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Abstract: Recent studies showed that the performance of the modulation classification (MC) is
considerably improved by using multiple sensors deployed in a cooperative manner. Such cooperative
MC solutions are based on the centralized fusion of independent features or decisions made at sensors.
Essentially, the cooperative MC employs multiple uncorrelated observations of the unknown signal
to gather more complete information, compared to the single sensor reception, which is used in the
fusion process to refine the MC decision. However, the non-cooperative nature of MC inherently
induces large loss in cooperative MC performance due to the unreliable measure of quality for the MC
results obtained at individual sensors (which causes the partial information loss while performing
centralized fusion). In this paper, the distributed two-stage fusion concept for the cooperative MC
using multiple sensors is proposed. It is shown that the proposed distributed fusion, which combines
feature (cumulant) fusion and decision fusion, facilitate preservation of information during the fusion
process and thus considerably improve the MC performance. The clustered architecture is employed,
with the influence of mismatched references restricted to the intra-cluster data fusion in the first
stage. The adopted distributed concept represents a flexible and scalable solution that is suitable for
implementation of large-scale networks.

Keywords: cognitive radio networks; data fusion; feature fusion; hybrid fusion; multi-sensor fusion;
modulation classification; wireless sensor networks

1. Introduction

The recent advances of wireless networks, which consist of spatially distributed transceivers or
sensor nodes, e.g., wireless sensor network (WSN), cognitive radio networks (CRN), and general ad hoc
wireless networks, endorse successful application of cooperative paradigms in different communication
and processing applications. Some examples of such applications are cooperative localization [1,2],
cooperative spectrum sensing [3-5], and cooperative communication [6-8]. The cooperativeness
fundamentally exploits the redundancy in the sensing process or the radio signal transmission/reception
by using spatially distributed sensors to facilitate reliability and performance improvements in the
signal transmission, detection, localization, classification, sensing, or processing in general. The proper
use of cooperative solutions relies on the successful communication and collaboration between the
engaged sensor and radio nodes, which can be implemented via centralized or distributed approaches.
Centralized approaches are generally considered to achieve a better performance than distributed
ones, but at the cost of increased energy consumption, communication requirements (higher traffic
load, more complex medium access, and routing, etc.) and computational complexity. In the
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case of large-scale distributed wireless networks, which are usually characterized with complex
multi-hop communication, the communication burden, and the high energy consumption related
to the centralized approach severely limits the efficiency of centralized solutions. This is especially
true for WSN consisting of simple sensor nodes with low energy reserves. Therefore, the distributed
approach presents a more viable solution for large-scale ad hoc wireless networks.

The modulation classification (MC) of a received radio signal emitted by a non-cooperative and
completely unknown radio transmitter represents a difficult problem. The non-cooperative nature
of the MC process results in a highly restricted knowledge about the received signal. Therefore,
the classifier must rely only on the short signal sample and the blind signal processing. The MC
problem becomes even more difficult in the case of unknown signal reception with low signal-to-noise
ratio (SNR) or over frequency-selective fading channels. Hitherto, many different MC solutions were
proposed based on using a single receiver, e.g., [9-18]. Among them, there are various likelihood based
(LB) MC solutions that achieve near-optimal performance under the assumed ideal conditions [9-11],
but also exhibit a decline in MC performance due to the signal parameter estimation errors. Different
complex LB classifiers are proposed for the signal reception over the flat fading channels, while even
more complex solutions are needed in the case of frequency-selective fading channels in order to
combat the multipath fading (MPF) channel influence [9-11]. In contrast, the less complex feature
based (FB) MC solutions offer suboptimal MC performance compared to the LB classifiers. Among
these, the cumulant-based classifiers gained much attention [14-18], due to their considerably lower
complexity, high robustness on parameter estimation errors, and the inherent suppression of the MPF
channel influence through the blind channel estimation [14-17]. However, the performance of these
MC solutions, which rely on signal reception with single sensor, significantly decrease due to the
variable quality of signal reception, especially in the case of low reception level and the influence of
dispersive MPF radio propagation environments.

Although modulation classification has a number of traditional applications, e.g., radio spectrum
surveillance and management, the more important new ones emerge by the advance of adaptive
modulation, software defined radio, and CRN concepts [3]. In addition, these new communication
concepts and technologies, e.g., CRN and WSN, provide a network environment with scattered
sensors that facilitate a development of cooperative MC schemes. Trends in spectrum surveillance
and electronic warfare systems suggest the use of densely distributed sensors instead of classical
monitoring stations. WSN and ad hoc wireless networks appear as the obvious networking solutions,
consisting of sensor nodes distributed in the given area, embedded in moving vehicles or in unmanned
aerial vehicles. These networks could be deployed for different applications that demand detection,
identification, MC, and localization of radio signals of unknown transmitters. In these specific
applications of WSN technology, sensor nodes should be equipped with an additional receiver (i.e.,
radio sensor) that monitors specific frequency bands, besides the usual communication interface
responsible for wireless communication. Sensor nodes in WSN are generally constrained in power
supply, processing power, and memory. Thus, specific WSN solution designed for cooperative sensing,
detection, MC, and localization must also support energy efficiency and low complexity processing,
and require minimum communication in order to perform given tasks. In CRN, cooperative MC
can be used as an integral part of the transmitter identification process and deployed after spectrum
sensing. In addition, the self-configured software defined CRN are envisioned that employ MC for
link establishment purposes. As MC has secondary importance in CRN, the low power consumption,
processing complexity, and communication demands are needed.

The results of recent studies [3,19-38] indicate that significant MC performance gains are achievable
by using multiple sensors (instead of a single sensor reception) in a cooperative manner, even for the
dispersive MPF environments. In essence, cooperative MC solutions employ multiple uncorrelated
observations of the unknown signal in order to gather more complete information about it, compared
to the single sensor reception, and later use this additional information to refine the MC decision
through the fusion process.
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A distributed processing for cumulant estimation in CRN/WSN is observed in [19], in order
to improve the cumulant estimation quality compared to single sensor estimation, but has a high
communication demand and becomes unstable in dispersive MPF channels. The cooperative centralized
hard decision fusion (HDF) is considered in [20-23]. The joint cooperative MC and spectrum sensing
solution is proposed in [20], with a high complexity iterative decision process using cyclic spectrum
analysis. Due to the high communication demands it is not suitable for large-scale networks.
The optimal HDF based on local decisions made in sensors by using the LB classifier [21,23], or the
cumulant-based classifier [22,23] can be found in literature. The proposed optimal HDF is realized
through the combination of local decisions in the fusion centre (FC) based on the a priori known
probabilities of correct/incorrect decisions used as references. However, these classifiers strongly
depend on the reference mismatch [24-26]. The several centralized data fusion (DaF) and soft decision
fusion (SDF) cooperative classifiers [24—26] were also proposed, in which the final decision is made
by combining local cumulant estimates from sensors, based on the a priori knowledge of cumulant
estimate means and variances as references. These cumulant based solutions are shown to be more
robust to the reference mismatch. Moreover, a simple centralized DaF scheme is proposed in [27],
with the final decision made based on the maximum ratio combining or equal gain combining of the
local decision statistics calculated by LB classifier in each sensor. Finally, simple centralized hybrid
DaF/HDF cumulant-based solutions were proposed in [28,29]. Moreover, an interesting cumulant-based
cooperative MC solution for flat fading channels is proposed in [36]. The hierarchical cumulant-based
cooperative MC scheme with feature-level cooperative classification framework using maximum
likelihood combining algorithm is proposed in [37,38].

