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Abstract: In the last few years, increasing attention has been provided to research Vehicle-to-Pedestrian
(V2P) communication systems. These V2P systems serve different purposes (safety or convenience)
and cater to different Vulnerable Road User (VRU) groups. Also, these V2P systems employ different
communication technologies, and use different mechanisms to interact with the users. An effective
V2P system also needs to consider varying characteristics of different VRUs. These various elements
may be considered as design parameters of the V2P system. In this paper, we discuss such elements
and propose a design framework for the V2P system based on them. We also provide an extensive
survey of existing V2P efforts for safety and convenience applications and their design considerations.
We perform a case study that compares the different approaches of V2P safety system for different
VRU groups under different pre-crash scenarios. Finally, we discuss a few technological challenges in
integration of VRUs into V2X systems.
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1. Introduction

Pedestrians, cyclists, and motorized two-wheeler operators are called Vulnerable Road Users
(VRUs). According to the International Traffic Safety Data and Analysis Group (IRTAD), in 2012,
there were 1605 and 10,386 VRU fatalities in Germany and USA respectively [1]. Figure 1 shows the
proportion of different types of VRU fatalities in the USA, Germany, Australia, and Korea [1]. It shows
that VRU groups have differing rates of fatalities among different countries. There have been numerous
advancements to improve safety features of vehicles as part of Intelligent Transportation Systems (ITS).
These safety features help improve safety of vehicle-occupants as well as VRUs. Vehicle-to-Everything
(V2X) communication is one such safety feature that establishes communication among various
entities on road for co-operative safety. V2X involves communication between Vehicle-to-Vehicle
(V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-Pedestrian (V2P). V2P is an umbrella term that
encompasses the communication between vehicles and all types of VRUs. By enabling V2P for VRUs,
they can become active part of ITS and can enable various safety and convenience ITS applications.

VRU:s differ in their characteristics, such as, speed, mobility, travel patterns. For example, pedestrians
travel slowly compared to cyclists and motorized two-wheelers. Another example is that motorized
two-wheelers must stop at intersection during red light but pedestrians may cross the road in the
same duration. V2P system developers must consider these varying characteristics for designing an
effective V2P system. The characteristics may be translated into appropriate design requirements
for the V2P system. The clearly defined requirements then may help address different challenges in
VRU integration. The requirements may fall under various categories, e.g., type of VRU, the pre-crash
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scenario. We discuss each of these categories in later part of this paper. There have been multiple
efforts to solve different problems in integration of VRUs into ITS [2-9]. Also, multiple real-life pilot
projects, such as, VRUITS, InDev, XCYCLE, PROSPECT, have been undertaken in order to identify,
understand, and address the VRU needs [10-13]. These efforts deploy various mechanisms to meet one
or more criteria tailored to the targeted VRU group. We discuss the mechanisms and challenges that
are presented by these efforts. Also, there have been no efforts to evaluate the various V2X approaches
and pre-crash scenarios. We perform a case study of prominent communication mechanisms in the
context of various crash scenarios and assess their feasibility.
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Figure 1. VRU Fatalities by VRU Type.

This paper is organized as follows. Section 2 gives a brief overview of basic V2P architecture.
In Section 3, we discuss various characteristics of V2P systems further classifying them and discussing
their impact on V2P systems. In Section 4, we present our case study concept, simulations and
evaluation of results. In Section 5, we discuss important aspects of the V2P systems. Section 6 focuses
on open research issues and possible future directions.

2. V2P System Architecture

A typical V2P crash prevention system involves periodic exchange of safety messages among
vehicles and VRUs. This communication can happen either directly using ad-hoc communication
technologies, such as IEEE 802.11p, or indirectly using infrastructure-based communication, such as,
cellular technology. Also, V2P system performs its operation in three phases: detection, tracking and
trajectory prediction, and action [14]. These elements have led to different V2P system architectures.
In this section, we briefly discuss the different V2P architectural components and the safety messages.

2.1. Components

V2P systems can be broadly classified into the following components:

Vehicle device
VRU device
Infrastructure

Ll

Information processing unit

If V2P system relies on direct communication then the system comprises of only two components
viz. Vehicle device and VRU device. These two components are responsible to carry all three phases of
the V2P system. Efforts by [3,4,15] are examples of such system. However, if the V2P system relies on
indirect communication (i.e., through infrastructure) then an Information processing unit is responsible to
carry out detection, tracking and trajectory prediction phases. It determines the possibility of a crash based
on the trajectory prediction. It then notifies the Vehicle device and VRU device through Infrastructure
for necessary action, if required. Vehicle device and VRU device may then carry out the necessary action
phase. Efforts by [5,16] are examples of such a system. Figure 2 depicts examples of different V2P
system architectures.
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Figure 2. Example V2P System Architectures.
2.2. Safety Messages

A typical safety message may contain speed, location, and direction of the respective vehicle or
VRU. This information may then be used for the detection, tracking and trajectory prediction phases by
the recipients of the safety message. Vehicles may transmit 10 safety messages per second (i.e., at fixed
10 Hz frequency). VRUs may transmit safety messages with varying frequency. This frequency may
depend on various parameters, such as, their location and speed.

