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Abstract: Wearable monitoring and mobile health (mHealth) revolutionized healthcare diagnostics
and delivery, while the exponential increase of deployed “things” in the Internet of things (IoT)
transforms our homes and industries. “Things” with embedded activity and vital sign sensors that
we refer to as “smart stuff” can interact with wearable and ambient sensors. A dynamic, ad-hoc
personal area network can span multiple domains and facilitate processing in synergistic personal
area networks—SPANSs. The synergy of information from multiple sensors can provide: (a) New
information that cannot be generated from existing data alone, (b) user identification, (c) more robust
assessment of physiological signals, and (d) automatic annotation of events/records. In this paper,
we present possible new applications of SPANs and results of feasibility studies. Preliminary tests
indicate that users interact with smart stuff—in our case, a smart water bottle—dozens of times a
day and sufficiently long to collect vital signs of the users. Synergistic processing of sensors from
the smartwatch and objects of everyday use may provide user identification and assessment of new
parameters that individual sensors could not generate, such as pulse wave velocity (PWV) and blood
pressure. As a result, SPANSs facilitate seamless monitoring and annotation of vital signs dozens of
times per day, every day, every time the smart object is used, without additional setup of sensors and
initiation of measurements. SPANSs creates a dynamic “opportunistic bubble” for ad-hoc integration
with other sensors of interest around the user, wherever they go. Continuous long-term monitoring
of user’s activity and vital signs can provide better diagnostic procedures and personalized feedback
to motivate a proactive approach to health and wellbeing.

Keywords: wearable monitoring; health monitoring; mHealth; wireless body area networks; IoT;
smart stuff; ambient-assisted living; aging in place

1. Introduction

As aging population and their chronical conditions in all developing countries create increasing
pressure on healthcare systems, technological solutions and modified healthcare paradigm are crucial [1].
Currently, chronic disease management is mostly reactive, while proactive approach might deliver
much better care at a far cheaper price point. New healthcare paradigms, such as P4 medicine [2], are
increasingly accepted as a solution. P4 stands for predictive, preventive, personalized, and participatory
medicine. The proposed paradigm provides patients, consumers, and physicians with personalized
information for each person’s unique biology and focuses on the causes rather than the symptoms
of the disease. By providing personalized feedback, it is possible to motivate active participation
and allow users to assess the impact of lifestyle decisions and improve their quality of life. However,
this requires massive continuous data collection for the development of the personalized models.

Technological advances of sensors, wearable health monitors [3], mHealth monitoring [4,5],
smart homes, and Internet of Things (IoT) technologies [6] create new opportunities for improving health
care and quality of life [7]. In this paper, we present an overview of the field of wearable computing and
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wearable health monitoring and discuss its relationship to the fields of smart environments and ambient
intelligence as a part of IoT systems. We refer to monitors integrated into a person’s environment
as ”smart stuff” [8]. Smart stuff provides the context of measurements from wearable monitors and
facilitates the synergy of information that generates completely new insights into the state of the user.

Dynamic integration of personal area networks with smart stuff in our environment creates
an ad-hoc network that can facilitate synergistic processing and generate new information. In this
paper, we propose the use and present several examples of synergistic personal area networks
(SPANSs) with support for personalized health monitoring and interventions. We present the general
organization, opportunities, and possible applications of SPANs, with results from several preliminary
feasibility studies.

2. Wearables

Integration of devices in the personal workspace, such as computers, personal digital assistants,
and, later, smartphones led to the development of standards for personal area networks. Personal area
networks were first introduced as a term by Zimmerman [9] in 1996 and further developed by the IEEE
P802.15 Working Group [10]. We proposed and implemented the first wireless personal area network
for health monitoring in 2000 [11]. Development of sensors, wearable computing, and ubiquitous
communications by the widespread use of smartphones enabled mobile health, or mHealth [4,12,13].

Wearable health monitoring allows monitoring of activities of daily living and; therefore, more
accurate diagnostic procedures, unbiased by changes in the hospital environment [3]. The first wearable
health monitoring devices were electrocardiogram (ECG) holters, used to detect irregularities in heart
rhythm (i.e., arrhythmias). They typically record 3- or 5-lead ECG on a small, battery-operated
controller worn on a belt. Sensor electrodes are standard “wet” ECG electrodes attached to the body.
After 24-48 h of non-stop use, the holter is returned to a cardiologist for readout and signal processing
analysis. The use of standard electrodes limits the total duration of holter use to 3—4 days when standard
electrodes typically fall-off. However, some arrhythmias are infrequent and still extremely dangerous
and deadly. That requires much longer monitoring, in the order of several months. Therefore, a new
generation of implanted ECG recorders, called loop recorders, have been developed [12]. Noninvasive
long-term sensing of ECG requires new, innovative methods.