The centralized signal fusion cooperative MC solutions are considered [23,30-35], in which the
complete received symbol sequences are transmitted to the FC. The complex signal fusion process is
applied before the cumulant-based MC [23,30], or the signal fusion is performed as a high complexity
iterative optimization process [31-35], based on expectation maximization [31-34], or some other
suboptimal and less complex processing [35], on the received symbol sequences from all sensors.
The likelihood-based cooperative signal fusion solutions [23,31-35], are shown to achieve a nearly
optimal performance and thus outperform the centralized cooperative cumulant-based solutions.
However, these centralized signal fusion solutions, require that a same symbol sequence is received
and separately delivered to the FC by all sensors [23,31-35]. This results in significant communication
load between the sensors and the FC, and demand a certain level of sensing synchronization on the
network level (which adds further complexity). Furthermore, since modulation classification is not the
main function of large-scale CRN, and constrained nodes are used in WSN, the high communication
demands and complexity significantly limits applicability of the centralized signal fusion solutions in
these networks. Therefore, these solutions can be successfully applied if the sensing network is in the
vicinity of the FC (or multiple antennas connected to the FC are used), and do not present a viable
choice for large-scale ad hoc networks such as WSN and CRN.

Furthermore, all cooperative MC solutions with centralized fusion depend on the certain reference
values used in the fusion process as the measure of the local MC results reliability, e.g., confusion
matrices in HDF [21-23], the cumulant estimate means and/or variances in DaF [24-26], or the assumed
likelihoods expressions in the LB approach [22,27]. The non-cooperative nature of the MC process
inherently induces a large MC performance loss for the centralized fusion-based solutions due to the
unreliable measure of quality (references) for the obtained MC results in individual sensors. In fact,
the cause of this performance loss is the partial loss of information due to the unreliable references
while performing the centralized fusion [24-26].

In this paper, we propose a novel distributed two-stage fusion concept for the cooperative MC
using multiple sensors. The proposed cooperative MC solution consists of a first stage, in which
neighbouring sensors form clusters and use data fusion to make decisions on the cluster level, while in
the second stage these cluster decisions are gathered and used to make a final decision. We here show
that the proposed two-stage fusion facilitates preservation of information during the fusion process
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and thus considerably improves the performance of such cooperative MC scheme. The performance
improvement is realized through mitigation of reference mismatch that causes the information loss,
by restricting its influence to intra-cluster fusion at the first stage. In most of the previous work in
the area, except [21,24-26,28], multi-sensor fusion is performed under the assumption that all sensors
receive the signal over similar frequency-selective MPF channels (i.e., with the same channel impulse
response length) and with similar SNR. Therefore, in order to model practical application conditions,
we have defined three different sensor network scenarios depending on the sensors spacing around the
transmitter, in which each sensor receives the unknown signal over uncorrelated MPF channels with
different SNR (from zero dB to 20 dB) and MPF channel features (i.e., the different channel impulse
response length). In addition, it should be noted that here the proposed distributed fusion possesses
a potential to mitigate the communication complexity and energy consumption issues that impose
significant limitations to centralized fusion, especially in the case of large-scale networks such as WSN
and CRN. This problem, although important is seldom analysed in literature, i.e., in [38]. In order
to implement here the proposed distributed cooperative MC, a detailed specification of clustering
protocol, data exchange, and distributed computation protocol is needed. However, in this paper
we are focused on the theoretical framework rather than specific protocol details. The aim of this
work is to properly introduce a distributed cooperative MC concept and demonstrate its classification
performance. Therefore, a detailed network framework and protocol proposal is beyond the scope of
this paper.

This paper is organized as follows. Section 2 presents a short review of the cumulant-based
centralized fusion for cooperative MC in frequency-selective MPF channels, with the focus on cumulant
estimate quality under different conditions (i.e., SNR value, MPF channel features, signal sample
length). In Section 3, we present the basic working principles and ideas of the proposed distributed
two-stage hybrid fusion for cooperative MC solution, with the strict definition of the proposed scheme.
Section 4 describes the settings, application scenarios, and results of the numerical analysis carried
out through comprehensive Monte Carlo simulations in order to estimate MC performance of the
proposed and reference solutions. This section gives an overview of the most interesting results for the
all considered sensor network scenarios, as well as the appropriate discussion. Finally, the conclusions
and remarks are presented in Section 5.

2. Centralized Fusion for Multi-Sensor Cooperative MC

Here, we observe the centralized fusion for cooperative modulation classification MC as proposed
and studied in previous work in the area [20-29,36-38], with the general scheme given in Figure 1.
The N, sensors independently receive the modulated signal, which is emitted by the same unknown
transmitter by using an unidentified modulation type belonging to the known set, m € M;,,; =
{mq,---,mp}, over the uncorrelated dispersive multipath fading (MPF) channels. It is assumed
that the sensor specific local signal-to-noise ratio (SNR) values, snt;,i = 1,--- , Ny, are known (i.e.,
reliably estimated) and that each sensor collects the sample sequence of Ng modulated symbols,
yi(n), n=1,---,Ns. The same cumulant-based MC process is applied on the sample sequence at each
sensor, as described in Section 2.2, to produce a local cumulant estimate, Cy ;, or a local hard decision,
di, i=1,--+,Ngn. The local MC results, i.e., the local cumulant estimates, Cy4; ;, or local decisions, d;,
and the corresponding local SNRs, snrj, are collected at the fusion centre (FC), where the final decision
regarding the modulation type is made. Error-free communication between the FC and sensors is
assumed, which corresponds to the best cooperative MC performance. The performance deterioration
due to the specific communication and wireless network scenarios can be evaluated, but it is beyond
the scope of this study. It should be noticed that here we use the term sensor as a general term for
the network node of cognitive radio network (CRN), wireless sensor network (WSN), or general
distributed network equipped with the receiver (radio sensor) responsible for the reception (sensing)
of the unknown signal, and which can possess separate communication interface (e.g., in WSN) for
wireless communication and exchange of data with other nodes in the network.
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Figure 1. The general scheme of cooperative modulation classification (MC) with centralized fusion [25].

2.1. Cumulant-Based MC in Dispersive MPF Channels

For the unknown signal reception in the dispersive MPF channel, the received baseband symbol
sample sequence at the i-th sensor, y;(n), i = 1,--- , Ny, can be defined [14-18,24-26], as

yiln) = Y B0 =K) + giln), M

where hi(k),k =0,--- ,L; — 1, are the MPF coefficients of an unknown dispersive MPF channel of length
L;, the x;(n) is the n-th received symbol of the observed signal, while the g;(n) is the n-th sample
of complex additive white Gaussian noise (AWGN) process with a zero mean and a variance a;i.
The corresponding SNR is defined as E{xiz(n)}/ G;,i [14-17].

The local MC results at the observed i-th sensor, i = 1,---, Nsy, are produced based on the
normalized fourth-order cumulant of the emitted symbol sequence, C4 [14], i.e., using the local
cumulant estimate Cy;;, calculated with the correction factor g; that represents the impact of the
unknown MPF channel,

2
o N Tl - (2 ] -2 o o
420 = 2 !
Bi % [ZkNialh/i(k)F - NSU;i]

_1 | h |4
1 [Z L 1 hz ]2 .

The non-cooperativeness of the MC process inherently prevents a priori knowledge of the actual
MPF coefficients. Therefore, the §; and the local cumulant estimate Cy, ; are estimated from the locally
received baseband sequence, y;(n), n = 1,--- , N, of length Ng, with the MPF coefficients estimated
using the blind channel estimation methods (BCEM) proposed in [16,17], which are found to be suitable
for dispersive MPF channels with a dominant path [16,25,26]. Since the method proposed in [17] has
shown a slightly better behaviour, in this study we used this method (marked as BCEM) for the local
cumulant estimation. Moreover, here we observe the ideal channel estimation model (ICEM), with the
local MPF coefficients and channel length L; assumed a priori known, in order to model/observe the
ideal channel equalization, i.e., the best case of local cumulant estimation.