3. Classification

We broadly classify the design inputs of VRU integration into total 8 categories. These categories
are discussed in this section.

3.1. Types of VRUs

VRUs groups, i.e., pedestrians, cyclists, and motorized two-wheeler operators vary in their
characteristics and pre-crash scenarios. In this subsection, we discuss the characteristics of different
types of VRUs and various efforts targeting specific types of VRUs.

3.1.1. Pedestrians

Pedestrians’ typical walking speed is 1.4 m/s (5 km/h). Pedestrians may walk alone or in groups
of various sizes. Walking speed of pedestrians may vary by age and physical ability. Based on
pedestrians’ physical characteristics, they may further be classified into following groups:

1. Adults—This group adheres to the typical characteristics of pedestrians, such as speed
and trajectory.

2. Children—This group may exhibit characteristics such as unpredictable trajectory, slow walking
or running.

3. Senior and physically disadvantaged persons—This group may exhibit characteristics such as
slow walking and may use some assistance (e.g., cane, wheelchair, or a guide dog) .

Multiple efforts have been made to research and design V2P crash prevention systems for
aforementioned pedestrian groups [3-5,9,15,17-31]. These efforts use various approaches to achieve
their goal of V2P system. Table 1 lists various V2P systems with their key features. Here we discuss a
few approaches.
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Table 1. Summary of efforts.

Publication VRU Type Mode  Notification Recipient Type VRU Device  Technology Role
Wu et al. [3] pedestrian  direct both safety smartphone 802.11p active
V2ProVu [4] pedestrian  direct pedestrian safety smartphone Wi-Fi passive
Sugimoto et al. [5] pedestrian,  hybrid both safety smartphone Cellular, active
cyclist Wi-Fi
WiFiHonk [15] pedestrian  direct both safety smartphone Wi-Fi passive
WiSafe [29] pedestrian direct vehicle safety smartphone Wi-Fi active
Audi [17] pedestrian,  direct both safety smartphone Wi-Fi active
cyclist
Lee and Kim [18] pedestrian  direct - safety smartphone 802.11p active
David and Flach [19]  pedestrian ~ hybrid - safety smartphone Cellular, active
Wi-Fi
Zadeh et al. [30] pedestrian  indirect both safety smartphone Cellular active
pSafety [31] pedestrian  indirect both safety smartphone Cellular active
Artail et al. [32] pedestrian  indirect vehicle safety smartphone 802.11p, passive
Cellular
Nakanishi et al. [33]  pedestrian  direct vehicle safety smartphone Wi-Fi passive
Bagheri et al. [20] pedestrian  indirect - safety smartphone Cellular active
V2PSense [34] pedestrian  indirect pedestrian safety smartphone Cellular passive
LP3S[21] pedestrian  direct vehicle safety tag 802.15.4 passive
General Motors [22]  pedestrian,  direct vehicle safety smartphone Wi-Fi active
cyclist
Fujikami et al. [9] pedestrian  direct - safety smartphone Wi-Fi active
Liu et al. [23] pedestrian  direct both safety smartphone Wi-Fi active
Hussein et al. [24] pedestrian  direct both safety smartphone Wi-Fi active
Merdrignacetal. [35] pedestrian  direct both safety smartphone Wi-Fi active
POFS [25] pedestrian  hybrid pedestrian safety smartphone Cellular, active
Wi-Fi
Tahmasbi-Sarvestani ~ pedestrian ~ direct both safety smartphone 802.11p active
et al. [26]
Ko-TAG [27] pedestrian,  direct vehicle safety tag localization ~ passive
cyclist
Nagai et al. [28] pedestrian direct vehicle safety smartphone 700 MHz ITS  active
C-AEB [36] cyclist direct vehicle safety smartphone 802.11p active
Thielen et al. [37] cyclist indirect vehicle safety smartphone Wi-Fi, active
802.11p
Hernandez-Jayo cyclist indirect cyclist safety helmet, Cellular, active
etal. [38] smartphone 802.11p
MotoWarn [39] cyclist direct vehicle safety iBeacon Bluetooth active
MotoWarn [39] MTW direct vehicle safety OBU 802.11p active
RedEye [8] MTW direct both safety smartphone Wi-Fi active
Tal et al. [40] cyclist direct cyclist convenience  smartphone - passive
Liuetal. [7] pedestrian  indirect both convenience  smartphone - active
Luetal. [41] pedestrian  indirect both convenience  smartphone 802.11p active
TIMON [42] cyclist hybrid both convenience  smartphone Cellular, active
MTW 802.11p

