a laser rangefinder (LMS110, Sick AG,
Waldkirch, Baden-Württemberg, Germany), an electronic compass, and a differential GPS (D-GPS)
(NovAtel Inc., Calgary, Alta, Canada) module were mounted on the robot. The data from these
sensors were received and processed by an onboard computer. The laser rangefinder was mounted at
a height of 0.29 m above the ground. The electronic compass and the D-GPS module were used for
the mobile-robot localization. Please note that the robot could measure its own speed, and the airflow
speed described in this paper was a modified value, with the robot speed being deducted from the
anemometer measurement.
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The chemical source was a DIY humidifier containing liquid ethanol. The chemical patches were
released from an outlet on the top of the humidifier while the liquid ethanol was being atomized by
eight ultrasonic units at the bottom of the humidifier. The consumption rate of liquid ethanol was
about 47.07 mL/min.

A binary concentration with an adaptive threshold [30] was used in the experiments to enable the
robot to respond to chemical interception quickly and reliably. If the measured concentration is above
the adaptive threshold, it indicates a detection event; otherwise, a non-detection event.

4. Experiments I—Approximate Uniformity of Wind Field and Probability-Density Threshold

4.1. Testing the Approximate Uniformity of the Local Wind Field

4.1.1. Evaluation Criteria

To verify the approximate uniformity of wind field, a test was performed in an open area near the
football field of Tianjin University with two anemometers (Windsonic, Gill Instruments Ltd.) in our
earlier work [30]. The two anemometers were mounted in the same horizontal plane, which was 0.6 m
above the ground. There were no obstacles around the anemometers. The distance between the two
anemometers varied form 1 m to 6 m with an interval of 1 m. For each distance, the wind data were
collected for 10 minutes with a sampling frequency of 2 Hz. The maximal and minimal wind speeds
we measured were 5.19 m/s and 0.01 m/s, respectively [Note: Although the minimal wind speed was
0.01 m/s, actually almost all the data were bigger than 0.2 m/s].

As a measurement of linear correlation between the data collected with the anemometers, the
Pearson coefficient r for the wind speed and, in the case of the wind direction, the circular-circular
correlation index ρcc for directional data as suggested in Jammalamadaka et al., [31] were computed
in this research, instead of the criterion proposed in [30]. Both indexes are bounded between −1 and
1. Correlations equal to 1 or −1, ignoring the sign, correspond to two perfectly correlated variables.
A value of zero, on the other hand, implies an absence of a correlation and no relationship between the
two variables exists.

The Pearson coefficient r is expressed as

r = ∑n
i=1 (v1i − v1)(v2i − v2)√

∑n
i=1(v1i − v1)

2
√

∑n
i=1(v2i − v2)

2
(14)

where v1i and v2i are the i-th wind speed sampled from the anemometers 1 and 2, respectively. v1 and
v2 stand for the mean of wind speed measured by the anemometers 1 and 2, respectively.

The circular-circular correlation index ρcc is expressed as

ρcc =
∑n

i=1 sin
(
θ1i − θ1

)
sin
(
θ2i − θ2

)√
∑n

i=1 sin2(θ1i − θ1
)

sin2(θ2i − θ2
) (15)

where θ1i and θ2i are the i-th wind direction sampled from the anemometers 1 and 2, respectively. θ1

and θ2 stand for the mean of wind directions measured by the anemometers 1 and 2, respectively.

4.1.2. Test Results

From Table 1, we can see that, on the whole, the values of Pearson coefficient and circular-circular
correlation index decrease with an increase in the distance between two anemometers. If we classify
the wind data according to magnitudes, we can also find that the larger wind speeds lead to stronger
correlation. This result is in line with the one obtained in [30]. Most values in Table 1 are bigger than
0.5, so we can say that the wind data of two anemometers are obviously correlative. In other words,
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the assumption of approximate uniformity of wind field holds in local open areas with a range in
diameter of about 5 m in this experiment.

Table 1. Pearson coefficient of wind speeds and circular-circular correlation index of wind directions.

d (m) Pearson Coefficient Circular-Circular Correlation Index

1 0.9556 0.9048

2 0.8312 0.9091

3 0.6505 0.5642

4 0.4909 0.5673

5 0.5604 0.6396

6 0.5475 0.2106

d: distance between two anemometers.