Wearable sensors and systems must satisfy stringent size and weight requirements. Therefore,
they must feature ultralow-power processing and communication (even power scavenging), intelligent
on-sensor processing, autonomic sensing, and support data mining and distributed inferencing.

There are two main facilitators of wearable monitoring: smartphones and smartwatches.
Smartphones became the Internet gateway of wearable monitors that support both
short-range-low-power communication of wearable sensors and long-range cellular communication
as an Internet gateway. That was the foundation of ubiquitous mHealth monitoring [4]. However,
smartphones are not always on the body or close enough to the user to maintain connectivity with the
wearable sensor, which we refer to as “loose attachment.” Smartwatches resolve that problem with a
firm attachment to the user’s hand most of the time. Both devices represent very powerful computing
and communication platforms and feature the increasing number of sensors onboard. The first sensors
introduced to smartphones were inertial sensors. Although necessary for the general operation of the
device, the sensors can be used to monitor the activity of the user [14,15]. Some smartphones feature
an optical photoplethysmography (PPG) sensor that can be used to monitor vital signs. However,
it requires the positioning of the finger on the sensor. Unlike smartphones, smartwatches are always in
contact with the hand. Preliminary studies indicate that their performance is sufficiently good for vital
sign monitoring in many health monitoring applications [15,16].

One of the main challenges for wearable monitoring is understanding the context of measurements.
For example, irregular heart rhythm in the ECG signal can be the result of motion artifacts caused
by the movement of electrodes during walking or running. Therefore, understanding the context of
measurements improves the quality of measurements, eliminates artifacts, and improves the reliability
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of measurements and diagnostic procedures. We believe that IoT sensors could provide the context of
measurements in many situations.

3. IoT Sensing

Internet of things (IoT) technologies integrate sensing, processing, and communication at an
unprecedented scale. IoT-enabled appliances are becoming common in smart homes, with an
exponentially growing number of deployed devices. In 2008 the number of things connected to the
Internet exceeded the number of people on Earth. It is expected that IoT devices will represent 62% of
29 billion connected devices by 2022, driven by new use cases [17].

In addition to smart homes, transportation, and industrial automation, IoT is increasingly used
for health applications. Wu et al. integrated wearable sensors for monitoring of the vital signs and the
environmental conditions around the subject and an IoT cloud server connected to the Internet [18].
Hassanalieragh et al. show how IoT intelligence can improve the analysis and visualization of
health records [19]. Manogan et al. present the IoT patch with edge processing and analysis [20].
Rodrigues et al. present an excellent overview of wearables, ambient sensors, and healthcare solutions
that they call the Internet of healthy things (IoHT) [21]. Typical problems include a variety of
communication standards (Bluetooth, Bluetooth Low Energy (BLE), Wi-Fi/IEEE 802.11, ZigBee/IEEE
802.15.4, Long Range (LoRa), Near-field Communication (NFC), Radio-frequency identification (RFID),
cellphone connectivity), power efficiency of wearable and ambient sensors, seamless sensor discovery
and integration, and security and privacy issues and concerns. Implantable sensors provide unique
sensing and intervention opportunities (e.g., implanted blood glucose monitoring sensors and insulin
pumps). They can be integrated with existing wireless body area networks (WBAN) or communicate
in an implantable body area network (IBAN). Darwish et al., presents a recent survey of implantable
sensors and systems [22].

