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Abstract: Preflight contingency planning that utilizes wind forecast in path planning can be highly
beneficial to unmanned aerial vehicles (UAV) operators in preventing a possible mishap of the UAV.
This especially becomes more important if the UAV has an engine failure resulting in the loss of all
its thrust. Wind becomes a significant factor in determining reachability of the emergency landing
site in a contingency like this. The preflight contingency plans can guide the UAV operators about
how to glide the aircraft to the designated emergency landing site to make a safe landing. The need
for a preflight or in-flight contingency plan is even more obvious in the case of a communication
loss between the UAV operator and UAV since the UAV will then need to make the forced landing
autonomously without the operator. In this paper, we introduce a preflight contingency planning
approach that automates the forced landing path generation process for UAVs with engine failure.
The contingency path generation aims true reachability to the emergency landing site by including
the final approach part of the path in forecast wind conditions. In the contingency path generation,
no-fly zones that could be in the area are accounted for and the contingency flight paths do not pass
through them. If no plans can be found that fulfill reachability in the presence of no-fly zones, only
then, as a last resort, the no-fly zone avoidance rule is relaxed. The contingency path generation
utilizes hourly forecast wind data from National Oceanic and Atmospheric Administration for the
geographical area of interest and time of the flight. Different from past works, we use trochoidal
paths instead of Dubins curves and incorporate wind as a parameter in the contingency path design.

Keywords: contingency planning; automated landing; forced landing; path generation; wind
forecast; UAV

1. Introduction

The use of unmanned aerial vehicles (UAVs) in the military and industry today is becoming more
widespread, making airspace traffic even more crowded than before. The mishap rates in UAVs are
several orders of magnitude greater than for manned aviation [1]. Considering these high mishap rates,
it is understandable why the U.S. Department of Transportation’s Federal Aviation Administration
(FAA) has initiated several programs and partnerships to increase the safety and reliable operation of
UAVs [2]. To reduce mishap rates, the reliability of UAVs can be improved by using durable engines and
communication equipment, strong structural materials, advanced condition-based maintenance and
structural health monitoring procedures [3–6], robust fault diagnosis and prognosis algorithms [7–9],
and robust [10–16] and fault tolerant controllers [17–19]. Another area to reduce mishap rates is well
devised contingency plans which will take place in the aftermath of an emergency either to help UAV
operators glide the UAV or make the UAV autonomously land itself at a crashing/ditching site or
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local airport runway if there is no reliable communication link available. In the case of an emergency
due to full loss of thrust, the wind plays a critical role with respect to reachability of the emergency
landing site [20]. Upon full loss of thrust due to engine failure, because of the wind impact, the UAV
may not reach the designated landing site and crash into populated areas causing loss of lives. Thus,
the wind impact on reachability needs to be addressed in path planning for engine loss contingencies.
It is also important that in the event of an emergency that might happen at high altitudes, the UAV
should choose a forced landing path that does not violate no-fly zones or stormy weather air zones not
to further complicate the situation.

In light of the above statements, it would be fair to state that the contingency plans need to
address the problem of how the fixed-wing UAV with full loss of thrust can be guided to land at an
emergency landing site without violating no-fly zones while accounting for wind conditions. Before
landing, the UAV must be aligned with the landing site orientation for final approach at a certain
gliding airspeed, altitude and heading to meet true reachability conditions. By true reachability, we
mean the UAV being able to make a touchdown through a final approach path rather than simply
arriving over the landing site with some excessive altitude. There is an emergent need for automated
contingency planning methods to support the UAV operators to safely glide the mishap aircraft and
for autonomous emergency landing methods.

There are several past works that propose automated forced landing approaches in the event
of full loss of thrust. In [21], a real-time path planning method which uses Dubins curves is
introduced. The authors extend Dubins curves to 3D which consider aircraft dynamics and contain
wind information in the guidance logic assuming that the wind velocities can be estimated by onboard
instruments. In their work, the authors state that the amount of loss in altitude factored into the path
planning equations does not fully consider the associated loss in altitude due to varying airspeeds and
other atmospheric effects. In their path planning, from the point of emergency to the approach point,
they assign two altitudes. The path angle is computed between the two altitudes. If the difference
in altitude between the start and end positions results in a path angle that exceeds the maximum
allowable path angle, another suboptimal path is selected to lose the approximate amount of altitude
required. It is mentioned that their algorithm can generate the required number of helix spirals to
lose the excess altitude before connecting the spirals with a Dubins path. Their path planning does
not consider obstacles in the flight path. Because they observed vertical track error when the aircraft
was following a helix spiral, as future work, they mentioned that they would experiment different
techniques. Luis et al. [22] presented flight test results of forced landings involving an Unmanned
Aircraft System (UAS), in a controlled environment. The path planning and guidance algorithms used
in these flight tests were taken from [21].

In [23], a method for on-board computation of energy-optimized flight-paths for engine loss
emergencies is proposed. Optimal flight paths are generated via a search graph through discretization
and it is accounted for obstacles with different shape and position. The authors state that the altitude
at the final approach point is ignored in the optimal path design. They only aim to match the desired
coordinates for the approach point, desired heading angle and speed values while maximizing the
altitude at the approach point. The authors assume that the pilot will be able to get rid of the excess
altitude once near the landing site and they do not provide a full reachability analysis.

In [24], a reachability analysis method in the presence of a known wind profile is introduced. A
maximum glide range is defined using gliding equations and separating the glide into turning phase
and straight level glide descent. Since the approach and safe landing phases are not accounted for
in the maximum glide range computation, the authors use a descent circuit based on the high-key
low-key technique generally used by human pilots to calculate the true reachability of a landing site.
The authors mention about the need to develop a more representative descent path to follow since
they consider the high-key low-key technique as wasteful one and being more appropriate for human
pilots but not for UAVs.
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In [25], a Dubins path-based framework is introduced to find emergency landing paths for fixed
wing airplanes in case of total loss of thrust. The shortest path using Dubins Curve is found under best
glide assumption and the optimal final approach length is estimated by solving nonlinear equations.

In [26], the shortest path to the identified emergency landing is found using Dubins curves. Their
method calculates the altitude drop for gliding along the planned shortest path. Using this altitude
drop, it computes the UAV altitude over the landing point. If this has a negative value, it is decided
that the aircraft could not reach it and this landing site is excluded. If the altitude over the landing
point has a positive value, the aircraft has excessive altitude and the length of the final approach path
is extended till there is no excessive altitude. The wind effects are not considered in the path planning
and it is considered that there are no obstacles or no-fly zones along the planned path. The authors
bring into readers’ attention that there is a risk that an aircraft cannot reach the landing site in windy
weather condition even though their method confirms that the landing site is reachable.

In [27], an in-flight automatic contingency generator (ACG) for UAVs is discussed which avoids
no-fly zones by constructing tangent vectors around the no-fly zones. The energy state of the UAV is
used to determine the UAV’s glide range and to identify candidate landing site locations within the
glide range. It is mentioned that forecast and actual wind data can be used to dynamically adapt the
routes for wind effects on the turn radius and climb/descent performance capabilities.

In [28], an in-flight method for autonomous safe emergency landing of a powered UAV in the
event of an engine failure is introduced. The method generates a landing approach trajectory including
a downwind leg, an upwind leg terminating at a selected touchdown point, and a U-turn leg joining
between the downwind leg and the upwind leg. The UAV is directed to the initiation point to follow the
downwind leg. A glide ratio of the UAV is repeatedly determined based on current flight conditions.
The glide error is computed continuously from actual sensor on-board measurements such as altitude
lost, airspeed and measured wind. The method considers waiting paths to lose excessive altitude path.
For this, the trombone-shape flight approach path is gradually extended in length on both sides and
looked for convergence on the landing site location to meet reachability with the measured glide ratio.
The method does not mention about no-fly zones in the vicinity of the targeted emergency landing site.

A risk-aware path planning strategy for UAVs in urban environments is proposed to compute a
path that minimizes the risk to the population in [29]. A risk map is utilized for quantification of the
risk which associates discretized locations of the space with a suitable risk cost. The proposed approach
consists of two phases, off-line and on-line path planning. The off-line path planning searches for a
globally optimal path considering the risk-map as a static environment with an A*-based algorithm
called riskA* which uses a cost function that considers both path length and risk-cost. For on-line path
planning, an algorithm called Borderland is used that identifies and adjusts only the portion of path
involved by the inception of relevant dynamical changes in the risk factor. After the path planning
procedure, to achieve a more suitable and realistic path, the authors use a smoothing procedure which
involves Dubins curves. The path planning is for UAVs with functional engines and wind effects are
not accounted for in the path planning.