4.2. Determining the Probability-Density Threshold η

4.2.1. Evaluation Criterion

To obtain a suitable threshold η in Equation (6), an experiment was designed and conducted in
a square where there was no obstacle except the robot and the odor source. The robot was placed
in a location in the downwind direction of the odor source to easily have odor detections. During
the experiment, the robot did not move and maintained a given distance from the chemical source.
The robot continuously measured the airflow velocity and chemical concentration. Let ND represent
the number of chemical-detection events. Using a tentative threshold η, within all the ND events, the
number of events that the estimated C-PPs contain the source is denoted as nD. Thus, the likelihood of
the estimated C-PP containing the chemical source can be approximated by the ratio nD/ND. In this
experiment, ND was set to 100 for each distance from the chemical source. Each chemical-detection
event corresponded to an estimated C-PP, i.e., 100 C-PPs were estimated for each distance with a
tentative threshold η.

4.2.2. Results and Analysis

The experimental results for different thresholds η and different distances from the source are
shown in Figure 5. It is found that the value of nD/ND increases with a decrease in the distance. In
addition, nD/ND decreases rapidly when the threshold η is above 10−2 m−2. The probability-density
threshold η influences both the success rate and approaching effectiveness. Using a smaller threshold
η for the C-PP estimation might increase the success rate, but it would decrease the approaching
effectiveness because the area to be checked will become larger. As a balance between approaching
effectiveness and success rate, the threshold η was chosen to be 10−2 m−2 in this study.
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Figure 5. The value of nD/ND for eight different thresholds η and five different distances from
the source.

Figure 6 illustrates two of these estimated C-PPs when the distance between the robot and the
source was 4 m and the threshold η was 10−2 m−2. In Figure 6, the ellipses mark the boundaries of
areas OS(tl , tj) in Equations (5) and (6). It is found that when the variance of airflow velocity decreases
(i.e., the airflow is more stable, see Figure 6a), the estimated C-PP becomes more concentrated in its
spatial distribution and the most likely C-PP becomes straighter.
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5. Experiments II—Chemical Source Searching Based on Online Planned Routes

5.1. Experimental Envirofigurenments

The CSS experiments were conducted in two different outdoor field environments, the first one
was the football field (limited to 100 m × 60 m) of Tianjin University (named F group), the second
one was a small square (limited to 35 m × 55 m) on the north of the Teaching Building No. 26-D&C
(named O group). There were no obstacles apart from the chemical source within the search areas for
the F group, but for the O group, there was a small parterre (about 9 m × 9 m) standing about 0.4 m
above the ground. Figure 7 shows the plan sketch of the second experimental scene.
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Figure 7. Plan sketch (upper) and picture (lower) of the experimental field for the O group. The trials
of the O group were conducted in the small square (limited to 35 m × 55 m) on the north of Teaching
Building No. 26-D&C, and there is a small garden standing about 0.4 m above the ground.

5.2. Evaluation Criteria

Two criteria were used to evaluate the performance of the proposed CSS strategy. One was named
approaching effectiveness, and the other is success rate. Approaching effectiveness, calculated offline after
a trial, is defined as the ratio of the distance approached finally to the real source and the length of
the trajectory traveled by the robot in a CSS process. The closer to the real source and the shorter the
trajectory travelled by the robot, the higher the approaching effectiveness. The success rate is defined
as the ratio of the number of successful trials and the total number of trials.

Figure 8 illustrates how the approaching effectiveness is defined, where the red point S represents
the chemical source, the point A is the initial location of the robot, B indicates the location where
the first chemical patch is detected, C stands for the end location of the robot in the trial. The robot
starts with the chemical-clue-finding behavior. Whenever a chemical-detection event occurs, the robot
switches to the chemical source tracing phase.

The approaching effectiveness is defined as

es = (dBS − dCS)/sBC (16)
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where dBS and dCS denote the linear distances from the position S to B and C, respectively, and sBC
represents the trajectory length (curve length) of the robot from B to C. Considering the requirement of
obstacle avoidance, dCS cannot be zero. That means the approaching effectiveness is always smaller
than 1. For all the CSS experiments, if the approaching effectiveness of a trial is less than 0.2, then the
trial is regarded as failed.
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Figure 8. Sketch of the approaching effectiveness definition. The trajectory from A to B indicates the
chemical-clue-finding phase, and B to C belongs to the plume tracing / traversal phase. The red point
S stands for the chemical source. For our research, the plume tracing / traversal phase corresponds to
the odor source searching with the ERP method and might include the chemical-clue-refinding phase.