Wu et al. [3] have designed a DSRC-based V2P system for pedestrians. It uses a smartphone as
a VRU device and leverages the smartphone sensors in order to optimize the transmission of safety
messages. Both VRU device and vehicle, send safety messages that contain their location, speed, and
direction information. Anaya et al. [4] propose V2ProVu, a Wi-Fi-based system, that alerts pedestrians
for potential crash. It uses a smartphone as a VRU device. This system requires a VRU device to listen
for safety messages sent by vehicles and then predict the collision probability. Sugimoto et al. [5]
propose a V2P system that enables the exchange of safety messages through a combination of cellular
infrastructure and direct Wi-Fi communication. A central information processing server processes
the safety messages that it receives from vehicles and pedestrians and calculates the collision risk.
Dhondge et al. [15] propose WiFiHonk, a Wi-Fi-based system, that enables vehicles and pedestrians
to exchange safety messages without camping on Wi-Fi network. The system stuffs Wi-Fi beacons
with safety messages in order to achieve this goal. Lewandowski et al. [21] propose an IEEE 802.15.4
based V2P system that involves a Warning Unit as a vehicle equipment and a Tag as a VRU device.
The system is based on a paging process where the Warning Unit sends “Hello” messages to which
the Tag responds by sending “Here I am” packet. The tag can be put into children’s backpacks
in order to make vehicles aware of the children’s presence. The Ko-TAG project [27] proposes a
co-operative pedestrian localization system. This system requires the pedestrian to carry a transponder
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that communicates with the vehicle’s on-board localization unit. This communication helps vehicles to
localize the pedestrians and bicyclists.

3.1.2. Cyclists

Cyclists” usual traveling speed is 4.2 m/s (15 km/h). Cyclists travel on the road alone. Even when
in groups, they may travel in a line following each other. Multiple efforts have been made to design
V2P crash prevention systems for cyclists [17,22,27,35,36,38—40].

C-AEB [36] have designed an ITS-G5-based system that enables vehicles and cyclists to exchange
safety messages. In this system, the vehicle tracks the cyclist based on the received safety messages.
It then fuses the data from safety messages with the data it receives from other sensors, such as Radar
and camera. This approach helps improve reliability of all sensors. Thielen et al. [37] propose a
heterogeneous and infrastructure-assisted approach to establish communication between vehicle and
cyclist. The cyclist’s device (smartphone) sends safety messages to the Road-Side Unit (RSU) using
Wi-Fi. The RSU relays this information to the nearby vehicle using ITS-G5. Anaya et al. [39] propose
“MotoWarn”, a system that uses Bluetooth and iBeacon technology to inform vehicles about the cyclists’
presence. The vehicle is equipped with a V2X device that also has a Bluetooth interface. This Bluetooth
interface can receive the iBeacon messages sent by cyclists.

3.1.3. Motorized Two-Wheelers (MTW)

Motorized two-wheelers’ typical traveling speed, in urban area, is 14 m/s (50 km/h) and they are
the fastest group of VRUs. MTWs usually travel on the road alone. A few efforts have been made to
design V2P crash prevention systems for motorized two-wheelers [8,39].

“MotoWarn” [39] supports a system that informs the vehicle of the motorcycle’s presence in
real-time using 802.11p. The system equips both, the vehicle and the motorcycle, with a V2X-capable
unit and establishes a unidirectional communication (from motorcycle to vehicle). Based on the
information received from the motorcycle, the vehicle system then predicts the collision probability
and warns the driver, if necessary. Huang et al. [8] propose the “RedEye” system that helps prevent
collisions caused by scooters that violate red-light. RedEye uses the scooter rider’s smartphone to
detect the red-light violation. It then warns the rider to slow down and also warns the nearby vehicles.
RedEye also receives warnings sent by other RedEye-enabled riders.

3.2. Pre-Crash Scenarios

Pre-crash scenarios may help understand the requirements of an effective V2P crash prevention
system. The pre-crash scenarios for different types of VRUs may differ from each other. Pedestrian
fatality analysis shows that 88% of the pedestrian fatalities are tied to a scenario where a pedestrian is
crossing the road in front of a vehicle moving on a straight road and 12% are tied to a scenario where
the pedestrian is moving on a straight road parallel to a vehicle’s direction [43]. Also, the majority of
the pedestrian crashes occur at non-junctions [44]. In case of cyclists, the majority of crashes happen
when a vehicle is turning right or left into the cyclist’s path [45]. Also, the majority of cyclist crashes
occur at intersections or junctions [45]. Figure 3 depicts the most common pre-crash scenarios for
pedestrians and cyclists. In these scenarios, various factors may cause the crash. A few examples of
such factors are obstructed view, speed of the vehicle and VRU, visibility (day/night) etc.

V2P system developers may design crash prevention systems that are adapted to these pre-crash
scenarios in order to maximize effectiveness.
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

Figure 3. Various pre-crash scenarios. (a) Pedestrian crossing in front of vehicle; (b) Pedestrian moving
parallel to vehicle; (¢) Vehicle turning left into cyclist’s path (d) Vehicle turning right into cyclist’s path.