In the case when the local decisions are needed, after the local cumulant estimate is obtained a
hard decision rule defined in [14] is applied, with the decision thresholds set as arithmetic means of
neighbouring reference cumulant means for the possible modulation types. In Table 1, the theoretic
means of the fourth-order cumulant for some phase shift keying (PSK) and quadrature amplitude
modulation (QAM) signals are given [14]. It is shown in [24-26] that these theoretic values are optimal

®)
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for signal reception in AWGN channels or when the ICEM is used. However, when BCEM is applied
for the most dispersive MPF channels with a dominant path, the correction factor §; in equation (3)
is usually (in average) underestimated [24-26]. Consequently, the actual cumulant means are in fact
stirred toward the larger absolute values.

Table 1. The theoretic normalized fourth-order cumulant for some phase shift keying (PSK) and
quadrature amplitude modulation (QAM) signals [14].

Signal BPSK QPSK 16QAM 640AM
Label ™y my ™3 My
Ch —2.0000 —-1.0000 —0.6800 —0.6191

We here consider a typical model for dispersive MPF channel with a dominant path that is
usually observed in similar studies [14-16,24-26]. Thus, the channel length L; and the MPF coefficients,
hi(k),k =0,---,L; — 1, for each sensor represent the independent zero-mean Gaussian random variables
with variance Gi,i = 0.05, and with £;(0) = 1 [14-16,24-26]. This MPF channel model corresponds to
the line-of-sight reception over dispersive MPF channels, as well as for the reception with the non-ideal

channel equalization and the residual channel impact modelled with the coefficients h;(k), k > 0 [14].

2.2. The Fusion Methods and the Joint Cumulant Estimate Correction

The fusion process can be realized by using the local hard decisions, d;, thus defining hard decision
fusion (HDF) methods, by using the local cumulant estimates Cy; ;, thus defining data fusion (DaF)
methods, or we can combine these two concepts in order to define soft decision fusion (SDF) methods.
Due to the non-cooperative nature of the MC process, the channel state information must be assumed
unknown. Hence, the local SNR, marked as sur;, represents the only available quality measure for the
locally received signal at the i-th sensor, i = 1,- - - , Ny, and henceforth the local cumulant estimate
quality and local decisions reliability as well. In this section, we only give a brief summary of observed
fusion methods for the centralized fusion for cooperative MC [22,24-26]. These fusion methods,
proposed in previous studies [22,24-26], are chosen due to their good behaviour in the context of
centralized fusion for cooperative MC solutions [22,24-26].

The optimal HDF method (OHDF) is proposed in [22], with the decision rule derived to make a
final decision Mg oppE, as the most likely cause for the local decisions, d;, i = 1,- -+ , Nsen, made under
the observed local SNR values, snr;, i = 1,--- , Ngp, and defined as

Nsen p(di|(mnl Snri))
=1y p(di| (my, snry))

Mr,onpr = argmax (H ), 4)
———

Mn€Mp0q

where p(di|(mn, snr;)) is a probability of local decision d; made for a given local SNR, snr;, when the
real modulation type is m = m,,. In order to implement OHDF the a priori knowledge of the reference
confusion matrices (CM), i.e., the set of probabilities p(mi( (my, snr;)), ¥ (m;, my) € M,,04, is needed for
all local SNR values. Moreover, the reference cumulant means are needed in order to set the local
decision thresholds at each sensor [14,24-26].

The DaF methods [24-26] are derived and shown to be effective under the assumption of high
quality local cumulant estimates, Cg;, i = 1,--+, Ny, i.e., when the MPF channel influence is
adequately suppressed with the correctly estimated ; in Equation (2). In that case, the cumulant
estimate at the i-th sensor, C4;, can be approximately modeled as a normally distributed random
variable, with a probability density function (PDF) N (CZ“2 (snr;), 02, (snri)), [24-26] where CJ}, (snr;) is
the actual mean and the 02, (snr;) is the actual variance for a given snr;, MPF channel probability density
function and the real modulation type m. As we observe the independent local signal reception through
the uncorrelated MPF channels, the local cumulant estimates, Cy ;, represent mutually independent
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random variables. By applying the logarithmic likelihood ratio test, the joint decision fusion (JDF)
method is derived in [24], with a decision rule given as

2
Naen 1 (C42,i -Cy (S”Tz))
ME jpr = argmax(z_ In - 5
—_—— =l Om, (snr;) 20y, (snr;)

My €Mpoq

©)

In order to implement the JDF method, the reference cumulant means and reference cumulant
variances should be a priori known for the all possible modulation types (1, € M,;,3), local SNR values,
and the specific MPF channels states (defined with the channel length L; and the MPF coefficients PDF).
Therefore, we can apply either the theoretic cumulant means, as in Table 1, or the estimated actual
cumulant means that are in accordance with the given SNR and MPF channel conditions, while the
reference cumulant variances must be properly estimated under the same conditions in accordance
with the selected reference cumulant means. However, the good performance of the JDF method is
expected only when the initial assumption of the high quality local cumulant estimate is satisfied.

The soft decision vector decision fusion (SDVDF) method is proposed in [26], which introduces
additional weighting of the local decisions with the soft decision vector, s; = [s;1,---,5;m], as the
measure of the conditional probabilities that cumulant estimate Cyy; is acquired when the actual
modulation type is m,, n =1,--- , M, under the local SNR values snr;. The SDVDF method decision
rule is given as [26]

m]| mn,snrl))

NS(.'H
MFSDVDF—ngﬂx<H Z] L8 % ) (6)

) p(m]| My, snrl))

mVIEMmod
p(C42,i (m], snri))
Sij = T , @)
Zkzl P(C42,i|(mk/ snr;))
1 Capi = Cyy' (snry) ’
Cyp i|(my,, snr; ex —= | |,Li=1,--- ,Ngn. 8
P(Ca ‘( ! )= \/2_nam(snrl) P ( \/_am(snri) ! ®)

Obviously, the implementation of the SDVDF method requires the knowledge of the appropriate
reference CMs, reference cumulant means, and reference cumulant variances.

In the JDF and SDVDF methods, the FC has at its disposal multiple uncorrelated local cumulant
estimates, which in fact represent independent realizations of the cumulant estimation process, i.e.,
estimation of Cg, corresponding to the emitted sequence, under different local MPF channel and SNR
conditions. Based on this, the joint cumulant estimate correction (JCEC) is proposed in [25], with the
joint cumulant estimation using local SNRs as a measure of the local cumulant estimate quality, and the
correction of all local cumulant estimates based on this joint estimate and reference cumulant means.
It is shown [25,26] that the modified JDF and SDVDF methods applied after the JCEC by using these
corrected local cumulant estimates, marked here, respectively as JDF+JCEC and SDVDF+JCEC, achieve
considerably better MC performance than the original JDF and SDVDF methods in the case of low
cumulant estimate quality, i.e., for lower SNR values, short sample sequences (small Ng), and highly
dispersive MPF channels (i.e., bigger MPF channel lengths).