5.3. Trials

Thirty-seven trials were conducted in this research, of which 21 trials were in the F group (in the
football field), and 16 trials were in the O group (in the field with obstacles). The maximum speed of
the robot was set to 1.0 m/s and 0.5 m/s for F and O groups, respectively. Here we want to point out
that wind field never has the same spatial distribution twice in natural environments. Therefore, the
locations of the first chemical-detection event are different and unknown in advance, even though
the robot starts from the same position in these trials. In other words, the start points of using the
proposed ERP method for all the trials are different.

5.3.1. Trials in the Football Field (F Group)

Figure 9 shows four scenes corresponding to four different times in one trial of this group, where
the chemical source was located at S (49.70 m, 29.30 m). During this CSS process, the wind speed
ranged from 0.69 m/s to 4.13 m/s, and the wind direction was from 107◦ to 260◦. The robot started
from point A (4.08 m, 54.10 m) at time 0 s, aiming to find the chemical clue. It met the first chemical
patch at point B (18.13 m, 17.67 m) at time 56.0 s. The area covered by the ellipses in Figure 9 represents
the estimated C-PP, where the red line stands for the most likely C-PP. The planned search route has
two parts—SLu and SLd—which are represented by the blue-black line and cyan line, respectively.
The robot followed subroute SLu and SLd with a left-to-right priority, checking the area covered by the
estimated C-PP (see Figure 9a,b). During the tracing phases, new chemical-patches were detected, and
then new C-PPs were estimated. At each time step, the search route was re-planned according to the
estimated C-PP and the current short-time-average airflow direction.

It is worth noting that in Figure 9b, the wind direction has changed about 40◦ since the most
recent chemical detection event happened. Consequently, the search route was re-planned to make
the robot check the area covered by the estimated C-PP as much as possible. When the robot
arrived at point C (40.74 m, 29.06 m) at time 149.5 s (see Figure 9c), the robot met another chemical
patch. Therefore, a new C-PP was estimated, and a new search route was planned and followed
by the robot. Finally, the robot approached the chemical source at point D (47.40 m, 28.88 m) at
time 194.0 s (see Figure 9d). The total tracing time (excluding the chemical-clue-finding time) was
138.0 s, and the approaching effectiveness was 0.87. The video of this trial can be found via the link
https://www.youtube.com/watch?v=d69coQvK4ag.

https://www.youtube.com/watch?v=d69coQvK4ag
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Figure 9. The process of chemical-clue finding and ERP procedure in the football field of Tianjin
University. (a) t = 56.0 s. (b) t = 125.5 s. (c) t = 149.5 s. (d) t = 194.0 s. ‘A’ denotes the start position of
the robot, ‘S’ indicates the true location of the chemical source, and ‘B’ is where the ERP procedure was
launched. The planned route is represented by two colors, i.e., blue-black and cyan, corresponding
to the two different parts SLu and SLd, respectively. Along the trajectory of the robot, each symbol
‘+’ represents a chemical-detection event. The solid arrow near the robot denotes the instantaneous
wind direction observed by the robot. The trajectory of the robot from points ‘A’ to ‘B’ belongs to
the chemical-clue-finding phase and the remaining part belongs to the ERP procedure. The timer
began when the robot started to find chemical clue at point ‘A’. The total tracing time (excluding the
chemical-clue-finding time) was 138.0 s.

It is found that, with the changes of airflow direction, the robot performed adaptive tracing
behavior, checking the possible area where the source might exist according to the current
short-time-average airflow direction in expectation of meeting more chemical patches and generating
iterative ERP phases. Whenever a new chemical-detection event occurred, the robot re-estimated the
C-PP of the newly detected chemical patch, re-planned the search route, and followed it.

The detailed instantaneous wind speeds/directions and chemical detection events are shown in
Figure 10, where the circular variance of the wind direction was 0.11. The experimental results for
this group of 21 trials are illustrated in Figure 11, where the subgraphs (a) and (b) show the detailed
information regarding approaching effectiveness and time cost for each trial, respectively. Overall,
in this group, all trials were successful, giving a success rate of 100%. In addition, if assuming the
time cost was a linear function of the distance dBS between the starting point B to the source location
S (i.e., dBS), ignoring the final distance dCS which is less than 2.5 m, it was approximately 6.88 times
of dBS.
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Figure 10. Instantaneous wind directions/speeds and chemical-detection events during the ERP phase
shown in Figure 9.