3.3. Mode of Communication

V2P systems for VRUs may achieve the communication among vehicles and VRUs through direct
or indirect communication. Furthermore, there are hybrid modes, too.

3.3.1. Direct

Direct mode of communication involves vehicles and VRUs communicating with each other
directly i.e., without any intermediate entity. References [3,4,15,21,28,39] are some examples of such
direct mode that use various technologies for communication. This may be the fastest mode of
communication among all three modes due to its ability to establish direct communication. This mode
may be best suited for safety applications due to lower latency in communication. However, it requires
that all devices be equipped with same type of communication technology. This may pose deployment
challenges. It also requires devices to process the received safety messages locally which may require
high computing power. Also, due to its direct nature, the range of communication is limited by the
underlying technology.

3.3.2. Indirect

Indirect mode of communication involves vehicles and VRUs communicating with each other
indirectly i.e., through infrastructure. References [7,20,32,37,38,41] are a few examples of the V2P systems
for VRUs that use the indirect mode of communication. The devices may be equipped with same
technology, such as cellular [20], or with different technologies, such as 802.11p and Wi-Fi [37]. As the
exchange of messages happens through the infrastructure, the system may first process the messages in
infrastructure nodes before forwarding them to other nodes. This may require the infrastructure nodes to
have high computing power. Also, the exchange of messages through infrastructure nodes may cause
higher communication latency. This imposes the requirement that the latency constraint of the target V2P
application must be assessed against the infrastructure latency.

A variation of the Indirect mode may be multi-hop communication. In case of Non-Line-of-Sight
(NLOS) crash scenarios, multi-hop communication may be useful. A vehicle may re-broadcast the
safety message that it receives from a VRU to the surrounding vehicles. For example, a public transport
bus, at the bus-stop, may re-broadcast the safety messages from the VRUs crossing the street in front
of the bus.

3.3.3. Hybrid

Hybrid mode of communication involves vehicles and VRUs communicating with each other
directly using ad-hoc communication as well as indirectly through infrastructure. This may be achieved
by equipping the devices with multiple communication technologies and designing the system that
may leverage the capabilities of these technologies. References [5,25] are a few examples of the
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V2P systems for VRUs that use the hybrid mode of communication. This mode may overcome
the limitations of direct and indirect modes i.e.,, communication range and communication latency
respectively. However, this mode increases the system complexity as it requires the precise partitioning
of the functionalities of various communication technologies in the system.

3.4. Type of Applications

Based on the type of application, V2P systems for VRUs may be classified broadly into two
categories, namely safety and convenience.

3.4.1. Safety Applications

Safety applications are the V2P crash prevention systems. There may be multiple V2P safety
applications that may each address different types of VRU, pre-crash scenarios, and vehicles. Table 1
lists various V2P safety efforts that target different types of VRUs. There have also been efforts to deploy
applications for specific groups of pedestrians and vehicles [46,47]. Mobile Accessible Pedestrian Signal
System is an application deployed for visually impaired pedestrians for signalized street crossing
scenario [46]. Pedestrian in Signalized Crosswalk Warning is a V2P safety application that warns
public transport bus operators about the pedestrians that are in the path of the bus at signalized
intersection [47].

3.4.2. Convenience Applications

Convenience applications are the V2P applications that assist the VRUs by improving their travel
efficiency through various services. Examples of such convenience applications are ride-sharing, green
light for bicycles, traffic information for VRUs etc. Tal et al. [40] propose a V2P-based convenience
application that helps electric bicycles save battery power. This is achieved in real-time by calculating the
bike’s recommended speed based on the received traffic light timer information. The TIMON project [42]
provides various convenience services for VRUs that include current traffic status, information about
vehicle collisions, and re-routing assistance. Table 1 lists various V2P convenience applications.

3.5. Notification Recipients

As discussed in Section 3.4.1, there can be multiple V2P safety applications addressing different
aspects of crash preventions (type of VRU, scenario etc.). Also, V2P safety application capabilities are
also dependent on the type of VRU device and the underlying communication technology. These factors
may lead V2P systems to have different recipients of crash warnings.

1. Driver: In this V2P system, when a vehicle-VRU crash is predicted, only the vehicle’s driver is
notified so that further action may be taken. References [21,27,28] are examples of such systems.
Notification to the driver may be a symbol on vehicle’s dashboard.

2. VRU: In this V2P system, when a vehicle-VRU crash is predicted, only the VRU is notified.
Reference [4,15,38] are examples of such system. Notification to the VRU may be in form of
audio-visual warning on the VRU device.

3. Both: In this V2P system, when a vehicle-VRU crash is predicted, both nodes (vehicle and VRU)
are notified. References [3,5,26] are the examples of such a system.

Table 1 shows various efforts by their notification recipient.

Similarly, notification recipients for the V2P convenience applications may also be classified into
above three categories. However, we are not aware of enough number of efforts for V2P convenience
applications to draw any conclusion.