A path re-planning problem to land a UAV under four types of critical situation is studied in [30]
to minimize damages during an emergency landing. Three methods were proposed by the authors:
Greedy Heuristic (GH), Genetic Algorithms (GA) and Multi-Population Genetic Algorithm (MPGA).
It is reported that the methods are better dealing with battery problem and worse for landing the
UAV under engine failure. The authors mention that this issue must be considered as future work
to improve these methods for engine failure case. According to their simulation results with a flight
simulator, in regards to reachability, in no wind condition, the UAV is found to deviate from the
original route on average 8.65 m and the average error is found to reach around 92.33 m under winds
of 40 knots. It is our interpretation that the authors must have considered using aircraft controls to
minimize the wind effects during the flight instead of utilizing wind directly as a parameter in the path
planning as we did. Related with that no discussions were found about how the excessive altitude is
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lost by the UAV through these algorithms and about the effect of air density variation on reachability
as the UAV descends.

The maneuverability limitations of the aircraft is critical in path planning especially in emergency
landings. In [31], design and simulation of an on-line algorithm which estimates the safe maneuvering
envelope of aircraft is discussed. From the trim envelope, authors indicate that the maneuverability
limitations of the aircraft through an optimal control formulation can be obtained by a robust
reachability analysis.

In [32], path planning problem for emergency landing with fixed-wing aircraft experiencing the
total loss of thrust is studied. The author proposes a novel RRT*-based algorithm for planning safe
gliding emergency landing trajectories. The proposed algorithm generates a map of the required
altitude allowing a safe gliding emergency landing as its byproduct. Dubins maneuvers are used in the
path planning. The effects of wind in path planning do not seem to be considered in this work since
no related discussion about wind can be found. The author doesn’t provide any mechanisms about
how the excessive altitude is lost and about the final landing trajectory. It is stated that the excessive
altitude is considered to be safe and the excess altitude of the aircraft can be left up to the pilot or can
be solved during retrieving the final landing trajectory.

In [33], the integration of an Emergency Landing Planner (ELP) into the cockpit of a 6 DOF
full-motion simulator is discussed. ELP is developed for manned aircrafts and is designed to assist
pilots in choosing the best emergency landing site when damage or failures occur in an aircraft. It
takes various factors into consideration such as the actual control envelope of the aircraft, distance to
the site, weather along the route, characteristics of the approach path and the runway or landing site,
and emergency facilities at the site. With respect to path planning, the term roadmap is defined as the
topological representation of the environment that captures the connectivity of the free space. In ELP,
roadmaps are generated by starting with a 2D visibility graph first, and augmenting the edge set in the
vertical dimension to allow paths above, below or through obstacles. A hybrid discrete/continuous
version of A* that searches for paths of low risk in this roadmap is then used in the path planning.
At the end, ELP proposes possible routes and landing sites to the pilot, ranking them according to
estimated risk.

In this work, we propose a preflight contingency planning approach that automatically generates
flight paths for UAVs with full loss of thrust to land them at an emergency landing site without crossing
over any no-fly zones in the area and while also accounting for varying wind conditions in the path
design using hourly wind forecast data. It aligns the UAV with the landing site’s orientation for the
final approach path at a proper heading angle in forecast wind. Loitering paths are designed near the
identified emergency landing site to lose excessive altitude to have a proper altitude for final approach,
and to meet true reachability.

We assume a constant glide speed throughout the contingency flight path. Air density values that
vary according to altitude are accounted for in the sink rate computations of the aircraft. The sink rates
during straight level gliding and turn are estimated separately and incorporated into the path design.
The preliminary path that does not violate any no-fly zones is segmented and the minimum-time
paths are designed using six different extremal types for each segment that are based on trochoidal
curves. These six extremals are LSL, RSR, RSL, LSR, RLR and LRL, where L corresponds to a left turn,
R corresponds to a right turn and S corresponds to travelling straight [34].

The wind forecast data vary both spatially and in altitude. We assume that in smaller regions, the
variation in wind is negligible. This assumption allows us to design the path trajectory for a segment
using the six extremals that require steady wind conditions. The steady wind assumption is only for a
single segment and the wind data in the consecutive segments would be different. The partitioning of
the path into shorter segments, thus, allows incorporating varying wind into the contingency path
design. We assume that the UAV has some degree of flight control to adjust its heading while straight
gliding or making a turn according to the identified extremal. Related with that we also assume that
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the transition to turning flight occurs instantaneously instead of accounting for the time that it would
take to acquire the target bank angle and turn rate.

Our approach differs from the past works by being an off-line preflight contingency planning
tool to support UAV operators whereas most of the past works focus on in-flight path planning for
forced landing in the case of full loss of thrust. We envision our preflight contingency plans being
uploaded to the UAVs and in the event of an emergency, these plans would then support the UAV
operator for guiding the forced landing of the UAV. Or, in the event of a lost communication link, the
UAV would autonomously land itself through minor modifications of the preflight contingency plans
using its onboard sensors on the fly. Because it is an off-line approach, computation time constraints
are not strict. In-flight path planning methods use onboard sensors to measure wind speed and
direction and use continuous guidance and control adjustments to compensate for wind effects to
maintain reachability to the designated landing site. Our approach utilizes hourly wind forecast
data to incorporate wind effects to the contingency path design before the flight. Even though the
downward wind forecasts are generally small values, our approach incorporates them in the altitude
drop estimations.

Most of the past works utilize Dubins curves for path planning and assume that the UAV will
have continuous guidance controls to compensate for the wind effects while tracking the Dubins-curve
based trajectories. One of the contributions of our work is incorporating wind in the contingency path
planning with the use of six different extremals based on trochoidal curves. According to [35], using
trochoidal curves in path planning instead of Dubins curves is found to reduce the tracking error in
actual UAV flight experiments which shows the importance of using trochoidal curves over Dubins
curves in the presence of wind.

Another contribution is the incorporation of loitering paths in the path design if there is any
excessive altitude to lose before the final approach. For marginal excessive altitude loss, our method
systematically computes a time-constrained loitering path unlike [28] which uses a trombone shape
and extends this path continuously to converge on the targeted emergency landing site with the
continuously measured glide ratio values. In our method, the sink rates to compute the glide ratio
are derived from mathematical equations accounting for atmospheric density variations rather than
using measurement data like [28] which requires some learning. A novel time-constrained path
design technique [36] is adapted which provides LRL and RLR type extremal trajectory design in
the time-constrained path. In addition to time-constrained path design, extremal trajectory look-up
tables are formed with a range of turn rates for different wind amplitude and directions. If the
time-constrained path design does not provide a solution, the extremal look-up table is searched
to determine a loitering path of which its travel time is closest to the required air time to lose the
excessive altitude.

Section 2 provides the problem description. A detailed discussion is given in this section regarding
path generation for preflight contingency planning given a primary flight path (PFP). Section 3 provides
the detailed introduction of our proposed approach and the technical steps. The tools used for loitering
path design to lose excessive altitude are discussed in this section as well. Section 4 provides the
results and discussions for simulated scenarios and using flight data from an actual incident. Section 5
provides the conclusions and discussion of future work.

2. Problem Description

Figure 1 illustrates the problem description. Suppose a UAV flight mission is planned in which
the takeoff will take place at point A at time tA and the UAV is planned to land at point B at tB. A wind
forecast is available for the area that covers the time duration in which the mission would take place.
The mission primary flight path is known and depicted with blue line in Figure 1. The primary flight
path consists of several waypoints and these waypoints are denoted by blue circles in Figure 1. Other
than the primary flight path waypoints, UAV specific information such as the take-off weight, travel
time from one waypoint to another, and estimated fuel consumptions at each waypoint along the
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flight path, etc., are available. The term theater is used in this work for the geographical area in which
the primary flight path takes place. Within this theater, there could be several no-fly zones which
the UAV should not cross through during its flight. Contingency plans are needed before the flight
mission takes place to respond to engine failure incidents that could happen along the flight path. The
contingency plans should consist of a set of waypoints and a path information that will guide the UAV
to a reachable emergency landing site with a gliding speed in the operational range of the UAV and
with respect to the forecast wind conditions. These contingency plans would accompany the primary
flight path plans. It is expected that in case of an engine loss, based on where in the flight path the
emergency happened, the contingency plan with the contingency point closest to the emergency will
be selected, and the UAV by performing the turns in the contingency plan and tracking the waypoints
along the contingency plan path, should reach to the designated emergency landing site in the forecast
wind conditions.