2.3. The Actual Cumulant Estimate Quality and References Estimation

The fusion process for all the considered fusion methods described in Section 2.2 demand
the knowledge of certain references, i.e., the reference cumulant means and variances and/or
reference CMs that correspond to the actual MPF channel parameters (L, SNR, channel PDF type,
and parameters) and processing parameters (Ng, channel estimation method, i.e., ICEM or BCEM)
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and a given modulation set M,,,;. We performed an extensive Monte Carlo based iterative estimation
process in MatLab environment in order to determine these references for the cumulant-based MC
with ICEM or with BCEM used (separately) and the MPF channel model defined in Section 2.1.
These references are adequately estimated for the mixture of PSK and QAM modulated signals from
the set M,,,,y = {BPSK, QPSK, 16QAM, 64QAM] that are generated as the normalized unit energy
zero-mean random processes with the randomly generated symbol sequences x(n), n = 1,---,Ng,
where Ns € {500, 1000, 2000, 4000}, and for the SNR € [-5 dB, 20 dB]. In order to examine the effect
of different time-dispersion level introduced by the MPF channel, the MPF channels with the channel
lengths L € {2,---, 10} were observed, with the channel coefficients randomly generated according to
the defined channel model. The actual cumulant (estimate) means are obtained for all the possible
parameter combinations by averaging over independent trials (5000 trials by iteration until the
convergence of the estimated values is achieved in the subsequent iterations). The actual cumulant
(estimate) variances and the actual CMs are estimated separately for the estimated actual cumulant
means and the theoretic cumulant means. In total, about 30,000,000 trials were executed.

The similar behaviour of the cumulant estimate quality regarding the MPF channel and processing
parameters is obtained for all the modulated signals in Table 1. Therefore, as an illustration, we here
use some results for the 16QAM signal, presented in Figures 2 and 3.

Actual cumulant (estimate) means for 16-QAM signal

- - —=— Theorethic mean
4 - /,J:r/ /o/' —O—averaged over L in [2,5] for Ns = 500 symbols B
Ty o o ——— averaged over L in [2,5] for Ns = 1000 symbols
i D/‘ —O— averaged over L in [2,5] for Ns = 2000 symbols
a —>—averaged over L in [2,5] for Ns = 4000 symbols
,d —-0-— averaged over L in [2,10] for Ns = 500 symbols
16 7 —-a-— averaged over L in [2,10] for Ns = 1000 symbols ]
; —-0-— averaged over L in [2,10] for Ns = 2000 symbols
—->— averaged over L in [2,10] for Ns = 4000 symbols

R ; —Il ; ;Is ; ; &I) 1I1 1I3 1I5 1I7 1I9 20
SNR [dB]
Figure 2. The actual cumulant (estimate) means for the 16QAM signal averaged over L € {2,---, 5} and
Le{2,---, 10} as a function of signal-to-noise ratio (SNR) for the MC with the blind channel estimation
method (BCEM).

The actual cumulant means for the 16QAM signal averaged over L € {2,---, 5}and L € {2,---, 10}
are shown on Figure 2 as a function of SNR for MC with BCEM used. As evident in Figure 2, the actual
cumulant means obtained for the given MPF channel when L € {2,---, 5} have a small deviation
from theoretic values until SNR drops under 3-9 dB (depending on the sample length) and this
deviation rises as SNR further decreases. However, if L € {2,---, 10} a considerably larger shift from
the theoretic mean value exists for all SNR values. Therefore, the cumulant estimate quality, and thus
MC performance, is expected to improve with the rise of the sample sequence length Ng and SNR,
and to degrade with the rise of the MPF channel length L, i.e., with a higher level of dispersion in
time introduced by the MPF channel. Moreover, in the case when the MC with ICEM is observed, i.e.,
for idealized scenario that is unattainable in practice, we found that the actual cumulant estimate for
all signals does not depend on the MPF channel state and is almost equal to the theoretic mean for
SNR larger than 5 dB, while for SNR smaller than 5 dB there is a slowly rising shift from the theoretic
means as SNR further decreases.
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In order to evaluate the cumulant estimate quality improvement when JCEC is used in FC for MC
with BCEM, the actual cumulant (estimate) means averaged over different number of sensors with
SNR = (10 +2) dB and randomly generated L € {2,---, 5} for the 16QAM signal with and without
JCEC are shown in Figure 3. It is obvious that when JCEC is used, the corrected local cumulant estimate
has a much better quality than the original without JCEC. Correspondingly, we can conclude that the
main improvement is achieved for the first 6-7 sensors included in the fusion process. Furthermore,
the larger gains are achieved for the lower sample sequence lengths although the better cumulant
estimate quality (i.e., almost perfect for the larger number of sensors) is achieved for the higher sample
sequence lengths.

JRR = REEE = EREEY  FETYm FRRRY m SEPR) m ERE m CRREY m REPY m [RPPY m SERR!m IRURY m RERE m [RRRE m ERRRYm |
e ]
072 F 1

074|070 0000000000000 000 Q)

0.76 2 @ E R -E @ g Rog-E-R-RH

078 w7 —%— theoretic mean |
5 - -+ O+ averaged across sensors, Ns =2000

= O joint cumulant estimate, Ns = 2000
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Figure 3. The actual cumulant (estimate) means for the 16QAM signal, with and without the joint
cumulant estimate correction (JCEC) used for the MC with the blind channel estimation method
(BCEM), averaged over different number of sensors with SNR = (10 +2) dBand random L € {2,---, 5}.

Since the JCEC is based on the maximum-ratio combining using the known local SNRs, its use
suppresses the influence of the sensors with the lower SNR. However, as the knowledge of the MPF
channel state is assumed unknown, the discrimination between MPF channels (i.e., associated sensors)
with different channel lengths is not supported [25]. Hence, it is expected that the better cumulant
estimate improvements are achieved with the JCEC for the set of sensors that receive signal over the
MPF channels with the smaller channel lengths [25], i.e., for local L € {2,---, 5} compared to local
Le{2,---, 10}. Moreover, one has to notice that JCEC is applied in the FC, where all local cumulant
estimates are collected, and thus cannot be used for HDF methods.

2.4. The non-Idealized Application Scenario for the Fusion Based Cooperative MC

The presented centralized fusion for the cooperative cumulant-based MC achieves maximum
performance only if the assumptions used in the construction of the considered fusion methods are
strictly met, i.e., only when the MC with the ICEM is used accompanied with the actual references
estimated with the ICEM for the actual MPF channels and actual processing parameters [24-26].
However, the use of the ICEM is not possible in practice since the properties of the actual MPF channels
(channel lengths and statistical properties, i.e., PDF of the channel coefficients), cannot be a priori
known or reliably estimated in the non-cooperative MC environment from the relatively short signal
sample. It should be noticed that even for MC with ICEM the actual references have different values
for different MPF channels [27,29].
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Consequently, when the real-world implementation is considered the cumulant estimate must be
produced by using MC with BCEM. The given conclusion implies that a certain deterioration of the
cumulant estimate quality, and as a result, a considerable decrease in the MC performance occurs due
to errors introduced by BCEM. Furthermore, since the statistical properties of the actual MPF channels
(i.e., actual MPF channel PDF type and parameters, MPF channel length L) are simply unknown in
advance, we cannot rely on using actual references (the actual cumulant means and variances, actual
CMs) properly estimated in accordance to the actual MPF channel (i.e., the channel that occurs for the
given sensor at a given time). Therefore, we are constrained to use a mismatched set of references with
the penalty of the further decrease of cooperative MC performance [24-26].