3.6. Communication Technologies

As Table 1 shows, various communication technologies have been used to design V2P systems.
Some characteristics of the V2P systems largely depend upon the choice of the underlying communication
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technology. Examples of such characteristics are the range of communication, the choice of V2P device,
the availability of infrastructure etc. In this section, we briefly discuss each communication technology
and its characteristics.

3.6.1. 802.11p

IEEE 802.11p, which operates in 5.9 GHz frequency, has been specifically designed for V2X
communications. It can support the exchange of safety messages reliably and with low latency even
under the typical high vehicular mobility conditions. However, it requires VRU devices to be equipped
with 802.11p. Although Reference [3] has shown the feasibility of equipping smartphone with 802.11p,
we are not aware of any smartphone or other VRU device that supports 802.11p off-the-shelf. This may
pose deployment problems. 802.11p based systems typically support a communication range up
to 1 km which may be enough even at high speeds e.g., 40 m/s. 802.11p-based systems may be
deployed with infrastructure [37,39] or without [3,26,36]. Due to its reliability and low latency, 802.11p
technology is a good candidate for V2P safety applications.

3.6.2. Cellular

A few efforts [5,25,38] have been made to design V2P safety systems using cellular technology.
All of the efforts use 3G or Long Term Evolution (LTE) for communication and smartphones as a
VRU device. Cellular-based V2P systems typically have a longer communication range due to the
use of central infrastructure. However, latency and scalability performance of cellular V2P systems
need to be researched further in order to determine their suitability for V2P safety systems. Due to
its widespread coverage and high market penetration, cellular system is a good candidate for V2P
convenience applications.

Cellular V2X (C-V2X) is currently under development as part of the proposed 5G architecture.
Once fully developed, C-V2X promises to fulfill the requirements of various use cases of V2X
communications including V2P [48]. However, we are not aware of any efforts that have used
C-V2X for design or evaluation of a V2P system.

3.6.3. Wi-Fi

Multiple efforts [4,8,9,15,23,24,35] have been made to design Wi-Fi-based V2P safety systems.
These systems use a smartphone as a VRU device and typically have 100-150 m of communication
range. This range may be enough in urban areas with typical vehicle speeds up to 50 km/h. However,
it may not be enough in suburban areas with typical speeds of 100 km/h due to less time available for
the driver’s reaction to crash warnings. Also, Wi-Fi’s association requirement is a challenge due to
the mobility of vehicles as it may take too much time before the actual exchange of safety messages
happens. Wi-Fi-based V2P systems may be deployed without the help of infrastructure.

3.6.4. Localization

Schaffer et al. [27] have developed a co-operative pedestrian localization system that can operate
at 2.44 GHz and 5.768 GHz. It uses a special tag as a VRU device which can directly communicate with
the vehicle’s device without any infrastructure. This V2P system achieves a communication range up
to 100 m. Scalability and latency performance of this system need to be researched further due to its
requirement of fixed tag identification numbers.

3.6.5. Bluetooth

Anaya et al. [39] have developed a Bluetooth-based V2P safety system for bicyclists. This system
uses iBeacon as a VRU device in order to communicate with the vehicle directly. It achieves a
communication range of up to 50 m which may be enough for a particular pre-crash scenario
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e.g., Figure 3d. However, due to its limited communication range, Bluetooth may not be able to
support V2P in its entirety. For example, it may support only urban scenarios with slower speeds.

3.6.6. 700 MHz ITS Band

Nagai et al. [28] have developed a system for V2P communication in 700 MHz ITS band
(in accordance to the Japanese standard for ITS). It evaluates various channel access mechanisms
for V2P system. It serves as a proof-of-concept for co-existence of V2P, V2V and V2I systems in the
700 MHz system.

3.6.7. 802.15.4

Lewandowski et al. [21] is an example of the system based on 802.15.4 that we have discussed in
Section 3.1.1. 802.15.4 technology can achieve the communication range of up to 80 m. 802.15.4-based
systems may be helpful where only unilateral notification of the collision (to the vehicle’s driver)
is sufficient.

3.7. VRU Devices

Various pre-crash scenarios and varying capabilities of VRUs impose the constraint of functionality
and accessibility on VRU devices. For example, smartphones may be good devices for adults but not
children. In this section, we discuss various options that may be used as VRU devices.

3.7.1. Smartphone

Due to their versatility and ubiquitous nature, smartphones may prove themselves as most widely
accepted choice as a VRU device. It can also be seen from Table 1 that 23 out of 28 systems for V2P
communication have used a smartphone as a VRU device. Current commercial off-the-shelf (COTS)
smartphones already pack the various sensors, such as, accelerometer, GPS, and communication
technologies, such as, cellular (LTE/3G), Bluetooth, Wi-Fi etc. By fusing functionalities of these sensors
and communication technologies, effective V2P systems may be developed. Smartphones can also
provide the necessary functionality for audio-visual and haptic warnings. This may be useful for V2P
systems that incorporate warnings for VRUs.