Sensors 2018, 18, x FOR PEER REVIEW  6 of 26 

 

happen along the flight path. The contingency plans should consist of a set of waypoints and a path 
information that will guide the UAV to a reachable emergency landing site with a gliding speed in 
the operational range of the UAV and with respect to the forecast wind conditions. These 
contingency plans would accompany the primary flight path plans. It is expected that in case of an 
engine loss, based on where in the flight path the emergency happened, the contingency plan with 
the contingency point closest to the emergency will be selected, and the UAV by performing the 
turns in the contingency plan and tracking the waypoints along the contingency plan path, should 
reach to the designated emergency landing site in the forecast wind conditions.  

 
Figure 1. Illustration of the problem description. 

3. Proposed Approach 

In the proposed approach, after contingency happens, it is aimed to get the UAV over the 
airspace of the designated emergency landing site as soon as possible and lose the excessive altitude 
nearby the designated emergency landing site before conducting the final approach for landing. 
Because the UAV has no thrust due to engine loss, it is deemed risky to lose excessive altitude away 
from the landing site which might then result in reachability issues. Moreover, conserving the excess 
energy in the form of altitude till the last phases of the emergency flight could be advantageous [23]. 
This can provide extra time to the UAV operator and allow corrections for miscalculations and 
errors in the contingency plans path and mitigate wind conditions that deviate significantly from the 
forecast wind. 

An illustration of a preflight contingency plan path is shown in Figure 2. In Figure 2, two no-fly 
zones can be seen together with the contingency point and the identified emergency landing site. 
The contingency point itself is a waypoint along the primary flight path and is abbreviated by the 
notation, CP. The emergency landing site for a contingency plan is selected using the method in [37] 
with consideration of five safety criterions, the surface type of emergency landing site, and its 
reachability. Based on the orientation of the selected emergency landing site, three waypoints of the 
final approach path that form a straight line are identified. They are initial approach fix (IAF), final 
approach fix (FAF), and touch-down point (TDPT).  

A* technique [38] is applied to find a path from CP to IAF. This enables finding a path that 
avoids the no-fly zones within the theater. The A* path points are sampled such that the turning 

Figure 1. Illustration of the problem description.

3. Proposed Approach

In the proposed approach, after contingency happens, it is aimed to get the UAV over the airspace
of the designated emergency landing site as soon as possible and lose the excessive altitude nearby the
designated emergency landing site before conducting the final approach for landing. Because the UAV
has no thrust due to engine loss, it is deemed risky to lose excessive altitude away from the landing
site which might then result in reachability issues. Moreover, conserving the excess energy in the form
of altitude till the last phases of the emergency flight could be advantageous [23]. This can provide
extra time to the UAV operator and allow corrections for miscalculations and errors in the contingency
plans path and mitigate wind conditions that deviate significantly from the forecast wind.

An illustration of a preflight contingency plan path is shown in Figure 2. In Figure 2, two
no-fly zones can be seen together with the contingency point and the identified emergency landing
site. The contingency point itself is a waypoint along the primary flight path and is abbreviated by
the notation, CP. The emergency landing site for a contingency plan is selected using the method
in [37] with consideration of five safety criterions, the surface type of emergency landing site, and its
reachability. Based on the orientation of the selected emergency landing site, three waypoints of the
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final approach path that form a straight line are identified. They are initial approach fix (IAF), final
approach fix (FAF), and touch-down point (TDPT).
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Figure 2. Illustration of the proposed approach on a sample contingency scenario.

A* technique [38] is applied to find a path from CP to IAF. This enables finding a path that avoids
the no-fly zones within the theater. The A* path points are sampled such that the turning points are
kept as waypoints. The path trajectory between CP and IAF is determined such that wind forecast
data is incorporated into the path design with six extremals that are based on trochoidal curves while
avoiding the no-fly zones in the theater.

After the path part between CP and IAF is found, the UAV’s altitude at IAF and the
altitude-to-be-at for the final approach path are estimated. A total of six heuristic rules are used to plan
the rest of the contingency flight path based on these estimations. To meet true reachability, loitering
paths to lose the excessive altitude are considered. This is made possible by using a time-constrained
path design technique [36] and a look-up table-based methodology. A helix-shaped path is also used
to bleed off any significant excessive altitude before the final approach if necessary. The helix-shaped
path consists of six waypoints in the shape of a hexagon. From top view, this path looks circular. Two
of its six waypoints share the same coordinates of IAF and FAF waypoints as can be seen in Figure 2.
Our approach aims a true reachability to the landing place with respect to the gliding speed and
forecast wind conditions with the objective to have a tolerable UAV height over TDPT. In summary,
the contingency plan path consists of three parts: path from CP to the initial approach fix (IAF); the
loitering paths, to lose excessive altitude if necessary; and the final approach path. If there is not
enough altitude for the final approach path, an exceptional case is considered in which the UAV
directly starts maneuvering towards TDPT from CP as a last resort.

Figure 3 shows the simplified block diagram of our preflight contingency planning approach.
These blocks will be introduced in detail in the following subsections.
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3.1. Emergency Landing Site Assignment for a Contingency Point

A primary flight path consists of several pieces of information about the UAV’s flight mission.
Amongst them are waypoints along the flight path, the UAV speed and control and guidance values at
each leg of the flight path, performance estimates such as fuel consumptions and travel time in each
leg of the primary flight path, mission start and end times, takeoff weight value, etc. Joint Mission
Planning System (JMPS) [39] is one of the software that can generate primary flight path file. Waypoints
of the primary flight path are considered as contingency waypoints. If the distance between any two
consecutive contingency waypoints along the flight path is too long, additional contingency waypoints
are inserted between those waypoints so that most of the primary flight path is covered in contingency
planning. For each contingency waypoint, a contingency plan is generated with the objective to guide
the UAV from the contingency point to an identified emergency landing site (crashing/ditching site or
local airport runway) in the forecast wind conditions.

In an emergency, the contingency plan is selected based on where the emergency happened on
the primary flight path and the closest contingency point to the emergency location. The emergency
flight plan of the selected contingency plan is then used for forced landing.

Within the theater of the primary flight path, a list of emergency landing site candidates is
identified using our Semi-Automated Emergency Landing Site Selection (SAELSS) method [37]. This
method automates the job of finding crashing/ditching sites in a given geographical area of interest. It
uses color satellite images, elevation profiles and global human settlement layer to identify a set of
landing site candidates and ranks them from the safest to the least safe with respect to five criterions
for each surface type and reachability. The dimensions of the landing site are identified based on
the UAV size and its landing requirements (minimum runway size, etc.). In addition to emergency
landing sites, local airport runways within the theater are also considered as landing site candidates
and retrieved from an airport database. In the emergency landing site selection, it is made sure that
the airspace over the identified landing sites and a certain area around it do not belong to any no-fly
zones. The no-fly zones correspond to airspace that is closed to any type of air traffic due to security
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and safety reasons. By picking emergency landing sites with no-fly zones in the immediate vicinity,
no violation of the no-fly zones is assured during loitering which takes place nearby the emergency
landing site. For each contingency waypoint, an emergency landing site is picked among the SAELSS
identified landing site candidates.

3.2. Waypoint Assignment for the Final Approach Path

The three waypoints of the final approach path (FAP) which are denoted by IAF, FAF and TDPT
are identified based on the orientation of the assigned emergency landing site candidate. The three
waypoints form a straight line with equal distance from each other. The distance between these
waypoints is identified based on the UAV size and performance parameters of the UAV such as the
gliding speed. Two of these waypoints (IAF and FAF) are designed to have the same coordinates of the
two waypoints of the helix-shaped excessive altitude loss path. This intends to make the IAF waypoint
both as the entry point to the helix-shaped excessive altitude loss path and also the exit point from it if
there is any significant excessive altitude to bleed off.

3.3. Flight Path Design between CP and IAF

The path between CP and IAF forms the first part of the contingency plan path. If there are no-fly
zones located between CP and IAF, A* algorithm [38] is applied to find a preliminary path that does
not cross through no-fly zones. The number of preliminary A* path points could be numerous. The A*
path points are sampled such that the turning points are considered as waypoints while several other
A* path points that form straight line-like formations are eliminated. There is no need to apply A* if
there is no-fly zone and the final path consists of a single leg that connects CP and IAF waypoints.