In fact, in order to design a universal solution, one should observe the worst case scenario of
mismatched references. Thus, we have to use the theoretic means (see Table 1) as the reference cumulant
means. The reference CMs and reference cumulant variances are acquired by averaging (over different
L) the actual CMs and the actual cumulant variances estimated for the theoretic means and by using the
MC with ICEM. The averaging over different L is performed in order to obtain independence regarding
the unknown MPF channel properties. Finally, the cumulant estimate for any given receiver is made
by using the MC with BCEM. The previously described case is here considered as the non-idealized
application scenario (NIAS). The NIAS is also considered in Section 4 for the estimation of cooperative
MC performance (with the centralized or the distributed fusion) for all considered MC solutions.

3. A Distributed Hybrid two-Stage Fusion for Cooperative MC

Recent studies [20-29] have shown that the previously described centralized fusion for cooperative
modulation classification (MC) facilitates considerable performance gains in comparison to the classic
MC solutions with a single sensor deployed. This performance enhancement is based on the fact that
centralized fusion exploits the complete information about the unknown signal gathered through
uncorrelated reception over the independent MPF channels. Thus, the joint decision fusion (JDF) and
soft decision vector decision fusion (SDVDF) methods that use local MC features (i.e., cumulants)
in the fusion process outperform the hard decision fusion (HDF) methods in which a partial loss
of information occurs when the local decisions are made separately at individual sensors [24-26].
However, the main MC performance loss in the practical non-idealized application scenarios (NIAS) for
all cooperative solutions is primarily caused by the unreliability of references used in the fusion process,
i.e., the mismatch between practically available NIAS references and the optimal actual references
that could be used if the actual MPF channel properties (the statistical properties and length L) were
exactly known at each sensor. In essence, the use of mismatched references cause the additional
loss of information that differently affects fusion methods. The JDF and SDVDF methods are less
sensitive to the reference mismatch than HDF methods and thus present considerably better solution
in practical applications [24-26]. Moreover, as this reference mismatch can be alleviated through the
improvement of the cumulant estimate quality, deployment of the longer symbol sequences (Ns) and
the joint cumulant estimate correction (JCEC) offer some MC performance improvement at the cost of
increase in complexity. It is found that this improvement is significant only for the low quality of local
cumulant estimates (i.e., low SNR, short symbol sequences, large multipath fading channel lengths)
and limited (saturated) when the number of sensors is increased [25,26]. Finally, the previous studies
suggest that the major MC performance gains of the cumulant-based cooperative MC solutions are
achieved with the relatively small number of sensors (three to seven sensors) [25,26], especially in the
previously defined scenarios with the low cumulant estimate quality.

Considering a preceding discussion, we here propose the distributed hybrid two-stage fusion
(DHyTSF) for cooperative MC (presented in Figure 4) with the aim to further mitigate the problem of
mismatch references that cause the main loss in cooperative MC performance. In the DHyTSF scheme
neighbouring sensors (i.e., sensors that detected and received the observed signal) form clusters,
with Ny, clusters, Nsen,j, j=1,--+,NcL, sensors in each of the cluster, and N, = ZN:ClL Njen,j sensors
employed in the whole network. In each cluster, one of sensors acts as the local fusion center (LFC),
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using the same fusion method to get the cluster decisions, dcy, jr j=1,---,Ncr, and to compute the
average SNR in cluster, SnrcLj, j=1,---,Ncr. These local MC results are gathered at the single global
fusion center (GFC) where the final decision is made through the use of the HDF method.

Cluster
j \.\'Q’]
g,

,,,,,,,,,, (e}

7 =" Cluster N4
| #j h
FCL,j
Unknown : PR

Tx

’,“" Cluster
------------ /o #Na

Figure 4. The general scheme of the cooperative MC with distributed two-stage fusion.

The main idea of the proposed hybrid fusion is to restrict the use of mismatched references to the
first stage of the DHyTSF scheme, in which the neighbouring sensors are employed in clusters and
the LFC use the chosen fusion method to make the independent cluster decisions. All clusters use
the same fusion method, the data fusion (DaF) or the soft decision fusion (SDF) method defined for
the centralized fusion, with the mismatched NIAS references. The clusters should consist of at least
four sensors in order to enable good MC performance in the cluster, since such cluster size allows the
minimum sufficient MC performance gains when the fusion methods and JCEC are applied [24-26].
In the case of high cumulant estimate quality there is no obvious upper limit on the number of
sensors that can be used in the cluster (e.g., see Figure 7). For the low cumulant estimate quality,
the MC performance in the cluster is saturated with six to seven sensors in cluster (e.g., see Figure 9).
Thus, additional sensors in the cluster would increase complexity but are not expected to increase
MC performance. In the second stage of the proposed DHyTSF scheme, the optimal HDF (OHDF)
method is used at GFC to make a final decision, but with the reliable reference CMs that are previously
evaluated for the considered fusion method, the number of sensors in cluster, the average SNR in
cluster, and with the mismatched (NIAS) references used—i.e., under the exact application conditions
that are actually met in the first stage of the DHyTSF scheme. Therefore, in the second stage we use the
OHDF method with the reference CMs that are highly reliable, and thus allow very successful fusion
in this second stage. Therefore, we limit the information loss that occurs due to the use of mismatched
references only to the first stage of the proposed DHyTSF scheme.

We here argue that the proposed DHyTSF scheme, with the small number of sensors using JDF
or SDVDF method for intra-cluster fusion with the mismatched NIAS references (first stage) and the
OHDF method used for inter-cluster fusion with the reliable references (second stage), should in fact
outperform the centralized fusion with the mismatched NIAS references and the same number of
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sensors applied. This expectancy should be realized when there is a low quality of the local cumulant
estimates (e.g., low SNR, short symbol sequences, and large multipath fading channel lengths), i.e.,
when the centralized fusion cannot take the full advantage of the additional information acquired by
using the large number of sensors due to the considerable information loss caused by the mismatched
references. Actually, the DHyTSF scheme enables a trade-off between the lower number of sensors used
in the first stage (i.e., less information to get the cluster decisions than in the centralized fusion) and the
more successful fusion process in the second stage with the more reliable references (i.e., the controlled
information loss due to mismatched references). Therefore, when the cooperative MC is considered,
conversely to the usual assumption, the distributed fusion can outperform centralized fusion in some
application scenarios. The considered distributed and centralized cooperative MC schemes have similar
and low computational complexity. The increase in complexity for distributed fusion when compared
to the centralized one is very low. However, the distributed approach demands that the fusion process
is implemented in sensor nodes. However, the low complexity allows implementation of intra-cluster
fusion by using the constrained devices that are found in wireless sensor networks environments.

Moreover, due to its distributed architecture some additional benefits could be enabled, such as
the lower communication resources, energy, and complexity costs. These benefits would have great
importance for DHyTSF application in large-scale sensor networks. However, in order to confirm these
benefits, a detailed specification of data exchange and distributed computation protocol is needed,
as well as the experimental comparison with the state of the art. However, in this paper we are focused
on the theoretical framework rather than specific protocol details, with the main goal to properly
introduce distributed cooperative MC and show that it can achieve similar or better MC performance
in comparison to centralized cooperative MC under the same conditions. Thus, a detailed framework
and protocol proposal is beyond the scope of this paper.

4. Numerical Results

Comprehensive Monte Carlo experiments have been used in order to estimate modulation
classification (MC) performance of the centralized and the distributed cooperative MC schemes.
The general measure of the MC performance used was the average probability of the correct classification
(Pcc,avg) defined as the averaged value of correct classification over equiprobable modulated types
under the given experiment conditions [3,9-38]. The numerical analysis is performed in the form of
comprehensive computer-based simulations in the MATLAB programming environment. The MC
performance is estimated for the cooperative MC with the centralized fusion realized by using joint
decision fusion (JDF) and soft decision vector decision fusion (SDVDF) methods, with or without joint
cumulant estimate correction (JCEC) as the reference methods, as well as for the distributed fusion
based on the proposed DHyTSF scheme with the JDF and SDVDEF methods (with or without JCEC)
used in the first stage.