3.7.2. Helmet

Helmets may be used as a VRU device for cyclists and MTWs. However, this requires that
the helmet be equipped with the necessary components that enable it to be used as a VRU device.
Hernandez-Jayo et al. [38] use a helmet and smartphone as a VRU device for the cyclist. In this system,
the smartphone is used to transmit the position data to the cloud and the helmet is used to warn the
cyclist about the presence of the vehicle.

3.7.3. Tag

A tag may be used as a VRU device in the V2P systems where unilateral warning (only to
vehicle driver) is necessary or sufficient. It may be placed in the children’s backpack, wheelchairs,
handbags, etc. [21,27] use a tag as a VRU device. The tag may not participate in V2P communication
actively and may reply only when the vehicle device is detected.

3.8. Role of VRU Devices

The mechanism how VRU devices participate in V2P communication may be categorized in two
categories, namely, active and passive. Table 1 shows the existing efforts that are also classified by the
VRU device role.
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3.8.1. Active

When a VRU device participates actively in V2P communication, by sending information about
the VRU location, speed, etc. periodically, it may be called as active participation. This requires the
VRU device to be equipped with multiple technologies, such as, GPS, communication technologies.
This type of participation is more widely used as seen from Table 1. This type of participation may
increase network congestion caused by VRU safety messages adversely impacting potentially more
crucial V2V and V2I communication [14]. Hence this type of system may need to employ mechanisms
to optimize VRU transmissions.

3.8.2. Passive

When the VRU device only ‘listens’ to the messages from a vehicle and/or when VRU device
sends a reply only when it detects the message from a vehicle, this type of participation may be called
as passive participation. In a V2P system where the VRU device only listens to the messages from
vehicles, vehicles may not be aware of the VRU’s presence. This requires the VRUs to be aware of
vehicle to avoid potential crashes. Also, in a V2P system where the VRU device replies only when it
detects the message from the vehicle, the system completely relies on the reliability and efficiency of
the VRU device. Also, performance of such systems in the dense vehicle scenarios remain unseen.

4. Case Study of Crash Scenarios

As mentioned in Section 3.2, there are 4 most common pre-crash scenarios for pedestrians and
cyclists. To design a crash-prevention system, it is necessary to evaluate various mechanism under
these scenarios.

4.1. Concept

A good V2P system must be able to effectively operate its three phases, i.e., detection, tracking
and trajectory prediction, and action. Detection phase requires the first contact between a vehicle and
VRU [14]. Similarly, tracking and trajectory prediction requires sufficient number of messages exchanged,
and action phase requires sufficient amount of time for reaction in order to stop the vehicle. Our study
evaluates the mechanisms of active and passive participation to understand the first contact by VRU,
available response time, and number of messages received by the vehicles from the VRU involved in
the potential crash.

4.1.1. Active Mechanism

In Active Mechanism, VRU devices participate in V2P communication actively i.e., they transmit
the safety messages periodically. This periodicity may be varied based on the context of the VRU [49].
In our scenario, we use fixed periodicity of 0.5 s.

4.1.2. Passive Mechanism

In Passive Mechanism, VRU devices participate in V2P communication passively i.e., they transmit
the safety messages only when they detect the possibility of a crash. In our scenario, when the VRU
device receives the first message from the vehicle that is crashing with the VRU, it waits for two
seconds before it transmits the safety message. All subsequent safety messages are then transmitted
every two seconds.

4.2. Scenario

Our scenario consists of 4 pairs of vehicles and VRUs that correspond to the 4 pre-crash scenarios.
This allows us to study the first contact time, number of exchanged messages, and the total contact
duration before the crash for each pre-crash scenario. We consider a 802.11p-based V2V and V2P
network for our evaluation. Vehicles and pedestrians use 802.11p to exchange safety messages with
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each other. We consider a T-junction with vehicles and VRU traffic. Figure 4 depicts the scenario
with 4 pre-crash configurations. The scenario consists of two roads, with two lanes in either direction,
forming a T-Junction and footpaths that are surrounded by building structures. The intersection is
controlled by traffic lights. The vehicles, pedestrians, and bicyclists are inserted at the far end of the
road/footpath and travel towards intersection. The vehicles’ traveling speed is set to the value that
corresponds to urban speed limit.The four pairs of vehicles and VRUs, corresponding to the pre-crash
scenarios, travel on the road as shown in Figure 4.

Structure

[] Scenario 2a
& Scenario 2b
[ scenario 2¢
Structure [] Scenario 2d

500 m
Structure

1km

Figure 4. Simulation Scenario.
4.3. Simulation Environment

We selected OMNeT++, Veins, and Simulation of Urban MObility (SUMO) tools to simulate our
V2V /V2P network [50-52]. Vehicles are inserted at every 2 s. Pedestrians are inserted at every 1.6 s.
Transmission power of Vehicles and VRUs is set to 20 mW. This allows the communication range of
400 m. We employ TwoRayInterferenceModel as a path loss model in order to achieve realistic path
propagation of V2P and V2V networks. Table 2 provides the details of simulation parameters used in
our scenario.