Each connection between two consecutive turning waypoints in the CP-IAF path is considered as
a leg. Each leg in the CP and IAF path is partitioned into smaller segments to enable incorporation of
varying wind forecast into the overall path design. The objective is to find a minimum-time trajectory
based on trochoidal curves for every segment and stitch them together to form the CP-IAF path.
Figure 4 shows an illustration of one of the leg segments. The course and heading angles of the UAV at
the start and end points of the segment are depicted in Figure 4.
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Because the minimum-time trajectory design with trochoidal curves for a segment requires
constant wind [34], we assume a steady wind condition within a segment. We consider that the wind
variation within a small path segment is negligible in this work. This can be also observed from actual
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wind forecast data within small regions [40]. The course angle of the UAV at the start of a segment
is found in degree clockwise from North using the geographical locations of the start and end of the
segments and great circle of the earth. Similarly, the course angle of the UAV at the end of the segment
is found using the end of the segment and the start point of the next segment. Using the course angles
at the start and end points of the segment, the steady wind amplitude and direction along the segment
and the constant gliding airspeed, the headings of the UAV are computed at the start and end points
of the segment. The heading angles at the start and end point of the segment are necessary for the
minimum-time trajectory design.

Minimum-time trajectory design with trochoidal curves has been studied in [34] with the use
of six different extremals. These six extremals are LSL, RSR, RSL, LSR, RLR and LRL. A detailed
description of the analytical and numerical solutions for six different extremals can be found in [34].
We compute the minimum-time trajectories for each segment in CP-IAF path using all six different
extremals in the forecast wind condition. The path trajectory for a segment is then assigned to the
extremal that provides the minimum-time. A block diagram showing the process of assigning the
minimum-time extremal trajectory to a segment is shown in Figure 5. A detailed discussion of the
CP-IAF path design could be found in our paper [40].
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3.4. Estimating UAV Altitude at IAF at the End of CP-IAF Path

The UAV altitude at the end of CP-IAF path, HIAF, is needed to find out the final approach and
the excessive altitude loss path patterns. The UAV altitude at the end of each segment within CP-IAF
path is found by computing the altitude drops in three phases of the extremal type and subtracting the
sum of these three altitude drops from the altitude value at the start point of the segment. Because the
travel times in each of the three phases of an extremal type are computed, the altitude drops in each
phase can be found using the corresponding sink rate of the UAV in that phase.

Among the six extremal types, some of them contain right and left turns while some has straight
level gliding in it. Because sink rates differ when turning and in straight level gliding [24], we
considered two different sink rates in the altitude drop computation. Suppose W is the aircraft weight
at the contingency point, S is the wing reference area, A is the wing aspect ratio, CD0 is the flags-up
parasite drag coefficient, e is the airplane efficiency factor, and V is the true airspeed of the aircraft.
One other parameter to compute UAV’s sink rate is the air density value, ρ, at UAV’s altitude. The
1976 COESA air density values at different altitudes are used in this work [41]. The equations for sink
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rate computation for straight gliding and turning are shown in (1) and (2) [24]. In (1), Vs corresponds
to the sink rate for straight level gliding. In (2), Vsφ corresponds to the sink rate when turning. Because
a fixed turn rate is considered in the design of the CP-IAF path, the bank angle of the turn, φ, can be
found using (3):

Vs =
0.5ρSCD0

W
V3 +

2V
ρSπAeV

(1)

Vsφ =
0.5ρSCD0

W
V3 +

2V sec2(φ)

ρSπAeV
(2)

φ = tan−1
(

Vω

g

)
(3)

In (3), ω corresponds to the turn rate in rad/sec and g corresponds to the acceleration of gravity,
which is equal to 9.8 m/s2. It is worth mentioning that in the sink rate computations, we use the UAV
weight at CP. This is the UAV weight obtained by subtracting the estimated weight of the consumed
fuel up to CP from the takeoff weight value. The primary flight path obtained with JMPS software
provides the takeoff weight value, the type of jet fuel, and the estimated fuel consumption at each leg
of the primary flight path. Using this information, we can estimate UAV’s weight at CP. To estimate
UAV altitude at IAF, the altitude drops are computed for each of the three phases of the identified
extremal type with respect to all the segments in the CP-IAF path. Suppose Ti is the travel time for the
i-th phase of a minimum-time extremal trajectory assigned to a segment in the CP-IAF path and the
UAV’s altitude before starting the i-th phase of the minimum-time extremal trajectory is HA. Suppose
the UAV altitude drop that we would like estimate after a travel time of Ti is depicted by ∆H. It should
be noted that if the i-th phase of the extremal type is a turn (right or left), the sink rate equation in (2)
for the turn mode is used, and if it is straight level glide, the sink rate equation in (1) for straight level
gliding mode is used. For the altitude drop estimation for a single phase of the extremal, first, the sink
rate at HA, is computed which is denoted by Vs(HA). The downward wind forecast component, wHA , at
this spatial and altitude location is then added to this sink rate, Vsw(HA) = Vs(HA) + wHA . An altitude
bin, ∆h, is identified and it is assumed that the sink rate, Vsw(HA), is constant when descending from
HA to HA − ∆h. This follows computing the time, t∆h, for the UAV to descend from HA to HA − ∆h.
We store travel time, t∆h, for this altitude bin. The UAV’s new altitude becomes HA − ∆h. The process
of finding the sink rate at the new altitude is repeated while storing the airtime to descend in each new
altitude bin. The process is stopped when the sum of stored altitude bin descent times, Td, exceed Ti.
Suppose at the Mth altitude bin, Td exceeds Ti, the altitude drop, ∆H is then found as ∆H = M∆h and
the new altitude value at the end of the i-th extremal phase, HB, is found as HB = HA − M∆h. A block
diagram showing the altitude drop estimation within the i-th phase of a minimum-time extremal
trajectory when UAV is at altitude HA, is shown in Figure 6. The altitude drop estimation process is
described in detail in [40] with accompanying pseudocodes.

The altitude drops for each of the three phases of an extremal type trajectory, which correspond
to a segment, is found separately and summed to find the overall altitude drop for the segment.
The segment altitude drop is then subtracted from the UAV’s altitude value at the start of the segment
to initialize the altitude value for the next segment. The minimum time trajectory path estimation
and the altitude drop estimation are repeated for all the segments in the CP-IAF path. The sum of the
estimated altitude drops for each segment along the CP-IAF is subtracted from the UAV altitude at CP
to compute the UAV altitude at the end of CP-IAF path, HIAF.



Sensors 2019, 19, 227 12 of 27

Sensors 2018, 18, x FOR PEER REVIEW  11 of 26 

 

identified extremal type with respect to all the segments in the CP-IAF path. Suppose Ti is the travel 
time for the i-th phase of a minimum-time extremal trajectory assigned to a segment in the CP-IAF 
path and the UAV’s altitude before starting the i-th phase of the minimum-time extremal trajectory 
is HA. Suppose the UAV altitude drop that we would like estimate after a travel time of Ti is depicted 
by ΔH. It should be noted that if the i-th phase of the extremal type is a turn (right or left), the sink 
rate equation in (2) for the turn mode is used, and if it is straight level glide, the sink rate equation in 
(1) for straight level gliding mode is used. For the altitude drop estimation for a single phase of the 
extremal, first, the sink rate at HA, is computed which is denoted by Vs(HA). The downward wind 
forecast component,  𝑤ுಲ , at this spatial and altitude location is then added to this sink rate, 𝑉௦௪ሺ𝐻஺ሻ = 𝑉௦ሺ𝐻஺ሻ + 𝑤ுಲ . An altitude bin, Δh, is identified and it is assumed that the sink rate, 

( )sw AV H , is constant when descending from AH  to AH h− Δ . This follows computing the time, htΔ , 
for the UAV to descend from AH  to AH h− Δ . We store travel time, htΔ , for this altitude bin. The 
UAV’s new altitude becomes AH h− Δ . The process of finding the sink rate at the new altitude is 
repeated while storing the airtime to descend in each new altitude bin. The process is stopped when 
the sum of stored altitude bin descent times, dT , exceed iT . Suppose at the Mth altitude bin, dT  
exceeds iT , the altitude drop, ∆𝐻 is then found as ∆𝐻 = 𝑀∆ℎ and the new altitude value at the end 
of the i-th extremal phase, 𝐻஻, is found as 𝐻஻ = 𝐻஺ − 𝑀∆ℎ. A block diagram showing the altitude 
drop estimation within the i-th phase of a minimum-time extremal trajectory when UAV is at 
altitude AH , is shown in Figure 6. The altitude drop estimation process is described in detail in [40] 
with accompanying pseudocodes.  

 
Figure 6. Block diagram of the altitude drop estimation within the i-th phase of a minimum-time 
extremal trajectory when UAV is at altitude HA. 

The altitude drops for each of the three phases of an extremal type trajectory, which correspond 
to a segment, is found separately and summed to find the overall altitude drop for the segment. The 
segment altitude drop is then subtracted from the UAV’s altitude value at the start of the segment to 
initialize the altitude value for the next segment. The minimum time trajectory path estimation and 
the altitude drop estimation are repeated for all the segments in the CP-IAF path. The sum of the 
estimated altitude drops for each segment along the CP-IAF is subtracted from the UAV altitude at 
CP to compute the UAV altitude at the end of CP-IAF path, 𝐻ூ஺ி.  

