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Abstract: In this paper, we propose an intelligent lecturer tracking and capturing (ILTC) system
to automatically record course videos. Real-time and stable lecturer localization is realized by
combining face detection with infrared (IR) thermal sensors, preventing detection failure caused by
abrupt and rapid movements in face detection and solving the non-real-time sensing problem for
IR thermal sensors. Further, the camera is panned automatically by a servo motor controlled with
a microcontroller to keep the lecturer in the center of the screen. Experiments were conducted in
a classroom and a laboratory. Experimental results demonstrated that the accuracy of the proposed
system is much higher than that of the system without IR thermal sensors. The survey of 32 teachers
from two universities showed that the proposed system is a more practical utility and meets the
demand of increasing online courses.
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1. Introduction

With the rapid development of education informatization, a wide variety of online courses have
received much attention in recent years [1,2]. Most of the top 50 universities in the world, such as
Stanford University, Massachusetts Institute of Technology (MIT), and Harvard University, offer online
courses on Coursera [2] and edX [3]. This rapid growth makes education, especially higher education,
beyond time–space constraints, cross-domain, and borderless. The massive open online course (MOOC)
is the most popular type of online course. In 2012, MIT and Harvard University co-invested a free
online courses platform called edX. Up to now, edX has offered more than 2500 courses provided
by top-ranked universities in the world and industry-leading companies [3]. In the same period,
two Stanford university professors, Andrew Ng and Daphne Koller launched Coursera which has
opened 3664 courses with 195 partners from 45 countries, according to the official statistics published
in July 2019 [2]. These platforms benefit millions of students from all over the world each term, without
space–time constraints and borderless.

However, most of the videos in online course platforms mentioned above are recorded by
a technical expert in the professional studios. As described at the top of Figure 1, the videos of MOOCs
are usually recorded in studios or offices by photographic specialists using expensive photographic
equipment [4,5]. This recording mode not only requires a longer production cycle, but also leads
to a higher economic cost [6,7]. Meanwhile, it is hard to excite the lecturer’s enthusiasm without
facing any students when the lecture video is recorded in a studio [7]. Certainly, the videos of some
online courses are recorded in classrooms directly. For example, the Stanford CS231n course taught by
Professor Feifei Li in the Spring of 2017; its videos have been uploaded to YouTube [8]. Nevertheless,
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the fixed camera limits the scope of the lecturer’s movement as shown in the middle of Figure 1, and
the recording process requires manual intervention. Some automatic recording systems are designed
to capture the lecturer in a classroom via automatic camera panning and zooming [9], but they cannot
be widely applied because of their requirements in specific recording equipment and limitations in
frequently changing the focus during the recording operation.

In order to solve the above problems, an intelligent lecturer tracking and capturing (ILTC) system
with low cost, stable performance, and convenient construction is proposed in this study, combining
artificial intelligence and wireless sensing technology.
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Figure 1. Three modes for recording online course videos. Mode A: Capturing in an office or
a professional studio. Mode B: Capturing with a static camera in a classroom. Mode C: Automatic
tracking and capturing in a classroom (the proposed system).

There are two functions in the lecturer tracking and capturing system: tracking the lecturer and
panning the camera to aim it towards the lecturer as shown in the bottom of Figure 1. First, localization
technologies are used to identify the lecturer’s position. Then, the camera is panned automatically to
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place the lecturer in the center of the screen. By following the above steps, the functions of tracking
and capturing are realized.

The existing localization technologies usually use special photographic equipment, such as
panoramic cameras [10], PTZ cameras [11], or multiple cameras [12], which require high costs to set up
in a classroom and especially to construct a large number of intelligent classrooms. Some classrooms
in cram schools have been equipped with an automatic recording system based on contactless sensors,
partly having the function of automatic camera panning. However, the rotation angle of camera
panning has only a few choices (maybe 2). The more serious problem is that time synchronization
amongst the sensors is difficult to achieve, and time-delay occurs when the localization is only based
on sensors [13]. Another branch of localization technology is locating the tracked object via portable
sensors, such as magnetometers [14], accelerometers, and photodiodes [15]. These methods are also
not suitable to track lecturers due to the accompanying inconvenience.