The mixture of modulated signals M,,,,; = {BPSK, QPSK, 16QAM, 64QAM)}, are generated as the
normalized unit energy zero-mean random processes with the randomly generated symbol sequences
x(n),n =1,--- ,Ns with Ns € {500, 1000, 2000,4000}, and for SNR € [0 dB,20 dB|. The multipath
fading (MPF) channels are observed with channel coefficients randomly generated according to the
previously defined channel model (in Section 2.1) and for the given channel lengths (see Section 4.1).
The cumulant-based MC with the blind channel estimation method (BCEM) is used as defined in
Section 2.1. We used the iterative estimation procedure with a basic block formed from 5000 trials
defined for each input sequence length and modulation type, while a network with up to 20 sensors
and randomly generated MPF channels, local signal-to-noise ratio (SNR), input sequences x;(1n),
and additive white Gaussian noise (AWGN) is considered. These basic blocks are processed under the
assumption of the non-idealized application scenario (NIAS) references for all the considered fusion
methods (i.e., in the centralized fusion and in the first stage of the distributed fusion), and the properly
estimated reference confusion matrices (CM) (see Section 4.2) used in the second stage of the distributed
fusion. The Pcc 4y has been evaluated for each basic block, scenario, and centralized/distributed
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cooperative MC scheme (for different fusion method), with the iterative procedure stopped when the
maximum absolute differences for all aggregated Pcc v curve lower than 5 x 1073 for the successive
basic blocks was detected.

4.1. Considered Sensor Network Scenarios

We here observed the centralized and distributed cooperative MC for tree sensor network scenarios
defined for different distributions of sensor locations (around the unknown transmitter) in a given
geographical area and the parameters of associated MPF channels. Considering the non-cooperative
nature of MC, the local SNR at each sensor depends on the distance to the unknown transmitter and
corresponding antenna gains (at transmitter and sensor), while the MPF channels may have different
channel lengths for different sensors and are assumed mutually independent (i.e., the mutual distance
between sensors is large enough to ensure uncorrelated radio signal reception).

We observe large-scale network with large number of sensors placed (distributed) over the wide
geographical area. The location of the unknown transmitter has to be assumed as random in the given
area, since we want to support detection and classification of any active transmitter. If we define the
minimum SNR value (that depends on sensor distance to the transmitter) that is acceptable for MC
purposes, we in fact define an area around the transmitter in which the sensors that receive signal
with acceptable SNR are located. If this minimum acceptable SNR increases the given area (and thus
number of sensors in the area) decrease in size, and vice versa. Therefore, this minimum acceptable
SNR must be chosen as large enough to allow us to have the wanted number of sensors chosen for
cooperative MC. If we analyze Figure 2, where the actual cumulant estimate means are given as a
function of SNR, MPF channel length and symbol sequence length, we can conclude that the lowest
SNR value that is suitable for MC purposes is zero dB. Below this value, the cumulant estimate quality
is extremely low for all MPF channel lengths and symbol sequence length. In addition, we can see
saturation in all given curves for 20 dB, which means that cumulant estimate quality, and thus MC
performance, are not significantly improved for SNR values above 20 dB. Moreover, we can notice that
for SNR values lower than 5 dB we have fast decrease in cumulant estimate quality, while for SNR
values larger than 15 dB saturation in cumulant estimate quality occurs.

The above conclusion is used when we defined SNR interval [0 dB,20 dB|, as an interval that
allows us to observe change in performance for different scenarios. Of course, if we shift this interval
towards the greater value, we can expect better MC performance (due to the increased cumulant
estimate quality), but with the smaller area in which deployed sensors can be located. This could be
appropriate if we have large number of sensors with dense distribution in the given area. Of course,
if the SNR interval is shifted towards the lower values we can expect the opposite.

However, we here observed network scenarios in which the sensors are grouped in clusters,
formed by the neighbouring sensors (the group of sensors that are relatively close), which are generally
spaced in different directions and distances around the unknown transmitter. Therefore, we assumed
that all sensors in each cluster receive the signal with the similar local SNR values in the j-th cluster
SNR]',Z-, i=1,"-+,Ngen, i uniformly distributed around the mean value in cluster SNRj, j=1,---,NcL,
ie,SNR;; € [SNRj —2dB,SNR; +2 dB]. Similarly, the sensors in each cluster receive the signal via
the MPF channels of similar lengths, with the channel lengths in j-th cluster Lji, i =1, ,Neen,j,
uniformly distributed around the mean value in cluster L;, j = 1,--- ,N¢r, i.e,, L;j € [Lj -1,Li+ 1].
We here considered the MPF channels with the channel lengths L; ; € {2, -, Ly}, for the two different
values Lygy = 5 and Ly = 10, in order to model dispersive MPF environments with the different
delay (time) spreads, and with the mean value in cluster L i j=1,---,NcL, randomly generated for
the defined L.

In order to model different possible scenarios depending on the cluster spacing around the
transmitter, we used three sensor network scenarios, depicted in Figure 5, and defined as follows:
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Figure 5. Different sensor network scenarios depending on the cluster spacing around a transmitter,
(a) SNS1—Clusters are spaced in different directions and on different distances from the transmitter,
(b) SNS2—Clusters are spaced in different directions but have similar distance from the transmitter,
(c) SNS3—Clusters have different decreasing distances from the transmitter.

In the first sensor network scenario (SNS1), the clusters are spaced in different random directions
and on different random distances around the transmitter, but with similar propagation conditions
for all sensors in each cluster. This scenario is modelled with the mean SNR value of cluster
SNR;j, j=1,--+,Ncr , generated as mutually independent random variables over all clusters such
that SNR; € [2 dB, 18 dB];

In the second sensor network scenario (SNS2), all clusters are assumed to have similar distance from
the transmitter and thus exhibit the same mean SNR value in cluster SNR;j =5 dB or SNR j=15 dB,
j=1,---,Ncr. These two values are chosen in order to model the reception with low and high SNR
for all sensors. We here adopted SNR values after which the behaviour of cumulant estimate quality
significantly change (as discussed);

The third sensor network scenario (SNS3), is a specific case in which the interval
[0 dB, 20 dB] is divided into N non-overlapping subintervals, with the mean SNR value in cluster
SNRj,j=1,---,NcL, defined as a mean subinterval value, starting from the lowest value for j = 1.
The scenario SNS3 models the case in which the cluster distances from the transmitter decrease for
every next cluster added (and thus local SNRs increase), i.e., the case of uniformly distributed cluster
distance from the transmitter.