Figure 6. Block diagram of the altitude drop estimation within the i-th phase of a minimum-time
extremal trajectory when UAV is at altitude HA.

3.5. Estimating the Altitude-to-Be-at for the Final Approach Path in the Wind Forecast

The final approach path is designed together with estimating the UAV’s altitude-to-be-at before
initiating the final approach path, HFAP. The three waypoints of the final approach path lie on a straight
line as discussed in the previous section. The first waypoint of the final approach path is IAF. IAF
waypoint of the CP-IAF path and IAF waypoint of the final approach path have the same coordinates
but different altitudes. The altitude-to-be-at IAF has to be a reasonable one to make the forced landing.
We first estimate a rough altitude-to-be-at IAF value for the final approach path, H̃FAP, assuming
there is no wind. Since the distance between IAF and TDPT, and the constant gliding speed are
both known, computing the travel time from IAF to TDPT in no wind assumption is straightforward.
Using the estimated travel time between IAF and TDPT, H̃FAP can be approximated. Using H̃FAP, we
then retrieve the wind components at IAF. Here, we assume that the difference between the wind
components at H̃FAP in no wind and actual altitude-to-be-at IAF value are small and negligible. We
then re-estimate the travel time from IAF to TDPT and estimate HFAP and the final approach path
using the retrieved wind components.

To improve the accuracy of HFAP estimation, one additional process is considered. First, using
the final approach path, we check whether the UAV height value at TDPT, HTDPT , is tolerable for
landing or not. A threshold, thH , is set to the maximum tolerable height value. If the absolute value of
HTDPT is smaller than thH , it indicates that this condition is met in the first iteration and we use the
final approach path and HFAP as they are without any modification. If HFAP is not found tolerable for
landing, we update HFAP according to the difference between HFAP and thH , and redesign the final
approach path and re-estimate HFAP.

3.6. Excessive Altitude Loss Path Design

In this work, we identify the term “excessive altitude” as the difference between the UAV altitude
at the end of the CP-IAF path, HIAF, and the altitude-to-be-at IAF for the final approach path, HFAP,
before landing. With the use of heuristic rules, the flight patterns for the excessive altitude loss and the
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final approach paths are identified. If the excessive altitude is small, the airtime needed to lose the
excessive altitude loss is estimated. A time-constrained path design method [36] is used to lose this
excessive altitude by setting the estimated airtime as the time constraint. Since there could be cases
in which a path that meets the set time-constraint cannot be found, a look-up table-based approach
is also considered as an alternative to the time-constrained path method. If the excessive altitude is
significant, a helix-shaped path is utilized to bleed the excessive altitude by circling around this path
as many times as possible before the final approach path. In the following, we will briefly talk about
each of these loitering methods used to lose excessive altitude.

3.6.1. Time-Constrained Path Design

We used [36] to design a time-constrained trajectory path in the presence of wind for an airtime
which corresponds to losing a certain amount of excessive altitude. This method assumes a constant
airspeed for the UAV and uses steady wind assumption which is in line with our assumptions. The
method provides a numerical solution for a time-constrained LRL or RLR type extremal trajectory
design in the presence of steady wind conditions for a fixed wing UAV navigating from one point to a
nearby point, or back to itself. The trajectory solution in [36] assumes that the UAV has the same turn
rates for the second and third turns of the extremal while the first turn can have a different turn rate
between the minimum and maximum turn rate. The second order Newton-Raphson method is used in
this method for solving time-constrained extremals.

3.6.2. Look-up Table-Based Time-Constrained Path Design

In case time-constrained path design method fails to provide a solution, a look-up table (LUT)
based approach is used. The generated look-up table consists of trajectories and their air times from
six different extremal types (LSL, RSR, RSL, LSR, LRL, and RLR) of which the heading at the start
and at the end of turn are same. In generating look-up-table, the considered wind direction has a
range from 0◦ to 359◦ with a degree step size of 1◦. The wind amplitude has a range from 0 to 50 m/s
with a step size of 1 m/s. The turn rate is considered from 0.01 rad/s to 0.06 rad/s with a step size
of 0.001. These trajectories and their airtimes are computed with consideration of the performance
parameters of the UAV. Suppose a loitering path is needed with a specific airtime for a wind direction
and amplitude with the same heading values at the start and end points. From the look-up table, the
extremal trajectory that has a travel time closest to the requested airtime in the similar wind condition
is picked as the loitering path trajectory.

3.6.3. Helix-Shaped Excessive Altitude Path Design

The path to lose significant excessive altitudes is a helix-shaped path nearby the emergency
landing site which consists of six waypoints in the shape of a hexagon as is shown in Figure 2. Two
waypoints of the helix-shaped path have the same coordinates of IAF and FAF, which are the two
waypoints in the final approach path. If the excessive altitude is significant, this helix-shaped path
is used to bleed the excessive altitude as much as possible by taking several cycles around this path.
If there is still some excessive altitude which is not enough to lose with one other circling of the
helix-shaped path, the remaining excessive altitude is then lost using either the time-constrained
path method or the look-up table-based method like before. The distance between two consecutive
waypoints of the helix-shaped path is same and is equal to the distance between IAF and FAF waypoints
of the final approach path.

3.7. Assigning Altitude Thresholds for Heuristic Rules

A total of six heuristic rules are used to identify the final approach path and excessive altitude
loss path patterns based on the estimated altitude at IAF after the CP-IAF path, HIAF, and the
altitude-to-be-at IAF right before the final approach path, HFAP. To decide which heuristic rule to
apply, five altitude thresholds which have the unit of feet, th0, th1, th2, th3 and th4 are assigned by
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considering several factors such as the UAV size, gliding speed, the distance between IAF and FAF,
the total length of the helix-shaped like excessive altitude loss. The altitude of UAV at IAF, HIAF, are
compared with these five altitude thresholds to finalize the flight pattern of the final approach path
and the loitering paths to lose excessive altitude if any. Among these thresholds, th0 corresponds to the
case where the UAV does not have enough altitude to complete the final approach path after arriving
IAF from CP. Suppose HELS is the elevation of the emergency landing site. We set th0 as follows:

th0 = (HFAP − HELS)/3 + HELS (4)

th1 and th2 correspond to the case in which HIAF is almost equal to HFAP. For this case the UAV
directly follows the final approach path after the CP-IAF path without any need to lose excessive
altitude. We set th1 and th2 as follows: th1 = HFAP − 150 and th2 = HFAP + 150. th3 corresponds to the
case where the UAV does not have enough excessive altitude to complete one cycle of the helix-shaped
excessive altitude loss path and the excessive altitude is relatively small. We set th3 as follows:

th3 = 2.5(HFAP − HELS) + HELS (5)

Suppose HE is the estimated altitude lost value that corresponds to one cycle of rotation of the
UAV around the helix-shaped excessive altitude loss path right before reaching HFAP in no wind
condition with some buffer height added to compensate for wind and air density variation effects.
We set th4 as follows: th4 = HE + HFAP. The block diagram in Figure 7 shows how these altitude
thresholds are used with the six heuristic rules which will be introduced in the next section.
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3.8. Heuristic Rules to Finalize Excessive Altitude Loss and Final Approach Patterns

Once HIAF and HFAP are estimated, the next step is to identify the flight patterns for the final
approach path and loitering paths depending on the excessive altitude value. We identify six heuristic
rules which are introduced in the following and demonstrated with a block diagram in Figure 7.

Rule-0 (HIAF ≤ th0): This corresponds to the case where there is not enough excessive altitude at
the end of CP-IAF path to complete the final approach path. A contingency plan can’t be found.

Rule-1 (th0 < HIAF < th1): For cases where there is not enough excessive altitude to fully
complete final approach path, true reachability could be still possible if final approach path is not
followed but rather the UAV turns directly towards TDPT (bypassing the IAF and FAF waypoints)
while it is still somewhere on the CP-IAF path. In Case-1, several path candidates are considered. This
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involves searching for a waypoint along CP-IAF path to make a forced landing from this waypoint
to TDPT bypassing IAF and FAF. If there is not enough number of waypoints on the CP-IAF path
(which indicates a low altitude emergency), it is then searched for a path from CP to TDPT via a
time-constrained path or with one of the six extremal types in the trajectory look-up table with a range
of different turn rates. Among the candidates, final approach path is assigned to the one providing a
final height value that is closest to 0 and has a positive sign. In Rule-1, it is also assumed that the UAV
can cross through no-fly zones to make a forced landing as a last resort.