Table 2. Simulation Parameters.

Simulation Parameters Value
Road length 1 km x 500 m
No. of vehicles 120-150
Max. vehicle speed 13.89 m/s =50 km/h
No. of pedestrians 102
Max. pedestrians speed 1.5m/s
No. of bicycles 1
Max. bicycle speed 43m/s
Transmission power for vehicles 20 mW
Transmission power for VRUs 20 mW
Data rate 6Mb/s
Vehicles beacon periodicity 10 Hz
VRU beacon periodicity 2Hz

(for Active Mechanism)
Beacon length 1024 bits
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The four pre-crash scenarios have different warm-up periods and simulation run-times which
are shown in Table 3. The warm-up period allows each scenario to get into typical traffic condition.
The crash time indicates the simulation time when the vehicle and VRU pair crashes into each other.

Table 3. Scenario-specific Parameters.

Scenario Warm-Up (ins) Crash Time (ins) Simulation Length

2.a 30 335 33.5
2.b 11 44 44
2.c 45 49 49
2.d 10 48 48

The simulation data is collected over 3 independent runs for every pre-crash scenario under active
and passive configurations. Average values are then computed for evaluation of final results.

4.4. Evaluation

We consider two metrics to evaluate the V2P system under different pre-crash scenarios and
mechanisms: Available Response Time for the vehicle and number of safety messages received by
the vehicle from the VRU. To calculate the Available Response Time for the vehicle before the crash,
we consider the time-stamp of first ever beacon received by the vehicle from the corresponding VRU
(detection phase). The Available Response Time, for each pre-crash scenario, is give by Equation (1).

ART = CT — FBT 1)

where:

ART = Available Response Time

CT = Crash Time

FBT = First Beacon Time

The number of safety messages, received from the VRU, gives a measure of reliability for tracking
and prediction phase. We consider the total number of safety messages received by the vehicle, from the
corresponding VRU in crash, for this purpose. Table 4 shows the Available Response Time and the
number of received safety messages for each pre-crash scenario under Active and Passive mechanisms.

Table 4. Results.

Scenario Available Response Time (before Crash,ins) Average No. of Received Messages (from VRUs)

2.a
Active 2.13 5
Passive 0.39 1
2b
Active 31.7 62
Passive 29.96 13.33
2.¢c
Active 3.65 7.33
Passive 1.27 1
2d
Active 37.65 74
Passive 35.93 16.67

As expected, the Available Response Time is always less in Passive mechanism than in Active.
This is due to the fact that the VRU device waits for 2 s before the safety message transmission.
SAE J2945/9 document indicates that the collision awareness message must be issued 8 s before
the crash [49]. Under our simulation scenario, none of the mechanisms can fulfill this condition for
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scenarios 2.a and 2.c. Scenario 2.a has a short Available Response Time because the VRU has to travel a
short distance (<4 m) before it crashes with the vehicle. Scenario 2.c has a short Available Response
Time because the VRU and the vehicle are unable to communicate with each other due to NLOS.
The scenarios 2.b and 2.d show sufficiently long Available Response Times.

The number of received safety messages are always less in Passive mechanism than in Active.
Also, in scenario 2.a and 2.c, the vehicle receives only 1 safety message from the VRU under Passive
mechanism. This may only be sufficient for the detection phase and no messages are available for
tracking and prediction phase. Under scenarios 2.b and 2.d, the vehicle receives a sufficiently large
number of messages for both the mechanisms.

5. Discussion

In this section, we discuss some important aspects of integrating VRUs in V2X communication.

5.1. Network Congestion

As pointed out by a few efforts [3,14,49], network congestion can become severe with a large
number of VRUs when all VRU devices actively participate in the V2P communication. To solve the
network congestion issue, a few schemes, such as, Receive-only mode [3], contextual transmission [49],
and clustering of VRUs [14] have been suggested.

5.2. Location Accuracy

In V2P communication, precise location information is needed to predict the crash probability
accurately. However, real-world measurements show that GPS location inaccuracy is 3 m for [3]
and 10 m for [4]. This requires crash prediction algorithms to accommodate GPS inaccuracies while
calculating the crash probability. Efforts by Audi [17] use a Kalman filter mechanism in order to
accommodate GPS inaccuracy for VRU positioning. Broadcom Inc. has developed a positioning
solution for a smartphone with 30 cm accuracy [53], however its results in real-world remain unseen.

Also, current GPS-equipped devices (OBU/smartphones) do not support differentiation in 3D
plane. This limitation may lead to false positive collision warnings. For example, if a pedestrian is
crossing a street using an overpass while a vehicle is passing, the V2P system may predict that the
vehicle and the pedestrian are on the verge of collision. The V2P systems must be capable of identifying
the situation when the involved entities are not at the same level.