Sensors 2019, 19 FOR PEER REVIEW  16 

 

 

Figure 10. Instantaneous wind directions/speeds and chemical-detection events during the ERP 

phase shown in Figure 9. 

 
(a)                                       (b)  

Figure 11. Results of 21 ERP experiments in the F group. (a) Approaching effectiveness. (b) Time 

costs. Each mark in the two subgraphs stands for the corresponding value of an experiment. 

5.3.2. Trials in the Field with Obstacles (O Group) 

This group of 16 trials was conducted on the north of Teaching Building No. 26-D&C of Tianjin 

University. The topography of the experimental field is shown in Figure 5, in which a 

9m 9m 0.4m   (length × width × height) flower bed is in the middle of the square. Real 

measurements showed that the airflow direction usually changed rapidly and substantially, and the 

airflow field in the square was frequently far from roughly uniform, and was even more chaotic than 

the one in the F group due to the impact of the surrounding buildings. In addition, considering the 

obstacles, such as the flower bed and students who were interested in the robot and stayed in the 

experimental area, searching the chemical source became more difficult than with the F group. 

Therefore, during the whole searching process in this group, the local path and global path were 

planned using the vector field histogram (VFH) [32] method and the search route algorithm 

proposed in Section 2.2, respectively.  

Figure 12 shows four reconstructed scenes for one trial in the square field. The meanings of lines 

and marks in Figure 12 are the same as those in Figure 9. The robot started from the point (30.00 m, 

8.00 m) at time 0 s, and the source was located at (19.5 m, 22.8 m). The robot moved from east to west 

(see Figure 5). The first chemical patch was detected at the moment of 62.0 s when the robot moved 

to the point (28.81 m, 15.41 m). At the moment of 196.0 s, the robot stopped at the point (21.01 m, 

0

30

60

90

120

150

180

210

240

270

50 65 80 95 110 125 140 155 170 185 200

Time (s)

W
in

d
 D

ir
e
c
ti
o
n
 (

°)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

W
in

d
 S

p
e
e
d
 (

m
/s

)

Wind Direction Wind Speed Odor Detection

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70

    (m)

A
p

p
ro

ac
h

in
g

 E
ff

ec
ti
v

en
es

s

y = 6.8815x

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70

    (m)

T
im

e 
(s

)

BSd
BSd

Figure 11. Results of 21 ERP experiments in the F group. (a) Approaching effectiveness. (b) Time costs.
Each mark in the two subgraphs stands for the corresponding value of an experiment.

5.3.2. Trials in the Field with Obstacles (O Group)

This group of 16 trials was conducted on the north of Teaching Building No. 26-D&C of Tianjin
University. The topography of the experimental field is shown in Figure 5, in which a 9m× 9m× 0.4m
(length × width × height) flower bed is in the middle of the square. Real measurements showed that
the airflow direction usually changed rapidly and substantially, and the airflow field in the square was
frequently far from roughly uniform, and was even more chaotic than the one in the F group due to
the impact of the surrounding buildings. In addition, considering the obstacles, such as the flower
bed and students who were interested in the robot and stayed in the experimental area, searching the
chemical source became more difficult than with the F group. Therefore, during the whole searching
process in this group, the local path and global path were planned using the vector field histogram
(VFH) [32] method and the search route algorithm proposed in Section 2.2, respectively.

Figure 12 shows four reconstructed scenes for one trial in the square field. The meanings of lines
and marks in Figure 12 are the same as those in Figure 9. The robot started from the point (30.00 m,
8.00 m) at time 0 s, and the source was located at (19.5 m, 22.8 m). The robot moved from east to west
(see Figure 5). The first chemical patch was detected at the moment of 62.0 s when the robot moved to
the point (28.81 m, 15.41 m). At the moment of 196.0 s, the robot stopped at the point (21.01 m, 22.12 m),
which was 1.65 m away from the real source. During the tracing process, the wind speed ranged from
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0.01 m/s to 1.88 m/s, and the wind direction −188◦ to 148◦. The total tracing time (excluding the
chemical-clue-finding time) was 134 s, and the approaching effectiveness was 0.34. The video of this
trial can be found via the link https://www.youtube.com/watch?v=oBlB_b2HqcU.
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Figure 12. Four reconstructed scenes during the CSS process in the square field. (a) t = 62.0s, the robot
was at (28.81, 15.41) m. (b) t = 132.5s, the robot was at (25.80, 15.07) m. (c) t = 173.0s, the robot was at
(24.06, 20.28) m. (d) t = 196.0s, the robot was at (21.01, 22.12) m. The unit of each subgraph is meters.
The total tracing time (excluding the chemical-clue-finding time) was 134.0 s.