Rule-2 (th1 ≤ HIAF ≤ th2): If HIAF takes a value between th1 and th2, UAV follows the final
approach path after CP-IAF path without any attempts to lose excessive altitude since the excessive
altitude to lose is negligible. That is, HIAF, is almost equal to HFAP.

Rule-3 (th2 < HIAF ≤ th3): This rule is for the case where there is some marginal excessive altitude
at IAF after the CP-IAF path is completed, but it is not significant enough for a helix-shaped excessive
altitude loss path. This rule considers the waypoint before IAF (which is denoted by BIAF) and aims
path extension possibilities from BIAF to IAF or BIAF to FAF using the time-constrained path design
method to fulfill reachability. If no time-constrained paths can be found, it then looks for an extremal
path trajectory from BIAF to IAF with one of the six extremals in the extremal trajectory look-up table.
The path extension is included to form the whole contingency plan path from CP to TDPT.

Rule-4 (th3 < HIAF ≤ th4): This heuristic is for the case where there is considerable excessive
altitude at IAF after the CP-IAF path is complete. The excessive altitude is not enough to use the
helix-shaped excessive altitude loss path, but it is enough to consider a loitering path that will make the
UAV return to the same starting point (IAF) with the same heading angle. Like Rule-3, this heuristic
first looks for possible loitering paths from IAF to itself using time-constrained path design method to
meet reachability. If no time-constrained paths can be found, it then picks an extremal path from the
trajectory look-up table with the closest airtime to lose the excessive altitude. The loitering paths are
connected to form the whole contingency plan path from CP to TDPT.

Rule-5 (th4 < HIAF): If HIAF is bigger than th4, the helix-shaped excessive altitude loss path
is cycled as many times as possible. Since the helix-shaped excessive altitude loss path consists of
multiple segments, it is formed in the same way the CP-IAF path is formed with the 6 extremals
based on trochoidal curves. After the complete of each cycle of the helix-shaped altitude loss path and
arriving back at IAF, HIAF is updated accordingly with the altitude lost value for the computation
of the next cycle. After all possible cycles are completed, if the remaining excessive altitude is
bigger than th3, like Case-4, it is first looked for possible path extensions from IAF to itself using
time-constrained path design method with the estimated airtime to lose the remaining excessive
altitude. If no time-constrained path is found, it then looks for a path from the trajectory look-up table
of which its travel time is closest to the required airtime. If, on the other hand, the remaining excessive
altitude (after all cycles are completed) is less than th3, the last cycle of the hexagonal-shaped excessive
altitude loss path is assumed as if it is not included and its corresponding altitude lost value is added
to HIAF. This makes HIAF > th4. The excessive altitude which corresponds to HIAF − HFAP is then
partitioned into two equal altitudes. For each partition, either a time-constraint path is used, or an
extremal type from the look-up table (LUT). The overall path then consists of the following parts: (a)
CP-IAF, (b) IAF-IAF (helix-shaped excessive altitude loss path, could be multiple cycles), (c) IAF-IAF
loitering path (time-constrained path or an extremal trajectory from the look-up table), and (d) Final
approach path (IAF-FAF-TDPT).

4. Results

In the simulations, we used our own gliding flight simulation model which can retrieve wind
forecast data at each new spatial location of UAV and we considered a UAV with the aerodynamic
specifications shown in Table 1.
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Table 1. Aerodynamic specifications of the hypothetical UAV used in the simulations.

Specs Notation Value Unit

Aircraft Weight (at emergency point) W 32,250 lbf
Wing reference area S 685.3924 ft2

Wing aspect ratio A 25 unitless
Parasite drag coefficient (flags up) CD0 0.0708 unitless

Airplane efficiency factor e 0.9 unitless

The hypothetical UAV specifications were obtained from the internet and have some resemblances
to those of a MQ-4C Triton surveillance aircraft. However, it should be noted that our framework can
be adapted to other manned aircraft such as the Airbus 320. An example will be mentioned later in this
paper. The resultant polar curve and Lift/Drag (L/D) ratio curve of the hypothetical UAV are shown
in Figure 8. It is assumed that the UAV has a constant gliding true airspeed of 140 knots, V = 140 knots.
From the UAV’s polar curve at this gliding speed, the UAV has a sink rate of 14 knots, Vs = 14 knots,
at 4000 feet. It is worth mentioning that the sink rate changes according to the altitude of the aircraft
since the air density varies at different altitudes and sink rate computation is dependent on the air
density. Our method incorporates varying air density at different altitudes and computes the sink
rates accordingly.Sensors 2018, 18, x FOR PEER REVIEW  16 of 26 
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The distance between the waypoints in the final approach path (IAF-FAF and FAF-TDPT) is set to
2 miles. This automatically sets the distance between two consecutive waypoints of the helix-shaped
excessive altitude loss path to 2 miles since IAF and FAF are two of the six waypoints in the helix-shaped
excessive altitude loss path. The CP-IAF path is partitioned into shorter segments with 2 miles each.
The altitude bin, ∆h, in altitude drop estimation is set to 5 ft.

For wind forecast data, we used the hourly-updated wind forecast data from National Oceanic &
Atmospheric Administration’s (NOAA) National Centers for Environmental Prediction (NCEP) with
respect to the theater and the mission start and end times [42]. The wind forecast data is possible by
Rapid Refresh (RAP) which is the continental-scale hourly-updated assimilation/ modeling system
operational at NCEP [43]. RAP forecasts are generated every hour with forecast lengths going out 18 h.
A program called “wgrib2” is used to extract the compressed GRIB2 files and retrieve the data contents
for the theatre of interest [44]. With “wgrib2” program, we can retrieve the wind velocities and their
angular directions for the theater zone of interest at 37 different vertical pressure levels (100 mb to
1000 mb) where the pressure in millibar can be converted to pressure altitude. The wind forecast data at
two of these pressure altitude levels that are closest to the aircraft altitude are interpolated to estimate
the wind forecast data at the UAV altitude. The wind forecast data at two different altitudes used in
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the simulations in this work corresponds to the date of 19 June 2017 at 11:00 a.m. The wind forecast
data is not time-varying within the same hour; however, it is spatially varying in three dimensions
both horizontally and vertically. Plots of the wind profiles used in this work can be found in [40].

In the following results which demonstrate five cases in the forecast wind with respect to the
heuristic rules, we have set the altitude thresholds as follows: th0 = 715 ft, th1 = 1995 ft, th2 = 2295 ft,
th3 = 5362 ft and th4 = 11,690 ft. It is worth mentioning that the assigned altitude thresholds for the six
rules and other parameters in this work are for demonstration purposes only for the UAV of interest
and they should be revisited by the mission planners depending on the specifications of the aircraft of
their interest.

Figures 9 and 10 correspond to demonstrations of Rule-1 for two different scenarios. In
Figures 9 and 10, the resultant contingency plan paths are shown both in 2D and 3D plots. The
no-fly zone is shown only in the 2D plot and the contingency plan path alone is shown in the 3D plot.
In the first scenario, the UAV altitude at CP is 9000 ft. The elevation of the emergency landing site is 0 ft.
The UAV altitude at IAF (after the CP-IAF path) in the wind forecast is estimated to be 1575 ft which
triggers Rule-1. The resultant contingency flight path as is shown in Figure 9 does not cross through
the no-fly zone and the UAV maneuvers directly to TDPT from BIAF3, where BIAF3 corresponds to
the third waypoint before IAF in the CP-IAF path. The UAV height over TDPT is estimated to be 30 ft
which is considered within the tolerable height range for landing. In the second scenario shown in
Figure 10, the UAV altitude at CP is 8510 ft. The estimated UAV altitude at IAF is 885 ft. Because there
is not enough airtime to track the final approach path after the completion of the CP-IAF path, the
UAV maneuvers to TDPT from BIAF5 (fifth waypoint before IAF in the CP-IAF path) bypassing the
final approach path and the IAF and FAF waypoints. The UAV height over TDPT is estimated to be
15 ft. In the second scenario, even though a contingency flight path is found, it is observed that it
crosses the no-fly zone as a last resort to fulfill reachability.