According to the defined sensor network scenarios, in each trial of performed Monte Carlo
experiments we generated average cluster values (the mean SNR value in cluster SNR;, and the mean
MPF channel length in cluster Lj, j =1,---,NcL), as random or static value (depending on the sensor
network scenario). After that, local MPF channel lengths (L; ;) and local SNR values (SNR; ) for each
sensor are generated as uniformly distributed discrete random variables in interval defined by average
cluster values. The distance between sensors is assumed to be large enough to ensure reception over
uncorrelated MPF channels, and thus the MPF channel coefficients for each sensor are generated
as mutually independent according to the model for dispersive MPF channel defined at the end of
Section 2.1.
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4.2. The Estimation of Reference CMs Used in the Second Stage of the DHyTSF Scheme

In order to estimate reference CMs used in the second stage of the distributed hybrid two-stage
fusion (DHyTSF) scheme we estimated the performance of the cooperative MC with the centralized
fusion for JDF and SDVDF methods (with and without JCEC) for the network of two to 10 sensors.
We used the procedure described in the first paragraph of Section 4 for the SNS2 scenario but for the
complete set of mean SNR values, i.e., SNR j € [2 dB, 18 dB]. In order to make the estimated CMs more
robust we averaged the CMs for all mean cluster channel lengths, L € [3, Ly — 1] for Ly = 5 or
Liax = 10. Moreover, in order to generate CMs references that are not adjusted for the MPF channel
model that we used in the numerical analysis, we repeated this procedure by changing the variance aii
of the defined MPF channel model (see Section 2.1) over the set 0.01, 0.03. 0.05, and 0.07 and averaged
the resulting CMs. This way, due to the averaging of the CMs references for the different parameters of
the MPF channel model (i.e., different channels), we introduced the reference mismatch for the second
stage of the DHyTSF scheme in order to model the more realistic application conditions.

4.3. Estimated Cooperative MC Performance for the Different Sensor Network Scenarios

The performed comprehensive numerical analysis produced a large amount of data for the
different sensor network scenarios, MPF channel, and processing parameters, considered fusion
methods with/without JCEC, etc. Yet, due to a limited space we here present only the most important
and illustrative results and corresponding conclusions. To achieve a clear presentation, only the MC
performance of the relevant (i.e., the most successful) fusion methods are included in figures.

The estimated Pcc ay for the centralized and distributed cooperative MC in SNS1 with the random
average SNR cluster values (i.e., distance from transmitter) and Ny = 5 clusters of equal size (four
sensors by cluster), the symbol sequence length Ns = 500 and Ng = 2000 are given in Figures 6 and 7,
respectively, for the different dispersive environments (i.e., Lyjzx = 5, Liax = 10).
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Figure 6. The estimated Pcc 4 value for the centralized and distributed cooperative MC in SNS1,
for Ng = 500 and different dispersive environments (Lyax = 5 and Lyay = 10).

In the case of the low cumulant estimate quality, i.e., short sample sequence (Ns = 500) or more
dispersive MPF channels (Ly.x = 10), due to the large mismatch of the NIAS references, the here
proposed DHyTSF scheme considerably outperform centralized fusion with JCEC (4% to 10% of the
absolute Pcc g value). The centralized fusion without JCEC is clearly outperformed by the distributed
fusion (8% to 18% of absolute Pcc 404 value) in all observed scenarios. On the other hand, in the case
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of solid cumulant estimate quality, i.e., long sample sequence (Ng = 2000) and less dispersive MPF
channels (Ly;ax = 5), the NIAS references are much more appropriate, and hence the centralized fusion
achieves better performance and outperform the distributed fusion when the large number of sensors
is used. In fact, in that case the loss of information due to the use of mismatched references is not so
significant and the centralized fusion enables more efficient use of the extra information gathered by
using multiple sensors.
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Figure 7. The estimated Pcc g value for the centralized and distributed cooperative MC in SNSI,
for Ng = 2000 and different dispersive environments (Ly;ay = 5 and Lyay = 10).

In order to estimate the influence that the number of clusters (and cluster size) has on the DHyTSF
scheme performance, an additional analysis has been done. Networks with up to 20 sensors grouped in
three clusters with seven sensors (the last one has six sensors), five clusters with four sensors, and seven
clusters with three sensors (the last one has two sensors) has been observed. The results showed
that with the increased number of clusters (a smaller cluster size) a slow improvement of cooperative
MC performance is achieved but at the expense of increased communication burden and complexity.
The estimated Pcc 404 for the cooperative MC for SNS1 with different number of clusters N¢y, € {3,5,7},
the symbol sequence length Ng = 500 and L,y = 5 are given in Figure 8, as the typical case.

As seen in Figure 8, the deployment of seven clusters offers only slightly better performance
than the one with five clusters, while for the smaller number of clusters, i.e., Nc;, = 3, a decrease
in performance can be observed. This is expected, since the second stage in the DHyTSF scheme
operates on reliable references and thus more successfully exploit the available information. However,
when the cumulant estimate quality decreases the use of more clusters with lower number of sensors
in each cluster cannot achieve reliable decisions in the first step (due to the small number of sensors).
Thus, the reliability of the CMs used in the second stage rapidly decreases, which results in poor MC
performance. Therefore, for the network of 20 sensor nodes, as considered in this numerical analysis,
the deployment of five clusters presents an adequate choice for a broad set of application scenarios.
Hence, in the further discussion in this paper only the results for a cluster with four sensors (i.e.,
five clusters for the network with 20 sensors) are presented. It should be noted that this is not a general
conclusion. In fact, for the network with more sensor nodes clusters with more than four nodes could
be employed. However, the general conclusion is that the DHyTSF scheme with the clusters that have
less than four sensor nodes do not enable successful application. In that case, the low number of sensor
nodes in the first stage (i.e., intra-sensor fusion) prevents the effective data fusion thus producing
unreliable local cumulant decisions for the second stage.
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Figure 8. The estimated Pcc 404 value for the centralized and distributed cooperative MC in SNS1,
for different number of cluster Ny € {3,5,7}, when Ng = 500 and L,z = 5.

The estimated Pcc g for cooperative MC in SNS2 for network with Nc = 5. clusters of equal
size when the mean SNR value in all clusters is 5 dB and 15 dB, and the symbol sequence length is
Ng = 500 are presented in Figures 9 and 10, for the different dispersive environments defined with

Lyax = 5 and Ly = 10, respectively.
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Figure 9. The estimated Pcc g value for the centralized and distributed cooperative MC in SNS2,

for Ng = 500 and Lz = 5.

Since we use short symbol sequence length, and thus achieve a relatively low cumulant estimate
quality, the distributed fusion considerably outperforms centralized fusion for the lower SNR (5%
to 8% of the absolute Pcc 0 value), while for the higher SNR similar performance can be noticed
for the centralized fusion with JCEC (which improve cumulant estimate quality) and the DHyTSF

scheme. The centralized fusion without JCEC is clearly outperformed by distributed fusion (8% to 15%
of absolute Pcc 404 value) in all observed scenarios. For the longer symbol sequence length, which is
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characterized with higher computational complexity, the DHyTSF scheme outperforms the centralized
fusion with JCEC only for the lower SNR values while for the higher SNR values centralized fusion

achieve better performance for the larger number of sensors.
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Figure 10. The estimated Pcc 4p¢ value for the centralized and distributed cooperative MC in SNS2,

for Ng = 500 and Ly, = 10.

Finally, the estimated Pcc qyg for the cooperative MC in SNS3 with N, = 5 clusters of equal size
and the symbol sequence lengths Ng = 500 or Ng = 2000, are presented in Figures 11 and 12, for the

less (Lyax = 5) and more (L = 10) dispersive environments, respectively.
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Figure 12. The estimated Pcc g value for the centralized and distributed cooperative MC in SNS3,
for Ng = 500 and Ng = 2000 and highly dispersive environment (Lyzx = 10 ).

In the case of the less dispersive environment (L;;zx = 5), the DHyTSF scheme slightly outperforms

a centralized fusion with JCEC for the shorter symbol sequences (Ns = 500), and achieves a similar
performance for the longer sequences (Ng = 2000). On the other hand, for the highly dispersive
environment (Lyax = 10), the DHyTSF scheme clearly outperforms the centralized fusion with JCEC
in all scenarios (6% to 10% of absolute Pcc 40 value). Yet again, the centralized fusion without JCEC is
always outperformed by the DHyTSF scheme.