We implemented a smart water bottle as an IoT appliance, as shown in Figure 1 [8,23]. We selected
a water bottle since proper hydration represents one of the most important factors for health and
wellbeing. While most users need to increase liquid intake, some user groups, such as heart and kidney
patients, have to limit their water intake and still stay properly hydrated. Therefore, we implemented
a real-time hydration management platform integrated into a mHealth system that allows users and
caregivers access to real-time hydration status and hydration history. We use capacitive sensing to
estimate the volume of liquid in the bottle in real-time and report the result periodically, every 60 s in
the current version of the controller. The controller communicates with the mHealth server using Wi-Fi
or Bluetooth wireless interfaces. To facilitate the monitoring of the activity of patients, the controller
integrates a 3D accelerometer and a heart rate monitor. The controller processes 3D acceleration to
detect the handling and orientation of the bottle. Our smart water bottle also integrates a custom touch
and pulse sensor (see Figure 1). The sensor monitors capacitance to detect the touch of the sensor,
which indicates when the bottle is used. Integrated optical PPG sensor MAX30100/30102 [24] is used to
monitor the vital signs of the user [25].

Capacitive sensing provides a power-efficient measurement of several sensors, such as touch and
liquid volume sensor in our smart water bottle. Embedded microcontrollers often support capacitive
sensing on multiple pins. We use NXP Kinetis controllers that support capacitive sensing on up
to 12 pins [26,27]. We demonstrated that capacitive sensing could be used to directly monitor the
heartbeats of users during contact [28].
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Figure 1. Smart water bottle with embedded vital sign monitor (Smart Stuff) [8].
4. SPAN: Synergy of Information from Wearables and IoT Sensors

Integration of wireless body area networks with smart environmental sensors and smart objects
of everyday use creates new opportunities and applications, particularly for non-invasive continuous
health monitoring.

The most important monitoring functions belong to three groups: vital sign monitoring, activity
monitoring, and location sensing.

1. Vital sign monitoring provides snapshots or continuous measurements of the user’s vital signs,
such as heart rate, respiration rate, and blood pressure.

Vital signs are typically monitored using wearable sensors attached to the human body. We propose
the integration of vital sign monitors in objects of everyday use. An example of the smart water
bottle designed as IoT appliance with an integrated pulse oximeter and heart-rate controller,
or photoplethysmography sensor (PPG), shown in Figure 1. As an alternative, existing signals
can be used for so-called opportunistic monitoring; a passive Doppler radar can be used to detect both
user activity and breathing [29].

New sensing modalities are being proposed and tested, such as capacitive sensing of vital
signs [28], video [30], electromagnetic field monitoring [29], and new sensor materials [31].

2. Activity monitoring can be implemented using;:

e Inertial sensors embedded in IoT objects or wearable inertial sensor on user [8];

e  Touch sensors that are typically implemented as capacitive or pressure sensors and can
indicate the use of a smart object;

e  Mechanical and magnetic sensors can indicate opening or general use of the device.
For example, the smart pill bottle from Adhere Tech can detect the use of the bottle
and transmit information in real-time to the medical server to facilitate drug compliance
monitoring of patients [32]. Nonadherence in the U.S. is estimated to be $100-$300 billions
of avoidable health costs [33].

e  Remote sensing (e.g., video, infrared [34], or electromagnetic field monitoring [29])

3. Location sensing. The location of the user could be information itself or provide context for
measurements. For example, outdoor location (e.g., home, office, physician’s office, park)
provides information about activity during the day, but also the context of measurements, such as:

e  Blood pressure measurements are typically higher when measured in physician’s office than
at home;
e  The number of bathroom visits might indicate the development of urinary tract infection;
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e  User association for automated measurements, such as assigning automated weight scale
measurement with the user closest to the weight scale.

Short-range location sensing can be implemented using wireless RFID tags, but only for up to
15 cm. Longer range solutions include monitoring the strength of wireless signal (received signal
strength indicator—RSSI) with limited accuracy, and monitoring of time-of-flight of each transmission
that is part of ultra-wide band (UWB) communication at the price of significantly increased power
consumption and complexity of devices.

The functionality of personal area networks spans multiple domains, as represented in Figure 2:

4. Inter body network integrates communication of Implantables and Ingestibles inside the body,
or with a gateway on the body. As an example, Proteus Discover uses an ingestible sensor that
communicates with a wearable sensor patch [35,36].

5. Body area networks/wireless body area networks integrate sensors on the body and sometimes in the
body [37,38].

6.  Wide area networks (WANSs) use wired, long-range wireless, or cell-phone network connections to
interface short-range networks to the Internet and store records in the cloud and on the medical
server. That allows physicians, users, and their caregivers access to all the records that the user
wants to share with them [38].
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Figure 2. The system architecture of a Synergistic Personal Area Network (SPAN).