Lots of gray noise dots (like obstacles) can be found in Figure 12, this is due to at least two
reasons. The first is the poor self-localization performance of the robot. Owing to the surrounding high
buildings, the D-GPS device could not be used in this trial group. The dead-reckoning method resulted
in poor self-localization results. The second is the contribution of students and pedestrians. During
the trial process, students who were interested in the robot often stopped in the field. In addition, it
was quite normal for pedestrians to pass by the field.

The detailed instantaneous speeds/directions of airflow and detection events of the chemical
patch are shown in Figure 13, where the circular variance of the wind direction was 0.42, from which we
can see that the wind direction changed much more frequently than that in the football field. The other
obvious feature is that the wind speed was much lower than that for the F group. As mentioned above,
this group of trials was conducted in a field surrounded by high buildings, and normally the wind
speed in such areas is not very strong, and the wind direction tends to be capricious. The small wind
magnitude and fast-changing wind direction resulted in worse uniformity of wind field, leading to
lower searching performance.

https://www.youtube.com/watch?v=oBlB_b2HqcU
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Figure 13. Instantaneous wind directions/speeds and chemical-detection events during the ERP phase
shown in Figure 12.

The experimental results for this trial group are illustrated in Figure 14, where the subgraphs
(a) and (b) show the detailed information regarding approaching effectiveness and time cost for each
trial, respectively. Overall, the success rate was 12/16 = 75.0%. The four failed trials’ approaching
effectiveness was lower than the given threshold 0.2, which was due to two main reasons. One was the
weak wind speed (less than 0.2 m/s) and capricious wind direction, the other was the large cumulative
error of the robot’s self-localization using dead reckoning; the D-GPS module was not used, because
it almost did not work in this environment, surrounded by high-rise buildings. The time cost was
approximately 10.21 times that of dBS, with an assumption that the time cost was a linear function of
dBS (ignoring the final distance dCS).

Sensors 2019, 19 FOR PEER REVIEW  18 

 

 

Figure 13. Instantaneous wind directions/speeds and chemical-detection events during the ERP 

phase shown in Figure 12. 

The experimental results for this trial group are illustrated in Figure 14, where the subgraphs (a) 

and (b) show the detailed information regarding approaching effectiveness and time cost for each 

trial, respectively. Overall, the success rate was 12/16 = 75.0%. The four failed trials’ approaching 

effectiveness was lower than the given threshold 0.2, which was due to two main reasons. One was 

the weak wind speed (less than 0.2 m/s) and capricious wind direction, the other was the large 

cumulative error of the robot’s self-localization using dead reckoning; the D-GPS module was not 

used, because it almost did not work in this environment, surrounded by high-rise buildings. The 

time cost was approximately 10.21 times that of BSd , with an assumption that the time cost was a 

linear function of BSd  (ignoring the final distance CSd ).  

 
(a)                                       (b)  

Figure 14. Results of 16 ERP experiments in the O group. (a) Approaching effectiveness. (b) Time 

cost. Each mark in the two subgraphs stands for the corresponding value of an experiment. 

5.3.3. Statistical Results and Discussion of the Two Trial Groups 

The statistical results of the CSS experiments in two different outdoor environments are listed 

in Table 2. We can find from Table 2 that, for the group without obstacles (F group), the mean value 

of approaching effectiveness decreases slightly (except the 1st subgroup, i.e., BSd  ranges between 0.0 

m and 30.0 m) with an increase in the distance BSd . For the group with obstacles (O group), the 

distances BSd  of all trials ranged from 0.0 m to 30.0 m. Compared with group without obstacles (F 

group), it can be found that in an average sense, the approaching effectiveness decreases observably. 

-180

-120

-60

0

60

120

180

240

300

360

60 75 90 105 120 135 150 165 180 195 210

Time (s)

W
in

d
 D

ir
e
c
ti
o
n
 (

°)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

W
in

d
 S

p
e
e
d
 (

m
/s

)

Wind Direction Wind Speed Odor Detection

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70

    (m)

A
p

p
ro

ac
h

in
g

 E
ff

ec
ti
v

en
es

s

y = 10.212x

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70

    (m)

T
im

e 
(s

)

BSd
BSd

Figure 14. Results of 16 ERP experiments in the O group. (a) Approaching effectiveness. (b) Time cost.
Each mark in the two subgraphs stands for the corresponding value of an experiment.