Figure 11 demonstrates a contingency plan path found with Rule-2 heuristic. For this
demonstration, the UAV altitude at CP is set to 9400 ft. The estimated altitude at IAF is 2120 ft
and the estimated final height of the UAV over TDPT is 15 ft. No loitering path design is needed. The
overall contingency plan path consists of: (a) CP-IAF path, (b) Final approach path (FAP). Figure 12
demonstrates the contingency plan path with Rule-3. The UAV altitude at CP is set to 12,000 ft. The
estimated altitude at IAF is 5355 ft which triggers Rule-3 heuristic. The final height of the UAV over
TDPT is estimated to be 10 ft.
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Figure 13 demonstrates a contingency flight path as a result of Rule-4 activation. In this
demonstration, the UAV altitude at CP is 16,000 ft. The estimated altitude at IAF is found to be
9825 ft. The final height of the UAV is estimated to be 45 ft. A loitering path to lose a minor excessive
altitude can be observed as a part of the resultant contingency plan. This loitering path is found with
the time-constrained based trajectory method.
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Figure 14 demonstrates a contingency plan path generated with Case-5 heuristic. In the
demonstration, the UAV altitude at CP is 20,000 ft. The estimated altitude at IAF is 14,160 ft. The final
height of the UAV over TDPT is estimated to be 20 ft. A helix-shaped excessive altitude loss path is
utilized in the contingency plan path since the excessive altitude to lose after arriving at IAF from CP is
significant. The height of the UAV over TDPT is estimated to be a tolerable height of 20 ft for landing.
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Two additional contingency plan demonstrations of the same UAV with two different emergency
landing sites are discussed in the following. In the first demonstration as is shown in Figure 15a,
the altitude of the UAV at CP is set to 24,964 ft. In this demonstration, Rule-5 is activated since the
estimated altitude of the UAV at IAF (after CP-IAF path) is 14,129 ft. The designed contingency plan
path consists of a helix-shaped excessive altitude loss path and another RLR extremal type loitering
path before having the final approach to the emergency landing site. The elevation of the emergency
landing site is 39 feet and the estimated height of the UAV over TDPT with the forecast wind for the
area is estimated to be 10 feet. In the second demonstration in Figure 15b, the altitude of the UAV at
CP is set to 20,219 ft. Rule-3 is triggered in this demonstration since the altitude at IAF is estimated to
be 5144 ft. The runway elevation is 0 ft and the estimated height of the UAV over TDPT is found to be
19 ft.
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condition is assumed along a segment. Table 3 contains the heading values at the start and end of the 
segments. It could be noticed from these heading values that in the transition from one segment to 
the next one, there could be small discrepancies. This is because of the steady wind assumption 

Figure 15. Additional demonstrations (a) Altitude at CP = 24,964 ft, Estimated altitude at IAF = 14,129
ft, Altitude over LP = 49 feet (Rule-5 is activated), elevation = 39 feet, height = 10 feet; (b) Altitude at
CP = 20,219 ft, Estimated altitude at IAF = 5144 ft, Altitude over TDPT = 19 feet (Rule-3 is activated),
elevation = 0 feet, height = 19 feet.

Tables 2 and 3 contain detailed information about the resultant contingency plan path of the first
demonstration in Figure 15a. In Table 2, the extremal types, their corresponding airtimes and turn
rates in all three phases along each segment of the formed overall contingency plan flight path are
shown. The start and end coordinates in each segment can be seen in Table 2 as well. Table 3 contains
information about the wind forecast along each segment of the contingency plan path. These wind
values belong to the start point of each segment in the path since a steady wind condition is assumed
along a segment. Table 3 contains the heading values at the start and end of the segments. It could
be noticed from these heading values that in the transition from one segment to the next one, there
could be small discrepancies. This is because of the steady wind assumption within a segment and
facing a slightly varying wind condition in the next segment. It is assumed that the effects of these
small discrepancies are negligible, and the UAV can compensate for these undesired effects using its
flight control surfaces.

We also applied our method to the flight data collected from an actual incident. US Airways Flight
1549, which was an Airbus A320, was on route from New York City’s LaGuardia Airport to Seattle,
Washington and ditched into Hudson River on 15 January 2009. In the climb out phase right after its
takeoff, it struck a flock of Canada geese and lost its engine power. The pilots Mr. Sullenberger and Mr.
Skiles glided the plane to a ditching in the Hudson River. Everyone was rescued by nearby boats. We
used this incident to test our contingency plan method. We found the flight profile which contained
the coordinates and altitude of the Flight 1549’s emergency landing path from [45]. The coordinates
and altitudes information from takeoff to ditching into Hudson were stored in a KML file [45]. At
the time of the bird strike, Flight 1549’s airspeed was about ~200 knots [46]. The highest altitude
right before the plane started sinking was 3034 feet (925 m). At this altitude the plane was located at
coordinates: Latitude: 40.861666◦, Longitude: −73.879722◦. Time was 3:27:29 p.m. [45]. The recorded
plane coordinates in the KML file right before reaching highest altitude was: Latitude: 40.858055◦,
Longitude: −73.879027◦ and the altitude at this location was 923 feet [45]. The wind amplitude
was around 13.4 knots. The wind direction was 320◦ [47]. Assuming the coordinates at the highest
altitude corresponds to the coordinates of CP, we found the heading angle at CP using the waypoint
coordinates at the highest altitude, the waypoint right before that, and the wind information. The
coordinates of the targeted emergency runway that is considered to land back on LaGuardia airport
are found from Google Maps [48]. The start and end of the runway had the following coordinates:
Start of the runway: Latitude: 40.782344◦, Longitude: −73.878641◦, End of the runway: Latitude:
40.776786◦, Longitude: −73.866900◦. The map of the targeted emergency runway is shown in Figure 16.
Elevation of LaGuardia Airport is set to ~20 feet [49]. Using wind information and the targeted runway
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coordinates; we find the heading angle of the plane for landing. We used the aerodynamic parameters
of Airbus A320 that was used in [24]. These parameters can be seen in Table 4.

Table 2. Turn times of the extremal types along the contingency plan path of the first demonstration.

Seg.
No

Latitude
(Start)

Longitude
(Start)

Latitude
(End)

Longitude
(End)

Turn
Type T1 (s) T2 (s) T3 (s) Total

(s) ω1 ω2 ω3

1 38.3601 −76.0149 38.3596 −76.0518 LSR 0.002 68.341 0.002 68.345 0.06 0.06 0.06
2 38.3596 −76.0518 38.3592 −76.0887 LSR 0.002 67.428 0.002 67.433 0.06 0.06 0.06
3 38.3592 −76.0887 38.3587 −76.1256 LSR 0.002 67.537 0.002 67.542 0.06 0.06 0.06
4 38.3587 −76.1256 38.3583 −76.1604 RSL 0.543 55.240 8.201 63.985 0.06 0.06 0.06
5 38.3583 −76.1604 38.3411 −76.1930 LSR 0.018 55.716 1.282 57.015 0.06 0.06 0.06
6 38.3411 −76.1930 38.3236 −76.2331 LSR 0.235 63.179 5.829 69.243 0.06 0.06 0.06
7 38.3236 −76.2331 38.3212 −76.2698 LSR 0.002 65.435 0.002 65.440 0.06 0.06 0.06
8 38.3212 −76.2698 38.3188 −76.3066 LSR 0.002 64.442 0.002 64.447 0.06 0.06 0.06
9 38.3188 −76.3066 38.3148 −76.3659 RSL 0.468 90.833 9.581 100.882 0.06 0.06 0.06
10 38.3148 −76.3659 38.2959 −76.3938 LSR 1.662 37.752 8.718 48.132 0.06 0.06 0.06
11 38.2959 −76.3938 38.3053 −76.4287 RSR 6.637 49.711 6.165 62.513 0.06 0.06 0.06
12 38.3053 −76.4287 38.3337 −76.4357 RSR 6.177 45.553 7.427 59.157 0.06 0.06 0.06
13 38.3337 −76.4357 38.3527 −76.4079 RSR 7.640 27.568 10.351 45.559 0.06 0.06 0.06
14 38.3527 −76.4079 38.3433 −76.3730 RSR 9.648 16.257 11.613 37.518 0.06 0.06 0.06
15 38.3433 −76.373 38.3148 −76.3659 RSR 3.143 13.405 26.216 42.765 0.06 0.06 0.06
16 38.3148 −76.3659 38.3148 −76.3659 RLR 106.966 89.362 34.180 230.507 0.031 0.06 0.06
17 38.3148 −76.3659 38.2959 −76.3938 LSL 0.003 50.772 0.001 50.777 0.06 0.06 0.06
18 38.2959 −76.3938 38.2769 −76.4216 LSR 0.003 46.701 0.003 46.708 0.06 0.06 0.06

Table 3. Wind forecast along the contingency plan path of the first demonstration.