Figure 3 represents the general taxonomy of networks and functions. Applications span multiple
domains and feature application-specific functionality, as described above.
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Figure 3. Taxonomy of synergistic personal area networks;, ECG—electrocardiogram sensor;
IR—infrared sensor.

4.1. SPAN Applications

Synergistic processing of information from SPAN sensors creates new opportunities and new

applications. We illustrate possible applications of synergistic processing for two classes of applications:
(a) user identification, and (b) monitoring of parameters that can be detected only through the synergy
of information from multiple sensors.

4.1.1. User Identification

The synergy of information from wearable and IoT sensors can provide identification of the user

that handles the smart IoT object.

Vital sign-based user identification [39,40]. If the IoT object (smart stuff) contains a vital sign monitor,
the user with a wearable sensor that monitors the same vital sign can be identified based on the
similarity of vital signs from both sensors. For example, heart rate acquired on the water bottle
is compared with heart rate from the smartwatch of users in the vicinity. A similar heart rate
or a sequence of heart rate values can identify the subject, particularly in the case of the limited
number of subjects sharing the same space (e.g., a couple living together, or nursing home). Subject
identification may facilitate the annotation of automatically collected records. Javaid et al. present
the use of the wearable ECG and tiles with ballistocardiogram (BCG) for user identification and
home monitoring [40].

Activity-based user identification. Interaction with a smart object causes certain activity parameters
to be similar, which can lead to user identification. For example, wearable inertial sensors
might have some or multiple parameters very similar to the equivalent parameters on the object.
We illustrated user identification using the three axis (3D) accelerometer on the smartwatch of the
user and in a smart water bottle in Figure 4. A dynamic 3D vector magnitude with no baseline for
the smartwatch and the smart water bottle become very similar when the hand holds the water
bottle, as can be seen in Figure 4. Therefore, the system can detect if somebody is using my water
bottle. That information is critical in nursing homes and hospitals, where detection of the use of a
water bottle by an “unauthorized” user might represent a significant health hazard. Moreover,
“authorized” users, such as nurses, do not trigger the alarm.

Identification of the class of users, such as child vs. adult. In [41] we present how capacitive sensing
on multiple segments of the object can be used to detect a pattern of the contact interface that
can be used to detect if the person handling the object is an adult or a child. In the case of
the smaller number of known users (e.g., family members), the system can identify individuals
using the object. “Smart” bottles equipped with sensing technology have substantial potential to
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detect hazardous events, provide instant alarms and warnings to children who handle bottles
containing dangerous products, and warn parents/guardians, wherever they are, via text message
or other means.
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Figure 4. User identification using a pattern of dynamic acceleration (ACC) of the hand and a
smart object.

4.1.2. Synergistic Physiological Monitoring

The synergy of information collected from multiple sensors may provide crucial new parameters
that can be used to seamlessly assess the user’s health state. As an example, we present possible use
of two sensors in a SPAN to assess pulse wave velocity (PWV). PWYV is the velocity at which blood
pressure pulse propagates through the artery. PWV is clinically used to assess the stiffness of arteries
with the measurement of the arterial pulse propagation from carotid to femoral artery [42]. However,
PWYV can be used for continuous and non-invasive assessment of blood pressure [43].

We propose to use two optical sensors at the known distance, and measure the latency of blood
pulse arrival on each sensor, as represented in Figure 5. The first sensor is in the smartwatch (PPG1)
and detects the arrival of the blood pulse to the wrist. The second sensor can be on the finger (PPG2)
and detects arrival of the blood pulse at the top of the finger. Since the distance between the wrist
and the finger is constant (ds), if we find latency of the blood pulse/pulse travel time (dt) at the finger,
we can calculate PWV = ds/dt. The average carotid-to-femoral PWYV of healthy subjects of all ages
is 6.84 m/s [44], which means that for the distance between sites of 20 cm, expected time delay is
29 ms. Therefore, the measurement accuracy of 1 ms would generate an error of up to 3.4%. PWV is
strongly correlated with age and increases with age (e.g., 9 m/s for the age group over 70 years [44]).
Consequently, the same time accuracy would generate an error of 4.5% for subjects over 70 years. PWV
depends on the heart rate and breathing, but relative changes of the PWV depend on the current blood
pressure of the user [45,46]. All blood vessels can expand or contract as a result of sympathovagal
activity; however, since most of the vascular resistance occurs in small blood vessels, changes caused
by blood pressure are more visible in the finger PPG [45].