5.3.3. Statistical Results and Discussion of the Two Trial Groups

The statistical results of the CSS experiments in two different outdoor environments are listed
in Table 2. We can find from Table 2 that, for the group without obstacles (F group), the mean value
of approaching effectiveness decreases slightly (except the 1st subgroup, i.e., dBS ranges between
0.0 m and 30.0 m) with an increase in the distance dBS. For the group with obstacles (O group), the
distances dBS of all trials ranged from 0.0 m to 30.0 m. Compared with group without obstacles (F
group), it can be found that in an average sense, the approaching effectiveness decreases observably.
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The main reason for this is that the robot has to avoid the obstacles during the ERP process, and the
trajectory of the robot would be more meandering and longer than the cases without obstacles, thus
the approaching effectiveness became lower.

Table 2. Statistical results for the ERP method in outdoor environments.

Groups
F Group

(Trials in the Football Field)
O Group

(Trials in the Square)

N dBS (m) effa T (s) N dBS (m) effa T (s)

0.0–30.0
(1st subgroup) 8 19.4 ± 6.1 0.54 ± 0.15 138.1 ± 68.4 16 17.0 ± 4.2 0.38 ± 0.11 171.4 ± 57.9

30.0–50.0
(2nd subgroup) 11 40.8 ± 4.2 0.60 ± 0.16 271.3 ± 94.8 0

50.0–70.0
(3rd subgroup) 2 51.6 0.51 385.0 0

* The statistical results of the trials are given as means with 95% confidence intervals for dBS, approaching
effectiveness and time cost. “N” means the number of trials in the corresponding subgroup, e f fa the approaching
effectiveness, and “T” the time cost. The items in italics are given only as means without 95% confidence intervals,
which corresponds to the groups that the number of trials is less than 3. The maximum speed of the robot was set to
1.0 m/s and 0.5 m/s for F group and O group, respectively.

The trials in the O group needed more time per unit searching distance than those in the F group.
This can be seen from Figures 11b and 14b, i.e., the time cost per meter in dBS were approximately
6.88 s/m and 10.21 s/m for F and O groups, respectively. This result can be explained from two aspects.
Firstly, the maximum speed of the robot was set lower in the O group (0.5 m/s) than in the F group
(1.0 m/s). Although the time cost for O group was less than twice the time cost for F group, this
does not mean that the search was more efficient in the O group. This is because, especially for the
F group, the robot was far from achieving the maximum speed while tracking the dynamic planned
search route in the ERP phases due to the high inertia of the robot itself. Secondly, the assumption of
approximate uniform airflow field frequently did not hold in most areas of the O group. In addition,
the obstacle-avoidance task in the O group resulted in the longest time cost per unit distance.

6. Conclusions

Real robot experiments in two different outdoor field environments show that searching for a
chemical source according to online planned routes based on estimated C-PPs is a feasible method
for a normal wheeled mobile robot moving slower than airflow/chemical plume and is equipped
with slow-response gas sensors. In general, searching for a chemical source according to the proposed
ERP method shows good robustness to experimental environments. This is because the current and
historical flow information are both fully exploited in the proposed method, which results in highly
purposive and adaptive search behavior. By following an online planned search route, the robot
can systematically check the area covered by the estimated C-PP that possibly contains the chemical
source, gradually approaching the chemical source and without having to consider the speed of the
chemical plume. Compared with methods trying to make the robot trace chemical plume to the
source by keeping contact with the plume, the proposed ERP method has less requirement on the
maneuverability of the robot. Because the search route is updated at each time step to match the
short-time-average airflow direction, the search behavior of the robot is able to adapt to variation of
airflow direction.

Based on the experimental results, we could further draw the following conclusions. Firstly, the
uniformity of airflow field depends, inter alia, on the wind magnitude and distance. Normally, with
a decrease in the wind magnitude and an increase in the distance, the uniformity of airflow field
decreases. Secondly, uniformity of airflow field has an impact on searching performance. In relatively
small and complex fields, since the airflow field is far from uniform, the robot might be confused by the
capricious airflow and chemical measurements, leading to a difficult CSS. Thirdly, the proposed ERP
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method can work in environments with obstacles, although the obstacles decrease the approaching
effectiveness and increase the time cost. Lastly, the approaching effectiveness of the proposed method
is not sensitive to the maximum speed of the robot.
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