Seg.
No

Altitude
Start (ft)

Altitude
End (ft)

Heading
Start (Rad)

Heading
End (Rad)

Wind Amplitude
(Knots)

Wind Direction
(Degree)

Downward Wind
Amplitude (Knots)

1 24,964 23,874 5.0246 5.0246 61.6270 316.3931 −0.1513
2 23,874 22,784 5.0202 5.0202 60.5172 316.7610 −0.1422
3 22,784 21,669 5.0208 5.0206 60.6834 316.7443 −0.1230
4 21,669 20,584 5.0164 4.5569 60.3718 316.2959 −0.1111
5 20,584 19,604 4.5594 4.6353 60.7660 315.9590 −0.0863
6 19,604 18,389 4.6368 4.9724 60.8853 316.2661 −0.0676
7 18,389 17,219 4.9683 4.9683 59.7897 316.7280 −0.0300
8 17,219 16,039 4.9658 4.9658 58.7207 317.5811 −0.0137
9 16,039 14,129 4.9423 4.3955 54.6326 317.8300 −0.0016

10 14,129 13,184 4.3955 4.8189 47.6111 317.1416 0.003
11 13,184 11,934 4.7863 5.5545 43.2261 315.4220 0.0001
12 11,934 10,719 5.5479 0.0809 39.5786 313.7011 2.79 × 10−5

13 10,719 9754 0.0979 1.1774 36.7210 312.5690 −0.00055
14 9754 8944 1.1912 2.4669 34.5778 312.0465 −0.00663
15 8944 7999 2.4699 4.2315 33.02892 310.9417 −0.00163
16 7999 2549 4.2249 4.2249 32.36574 308.3569 −0.00148
17 2549 1264 3.9731 3.9729 17.92907 218.1913 0.04523
18 1264 49 3.8892 3.8892 16.2911 161.0275 0.0150
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Table 4. Aerodynamic parameters of the Airbus 320 used in the simulations.

Specs Symbol Value Unit

Aircraft sink (at emergency point) W 150,871 lbf
Wing reference area S 1318.579 ft2

Wing aspect ratio A 9.5 unitless
Parasite drag coefficient (flags up) CD0 0.022 unitless

Airplane efficiency factor e 0.7697 unitless

Rule-1 heuristic was invoked with our method when finding the contingency path for emergency
landing. This corresponds to low altitude emergency and it bypasses IAF and FAF and attempts to
reach TDPT directly from CP. In the simulation, it is assumed that the gliding speed of the aircraft
is 182 knots and the maximum turn rate is 0.08 rad/s. The contingency plan path found is shown
in Figure 17. It is observed that a flight path that can reach to one of LaGuardia’s runways could be
possible in the observed wind condition. The final height of the plane when it reaches to the runway
is estimated to be +4 feet. If an automated contingency planning system had been available whether
onboard or in a ground control station in communication with the aircraft, the pilots would have been
equipped with more information that will help in their decision to whether take the plane back to
airport or consider crash landing or ditching.Sensors 2018, 18, x FOR PEER REVIEW  22 of 26 
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5. Conclusions

In this work, we introduce an approach for preflight contingency planning that automatically
generates flight paths for UAVs with full loss of thrust to land them at an emergency landing site
without violating no-fly zones in the area and by integrating wind into the path planning process.
Loitering paths are used when there is excessive altitude to lose via a time-constrained path design
or picking an extremal trajectory path from a look-up table of which its travel time is closest to the
required airtime to bleed off the excessive altitude. The proposed approach aims true reachability
by providing a safe final altitude value for the UAV to make its final approach before emergency
landing in the forecast wind conditions. Instead of Dubins curves, trochoidal trajectories in the form
of six extremal types are utilized in the contingency plan path. The proposed preflight contingency
planning approach can be an important tool to support the UAV operators if an engine loss incident
happens. Moreover, in a situation which the communication link between the UAV and operator is
lost, the UAV is all by itself and needs to autonomously land itself to an emergency landing site. With
a preflight contingency plan already uploaded to the UAV, with some minor revisions using the inputs
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from UAV’s onboard sensors, the UAV can utilize this preflight contingency plan to make a forced
landing autonomously.

There are some assumptions made in this work. One of them is the steady wind assumption in
a short segment of the path. Even though the wind amplitude and direction could be close to each
other in value in consecutive segments of the path, there is minor discontinuity when moving from
one segment to next one. These minor differences could add up and affect the overall reachability. One
of the areas to improve would be about how the slightly varying wind condition within a segment
could be addressed. It is also assumed that the transition to turning flight occurs instantaneously
instead of accounting for the time that it would take to acquire the target bank angle and turn rate.
This is another area in which we want to incorporate the transition times into the path design. Our
approach accounts for the fixed no-fly zones. We would like to consider the topography of the area in
the future contingency plan path design. As an example, there could be a mountainous area in the area
which is not labeled as a no-fly zone and could pose some danger to the UAV if is located between
the emergency landing site and the contingency point. By including topography in the path design,
these challenges can be overcome. A further objective is to also incorporate dynamically changing
threats in the contingency planning if there is some sort of prediction of their time-space trajectories.
Examples to dynamically changing threats could be a fast-moving storm, hurricane, microburst or
flock of flying birds. Finally, we consider transforming our approach to an in-flight one which utilizes
real-time onboard sensor feedback for contingency planning and test its feasibility with realistic flight
simulators and actual flight experiments in varying wind conditions.
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Abbreviations

The following abbreviations are used in this manuscript:

BIAF Waypoint before IAF in the CP-IAF contingency plan path
CP Contingency waypoint
CP-IAF Contingency plan path section from CP to IAF
FAP Final Approach Path
FAF Final Approach Fix waypoint
IAF Initial Approach Fix waypoint
JMPS Joint Mission Planning System
LRL Left-Right-Left extremal
LSL Left-Straight-Left extremal
LSR Left-Straight-Right extremal
PFP Primary Flight Path
RAP Rapid Refresh
RLR Right-Left-Right extremal
RSL Right-Straight-Left extremal
RSR Right-Straight-Right extremal
SAELSS Semi-Automated Emergency Landing Site Selection
TDPT Touchdown waypoint
UAV Unmanned aerial vehicle
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Nomenclature
A Wing aspect ratio,
CD0 Flags-up parasite drag coefficient
e Airplane efficiency factor.
g (m/s2) Acceleration of gravity, 9.8 m/s2

HA (ft) UAV altitude before the i-th phase of a minimum-time extremal trajectory
HB (ft) UAV altitude after the i-th phase of a minimum-time extremal trajectory

HE (ft)
Estimated altitude lost value during one cycle around the helix-shaped excessive
altitude loss path before descending to in no wind condition

HIAF (ft) UAV altitude at the end of CP-IAF path section of the contingency plan
HELS (ft) Elevation of the emergency landing site
HFAP (ft) Altitude-to-be-at for the UAV before initiating the final approach path

H̃FAP (ft)
Approximate altitude-to-be-at for the UAV before the final approach path with no
wind assumption

HTDPT (ft) UAV altitude estimate over TDPT in the contingency plan
M Altitude bin counter value used in estimating the altitude drop
S (ft2) Wing reference area,
tA (s) UAV takeoff time from point A
tB (s) UAV estimated landing time at point B
t∆h (s) UAV descent time within a single altitude bin height
thH (ft) Maximum tolerable height value over TDPT for a contingency plan

th0 (ft)
Threshold used in the heuristic rule that corresponds to the case where the UAV does
not have enough altitude to complete the final approach path after arriving at IAF
from CP.

th1, th2 (ft)
Thresholds used in the heuristic rule that corresponds to the case in which HIAF is
almost equal to HFAP and there is no need for excessive altitude loss path

th3 (ft)
Threshold used in the heuristic rule that corresponds to the case where the UAV has
relatively small excessive altitude, not enough to complete one cycle of the
helix-shaped excessive altitude loss path.

th4 (ft)
Threshold used in the heuristic rule that corresponds to using the helix-shaped
excessive altitude loss path due to significant excessive altitude.

Ti (s)
Travel time for the i-th phase of a minimum-time extremal trajectory assigned to a
segment in the CP-IAF path.

Td (s) Accumulated altitude bin descent times used in altitude drop estimation
V UAV true airspeed
Vs (knots) UAV sink rate for straight level gliding.
Vs(HA) (knots) UAV sink rate at HA

Vsw(HA) (knots) Total UAV sink rate at HA

Vsφ (knots) UAV sink rate when turning.
wHA (knots) Downward wind forecast component at HA

W (lbf) UAV weight at the contingency point, CP
∆h (ft) Altitude bin height used for estimating altitude drop
∆H (ft) UAV altitude drop after a travel time of Ti
ρ (slug/ft3) Air density value at UAV’s altitude
φ (rad) Bank angle of the turn
ω (rad/s) Turn rate
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