SPANSs can integrate and synchronize measurements of PPG from a smartwatch and an object of
everyday use equipped with an embedded PPG sensor. Synchronized measurements of two signals, as
represented in Figure 5, can be used to calculate the latency of the blood pulse and PWV. An alternative
setup would be to use the electrocardiogram (ECG) sensor and PPG sensor on the finger and calculate
the time delay between the electrical signal (ECG) and some feature of the optical signal (PPG).
The measured time delay is called pulse arrival time (PAT) and can be used for assessment of vascular
health [47] and personalized stress level. Another example of synergistic processing is the assessment
of blood pressure using ballistocardiography and PPG [48]. Ballistocardiogram can be recorded and
processed in a smart weight scale, and PPG on a smartwatch or other wearable sensors. Assessment of
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blood pressure will be facilitated through the synergy of existing sensors instead of the custom setup
of sensors.

PPG1: smartwatch PPG2: Smart Stuff

Figure 5. Using the synergy of wearable sensors and IoT objects to assess relative changes in
the blood pressure; PPG1 represents photoplethysmogram sensor on the smartwatch and PPG2 is
photoplethysmogram sensor on the Smart Stuff.

In our preliminary experiment with configuration represented in Figure 5, we used a smart
water bottle with a PPG sensor embedded on the outside of the bottle (see Figure 1) and Polar M600
smartwatch. The PPG sensor on the smart bottle resides in the small groove that holds, comfortably,
the user’s finger every time the bottle is used (see Figure 1 and [8]). PPG signals recorded on the
smartwatch and smart bottle are shown in Figure 6. The bottle controller can communicate with
the smartwatch directly, or both sensors can communicate with a custom smartphone application
or a home server. SPAN integration using a home server provides “always-on” connectivity, short
response times, and precise time synchronization of individual sensors. Precise time synchronization
of sensors is crucial for synergistic processing. In our preliminary experiment, we used Raspberry Pi
as a home server. Smart bottle controller and smartwatch communicate with the server over Wi-Fi
using the Message Queuing Telemetry Transport (MQTT) messaging protocol. The home server sends
regular time beacons that are used for time synchronization on individual sensors and receives signals
synchronized with the global clock. The application on the home server then filters and processes
both signals. Signals are filtered using a low-pass Finite Impulse Response (FIR) filter of order 81,
with a cut-off frequency of 15 Hz. We identified individual heartbeats as samples with the maximum
negative slope, which is typical for PPG processing. Original PPG, filtered signal, and identified heart
beats are shown in Figure 6. More sophisticated processing methods, such as wavelet transform [45],
would provide better accuracy and assessment.

Since the signals from the smartwatch and smart bottle are synchronized, the latency of the PPG
on the finger (dt) can be found as a time difference between pulse arrival times on the wrist and the
finger, as illustrated in Figure 6. We used global timestamps with a resolution of 1 ms starting from
midnight (Figure 6). We used a Polar M600 smartwatch because of the quality of the PPG sensor [15]
and support for Android Wear OS application development. Android provides time in milliseconds
(UNIX format), and sampling event times in nanoseconds, although the actual accuracy of the clock
is system dependent. The calculated time delay was then used to assess absolute value and relative
change of the pulse wave velocity (PWV).
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Figure 6. Measurement of the Pulse Wave Velocity (PWV) using smartwatch and PPG sensor embedded
in water bottle/object of everyday use (see Figure 5 for measurement setup).

In our preliminary experiment, the subject was a 29-year-old male; ds was 19 cm (see Figure 5).
Measured time delays of the three heartbeats in Figure 6 are 43.17, 44.17, and 39.77 ms that correspond
with PWV of 4.4, 4.3, and 4.8 m/s, respectively. Expected PWYV for the age group of the subject is 3.92
to 8.14 m/s [44]. A more comprehensive analysis and validation of results will be a subject of the
follow-up paper. Therefore, measurement of PWV using synergistic processing from wearable devices
(e.g., smartwatch, ECG patch) and smart stuff (e.g., smart water bottle, smart weight scale, smart
computer mouse) could provide an assessment of blood pressure. Our preliminary results indicate
that synergistic processing in SPANSs is feasible.