4.4. Quverview and Discussion

The results of the numerical analysis (simulations) for all the considered scenarios are in a complete

accordance with the theoretic discussion given in the previous sections. The main conclusions based
on the presented data are:

The centralized fusion achieves better performance when the JCEC is used to improve the cumulant
estimate quality, and thus reduce the information loss due to the mismatched references, with the
SDVDEF+JCEC method being the best solution in almost all the observed scenarios;

For the lower cumulant estimate quality (i.e., low SNR and/or short symbol sequence and/or highly
dispersive MPF environment) the DHyTSF scheme (with JDF or SDVDF+JCEC in the first stage)
preserves more information in the fusion process than the centralized fusion, and consequently
considerably outperforms the centralized fusion;

For the higher cumulant estimate quality (i.e., high SNR and/or long symbol sequence and/or less
dispersive MPF environment), the DHyTSF outperforms the centralized fusion without JCEC
(without the cumulant estimate correction) but the centralized fusion with JCEC becomes a slightly
better solution as the information loss due to the mismatched references is not so high. However,
even in this situation the centralized and the distributed fusion achieve similar MC performance;
For scenarios with sensors (clusters) located at different distances from the unknown transmitter,
which is the expected situation in realistic applications for large-scale networks, the DHyTSF
scheme achieves larger gains compared to the centralized fusion for the lower cumulant estimate
quality, and is slightly outperformed for the higher cumulant estimate quality;

In the case of lower MC classifier complexity, i.e., shorter received symbol sequences, the DHyTSF
scheme clearly outperforms the centralized fusion in the all considered scenarios.
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5. Conclusions

The cooperative modulation classification (MC) with the centralized fusion is reported to offer
significant performance gains in comparison to single sensor classifiers [22-38], especially for the
dispersive MPF environments. Due to the inherent spatially distributed sensors/radios wireless
sensor networks (WSN) and cognitive radio networks (CRN) represent the natural environments for
cooperative MC. CRN presents a new application field for modulation classification, while cooperative
MC is mainly observed as an additional feature in spectrum sensing that can facilitate improvement
of overall CRN performance [3,6,20,31,37,38]. On the other hand, WSN presents supporting network
technology that enables the design of specific WSN for applications such as cooperative sensing,
detection, identification, MC, and localization, realized by employing standard communication interface
for the wireless networking and additional radio receiver used as sensor [21-30].

So far, two approaches to centralized cooperative MC are proposed. The first approach is
feature based (FB) cooperative MC [19,22-26,28-30,36-38], with the cumulant-based classifiers usually
considered as the convenient, simple, and robust solution for dispersive multipath fading (MPF)
environments. The second approach is likelihood-based (LB) cooperative MC [21,23,27,31-35],
with signal fusion based solutions [31-35] reported as able to achieve nearly optimal performance under
ideal conditions and outperform the cumulant-based solutions but with the significantly increased
computational complexity. However, centralized LB cooperative MC with signal fusion, require
reception of the same symbol sequence by all sensors, and delivery of these sequences to the fusion
center [23,31-35]. This results with the significant communication load between the sensors and
fusion center, and demand a certain level of sensing synchronization on the network level (which also
increase complexity). Thus, these solutions are quite appropriate when the sensing network is in the
vicinity of the fusion center. However, significant performance loss in the case of unideal application
conditions (i.e., low quality estimation of parameters assumed known) is reported [31-34]. In the
case of large-scale ad hoc wireless networks, with the large number of sensors deployed in the wide
area, centralized signal fusion demand high communication capacity across the network (to deliver
signal samples from sensors to fusion center). Moreover, synchronized sensing of the unknown signal
by using widely dispersed sensors becomes more complex as the network size increases. On the
other hand, suboptimal cumulant-based cooperative MC, does not require synchronized sensing and
demand only small amounts of data to be delivered to the fusion center (i.e., local MC results). Thus,
we have obvious trade-off between signal fusion and cumulant-based centralized cooperative MC in
terms of MC performance, communication burden, and complexity.

However, previous studies [24-26] showed that large MC performance loss for the centralized
fusion exists due to the unreliable (mismatched) references in realistic application conditions. In order to
overcome this problem, we designed a novel distributed hybrid two-stage fusion (DHyTSF) cooperative
scheme. The proposed distributed cooperative MC was designed as modification of cumulant-based
centralized cooperative MC in [25]. Presented numerical results for the proposed DHyTSF scheme,
acquired through extensive Monte Carlo experiments, confirm the main assumptions and expectations
given in Section 3. Thus, for intended application scenarios defined by low cumulant estimate quality,
the DHyTSF scheme outperforms corresponding centralized scheme. Consequently, the proposed
DHyTSF scheme is shown to facilitate preservation of information during the fusion process and thus
achieve considerable MC performance gains over the centralized fusion for the application conditions
with low cumulant estimate quality, especially when the sensors are spaced at different distances from
the observed transmitter. Furthermore, the proposed DHyTSF scheme obtains similar performance as
centralized MC for application conditions with high cumulant estimate quality. However, the additional
analysis is needed to define the optimum cluster size and number for the network with the higher
number of nodes than the one considered here.

Furthermore, the proposed DHyTSF scheme can present a more suitable solution than the
centralized one for large-scale ad hoc wireless networks, due to the intuitive expected lower
communication burden compared to the cooperative MC with the centralized fusion. On the other
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hand, the DHyTSF scheme demands support for cluster formation and intra-cluster communication,
which is expected to increase operation complexity, while centralized fusion does not have such
demands. However, a future work is needed to develop a detailed specification of the data exchange
and distributed computation protocol as well as the experimental comparison in order to support the
given claims. Moreover, further development and analysis should be performed to design a complete
network solution able to support the here proposed DHyTSF scheme. The further study should be
dedicated to a detailed framework and protocol proposal, including appropriate clustering and data
exchange protocols, as well as the communication and computation complexity analysis.

It should be noticed that the proposed distributed scheme is not limited to cumulant-based
cooperative MC, since the similar solution could be designed and analysed for different feature-based
modulation classification methods. In that sense, any classifier that can achieve stable operation in
intra-cluster fusion (i.e., elements of confusion matrices have low variance), present a good candidate
for the distributed hybrid fusion. In addition, further MC performance improvement of the here
proposed DHyTSF scheme could be achieved without a high increase in complexity if the mixture
of different higher order cumulants is used for classification purposes in intra-cluster fusion. In that
manner, the cooperative classification framework using maximum likelihood combining algorithm
proposed in [37,38] could prove as a good choice.

If we compare the here proposed DHyTSF scheme with the centralized LB cooperative MC with
signal fusion we have the similar trade-off as for the centralized cumulant-based cooperative MC
discussed before. We can expect that centralized LB cooperative MC with signal fusion achieves the
better overall MC performance, but at the cost of increased computational complexity. In the case of
large-scale networks, the DHyTSF scheme demands much less data to be transmitted (since only local
MC results are exchanged and not the complete signal samples over the network). Moreover, DHyTSF
scheme does not demand synchronized sensing as centralized LB cooperative MC with signal fusion.
However, DHyTSF scheme demands proper mechanisms for cluster generation and local intra-cluster
data exchange.

Finally, the here proposed general DHyTSF architecture could be used as a basis to design a
distributed LB cooperative MC with signal fusion. In such a solution, likelihood-based cooperative
MC with signal fusion could be applied for intra-cluster fusion. Thus, the designed solution could
have potential to achieve the good MC performance and at the same time resolve some of the issues
that exist for centralized LB solution (the large amount of data would be delivered inside the cluster
instead of across the network to the global fusion center).
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