5.3. Technology Standardization

As Table 1 shows, various technologies and approaches have been used for V2P systems.
These systems vary in their architecture and abilities of communication range, latency, and bandwidth.
This makes it difficult to predict the results if these systems were deployed in other scenarios or
for other group of VRUs. Hence, it is necessary to standardize the V2P technology keeping various
parameters of V2P systems in mind. Also, there is a need to define and standardize the messages that
are being exchanged between vehicles and VRUs [17].

5.4. Provision of Quality-of-Service (QoS)

When the V2P system predicts that a vehicle-VRU crash is probable, it is necessary to prioritize
the communication between the crash-prone pair over other V2P communications. This is required in
order to be more certain about the crash so that both the devices (vehicle unit and VRU device) can
warn their users about the crash. However, 802.11p-based systems do not provide such a mechanism
despite being especially designed for V2X communications [14]. We discuss two possible solutions to
address this challenge for 802.11p-based systems.
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5.4.1. Request to Lower Priority

The devices of vehicle and VRU, that are on the verge of collision, broadcast a special message
requesting other nodes to lower the priority of transmission of safety messages while maintaining their
own priority. This leads other nodes to lower the priority of their message temporarily (e.g., for next
scheduled transmission). This allows the crash-prone devices a higher chance of wireless channel
access ensuring the guarantee of message delivery.

5.4.2. Request to Lower Message Periodicity

The devices of vehicle and VRU (that are on the verge of collision) broadcast a special message
requesting other nodes to lower the periodicity of transmission of safety messages while maintaining
their own periodicity. This leads other nodes to lower the periodicity of their message temporarily
(e.g., from 10 Hz to 5 Hz for the next scheduled transmission). This allows the crash-prone devices to
transmit with higher periodicity ensuring the guarantee of message delivery.

6. Open Research Challenges and Future Directions

As integration of VRUs into ITS is being researched, there remain several open research issues.
In this section, we discuss these issues and also, possible future directions as follows:

o 3D localization has been widely researched in the research community. However, to the best of
our knowledge, there have been no efforts for 3D localization of VRUs in V2P systems.

° Current self-driving vehicle efforts are focused on using standalone technologies, such as,
computer vision, Radar, and LiDAR. The results of how the self-driving vehicles respond to
V2P-enabled VRU detection remain unseen.

e A V2P-capable vehicle simultaneously need to detect and track (anonymously) multiple VRUs
(V2P-capable) that are present in its vicinity. However, current V2P efforts have not fully
explored this aspect yet. The number of VRUs that can be detected and tracked (anonymously)
simultaneously and the factors that may affect this capability, such as, limitations of object tracking
algorithms, are currently unexplored.

e The VRU and vehicles, that are potentially on the verge of collision, may need to communicate
with each other. This requires a higher and on-demand QoS in real-time. The algorithms for
on-demand QoS for crucial V2P communication, in the presence of rest V2X communication, may
pose interesting research problems.

e  Mobile Edge Computing (MEC) is currently being researched for V2X networks. MEC may be
considered in the design of V2P systems. The role that MEC can perform, in safety as well as
convenience V2P applications, is currently unexplored. It may enable V2P safety communication
and also, help reduce network congestion caused by VRU-generated safety messages.

e Integration of V2P systems with Geographical Information Systems (GIS) may help enable
predictive warnings about VRUs. For example, V2P system may request the information from
GIS, such as, school location or bus-stop information, and warn drivers beforehand about VRUs’
presence. GIS may help improve efficiency of V2P systems, including safety as well as convenience,
in a specific area.

7. Conclusions

V2X systems for VRU safety and convenience are expected to be deployed in coming years.
However, it is necessary for V2X systems to incorporate various characteristics of target VRU groups
and scenarios. This paper proposes a design framework for the V2P system that may be used to design
a system based on the targeted V2P use case. It also provides a survey of existing V2P efforts and
identifies their design considerations based on the proposed framework. A detailed discussion is
provided about every aspect of the design framework. This paper also performs a comparative
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case study of the Active and Passive VRU participation mechanisms under the most prominent
pre-crash scenarios for two different VRU groups. The case study shows that the 802.11p-based
V2P safety systems must consider additional mechanisms, for some pre-crash scenarios, to provide
adequate warnings of eminent collision. The paper also discusses some technological challenges
of V2X-VRU integration. In future, we plan to work on the network congestion issue caused by
V2X-VRU integration.
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DSRC  Dedicated Short Range Communication
GIS Geographical Information Systems
ITS Intelligent Transportation System
MEC  Mobile Edge Computing

MTW  Motorized Two Wheeler

QoS Quality-of-Service

RSU Road-Side Unit

VRU Vulnerable Road User

V2I Vehicle-to-Infrastructure

V2P Vehicle-to-Pedestrian

v2v Vehicle-to-Vehicle

VaXx Vehicle-to-Everything
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