The next important question was “how often do we use (potentially) smart objects”? In our pilot
usability test, we used 11 subjects, aged 27 to 78 years (mean 45 + 17.91 years) and asked them to use
our automated smart bottle. The average number of bottle interactions was 15.3 times/day, with an
average duration of 35 + 25.4 s [25]. The average number of heartbeats detected during a touch session
(individual bottle use) was 34.2 heartbeats or 45.1% of the interaction time. Therefore, the smart water
bottle would allow us to seamlessly collect heart rate approximately 15 times per day, sometimes
collecting the sufficient number of heartbeats to even assess heart rate variability of the user [25].
Detection of almost half of the heartbeats is an excellent result since clinical measurements of heart rate
require a clip to ensure good contact of the finger with the PPG sensor, whereas our smart bottle relies
only on the user holding the bottle.

We encountered several potential issues that can limit applicability of the proposed approach:
(a) Motion artifacts can significantly influence quality of PPG; (b) PPG sampling frequency on the
smartwatch is low (135 Hz), although sampling frequency on the smart bottle can be more than
1000 Hz; (c) hand position influences measured latency [45]; and d) frequency of smartwatch clocks
can drift, which influences synchronization of signals. Our embedded sensor provides much more
robust monitoring, since they are specialized only for the monitoring task, while smartwatches also
represent a general computing/communication platform. However, we expect that the performance of
smartwatches will soon improve. The monitoring community is anxiously waiting for open access to



Sensors 2019, 19, 4295 10 of 13

raw PPG signals at a higher sampling rate, and availability of interbeat intervals (IBI). That feature was
available on the discontinued Basis smartwatch [16].

Our future study will examine how often we get signals that are good enough for
synergistic processing.

5. Conclusions and Future Work

Continuous long-term monitoring of user’s activity and vital signs can provide better diagnostic
procedures and personalized feedback to motivate a proactive approach to health and wellbeing.
Recent advances and exponential use of wearable and IoT technologies provide new opportunities for
users and caregivers. “Things” with embedded activity and vital sign sensors that we refer to as “smart
stuff” can interact with wearable and ambient sensors. A dynamic, ad-hoc personal area network
can span multiple domains and facilitate synergistic processing—SPAN. Synergy of information from
multiple sensors can provide novel information that is not available from individual sensors, such as
assessment of blood pressure.

In this paper, we presented possible new applications of SPANs and results of preliminary
feasibility studies. Preliminary tests indicate that users interact with smart stuff—in our case, a smart
water bottle—dozens of times a day and sufficiently long to collect vital signs of the users. We
demonstrated how the synergy of information from wearable devices (e.g., smartwatch) and an
object of everyday use (e.g., smart water bottle) could provide user identification and assessment of
personalized blood pressure fluctuations every time the object is used. The integration of multiple
sensors might even facilitate the assessment of the psychophysiological state, for example, stress level
during the day. That allows seamless monitoring and annotation of vital signs dozens of times per day,
every day, without the attachment of new sensors or initiation of the measurement procedure. If the
system can collect and process individual measurements, we can create personalized monitoring of
short- and long-term trends. Collected data sets might provide “big data” necessary for new healthcare
paradigms [49].

SPANs are not limited to home monitoring; they can provide a dynamic “opportunistic bubble”
for ad-hoc integration with other sensors of interest. We might create one synergistic network with
smart stuff at home and switch to the second network in our car by integrating sensors in our car’s seat,
wheel, etc. [50]. Automatic integration of all records in our medical record can provide more robust
monitoring, automatic annotation (e.g., heart rate during driving), and automated user identification
(e.g., a seamless update of weight scale measurement).

Our future work will be focused on pilot tests to evaluate the effectiveness of new systems for
health monitoring in the wild and the development of new applications of SPANs.

6. Patents

Several aspects of the proposed concept have been patented or described in the preliminary
patent applications. The smart water bottle and the smart stuff concept have been described in
patent application Emil Jovanov, “Liquid Container Systems and Methods for Monitoring User
Hydration”. Capacitive sensing and human—computer interfaces have been described in preliminary
patent application Emil Jovanov, “System and Method of Physiological Monitoring Using Capacitive
Sensing”. Smart pill bottle and drug adherence monitoring system have been described in patents
U.S. 7,928,835 (April 2011), U.S. 8,754,769 (June 2014), U.S. 9,125,798 (September 2015), U.S. 9,358,183
(June 2016), and U.S. 10,071,023 (September 2018).
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