In this study, face detection is combined with wireless sensing technology to realize real-time
and stable lecturer localization. After that, a microcontroller, providing communication and control
mechanism, and a servo motor with low power are used to pan the camera.

In summary, the main contributions of the ILTC system are threefold:

1. Proposing an intelligent lecturer tracking and capturing system with low-cost, real-time, stable,
self-adjusting, and contactless devices.

2. Realizing face detection and capturing by one camera and optimizing the network model with
Intel OpenVINO Toolkit to implement the system on CPU in real-time without pre-installing
Caffe or TensorFlow.

3. Preventing detection failure caused by abrupt and rapid movements in face detection and
solving the non-real-time sensing problem for IR thermal sensors through the combination of
face detection and wireless sensing technology.

2. Proposed Method

In this section, we propose an intelligent lecturer tracking and capturing system, as depicted in
Figure 2, comprising the following three modules: (a) face detection module, (b) capturing module,
and (c) infrared tracking module. First, face detection is employed to locate the lecturer. If the lecturer
is detected in the face detection module, the camera is panned by a servo motor in the capturing
module based on the detected result. Otherwise, the infrared tracking module is involved to locate the
lecturer via two IR thermal sensors and transmits the location of the lecturer to the capturing module
via the wireless communication network. Finally, the lecturer is captured by the camera and kept in
the center of the screen during the capturing process.

2.1. Face Detection Module

Tracking-by-detection is a popular method for object tracking [16,17]. In the proposed lecturer
tracking and capturing system, face detection is used to estimate the location of the lecturer because
other body parts of the lecturer may be occluded by the podium. In the past few years, face detection
has matured to be used ubiquitously in computer vision systems. Face detection for advanced
driving-assistance systems (ADAS) [18] is employed in the face detection module to realize tracking-
by-detection in the ILTC system, which is designed for driver monitoring and suitable for lecturer
tracking. Both scenarios focus on capturing a person’s face and upper limbs. Furthermore, the optimizer
of Intel OpenVINO Toolkit [19] is utilized to improve the computation efficiency of face detection.
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2.1.1. Backbone

Face detection for ADAS is inspired by Single Shot MultiBox Detector (SSD) [20] and MobileNet [21].
The former is a one-stage detection method, which imposes prior boxes to handle different-sized
objects on several feature maps with different resolutions and predicts both location and confidences
for each prior box. The latter replaces the standard convolution with the depthwise and 1 × 1 pointwise
separable convolution [22] to improve the detection speed.
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In the proposed face detection module, MobileNet is introduced to avoid the degradation of
the detection speed for SSD on high-resolution input. By introducing depthwise and pointwise
convolutional layers, the computational load is greatly reduced. For the standard convolution layer
with H ×W input size, C channels and K 3 × 3 kernals, its computational cost is H ×W × C × K × 3 × 3.
On the contrary, the computational costs of the depthwise and the pointwise separable layer are H ×W
× C × 3 × 3 and H ×W × C × K × 1 × 1, respectively. The total computational cost is H ×W × C × (3 ×
3 + K) The compression ratio of the computational costs is calculated by the following equation:

R =
H ×W ×C× (3× 3 + K)

H ×W ×C×K × 3× 3
=

3× 3 + K
K × 3× 3

(1)

For example, if K is 128, R is approximately equal to 0.12. The backbone of the face detection
module is illustrated in Figure 3. The similar parts in the architecture of the network are condensed
and the layers are named according to ref. [18]. Both the depthwise and pointwise convolutional layers
are followed by the nonlinear Batchnorm operation and ReLU activation function.

2.1.2. OpenVINO

OpenVINO is an Intel DL deployment toolkit [19] for quickly accomplishing object detection,
action recognition, and other behaviors that emulate human vision, which can accelerate and deploy
CNNs on Intel platforms: CPU, GPU, or VPU. As illustrated in Figure 4, the model trained in Caffe or
TensorFlow is optimized by OpenVINO. The configuration and weight files of the model are converted
to bin and XML files, respectively. For this reason, the CNNs can run on a general-purpose CPU in
real-time [23,24].

In the proposed method, the face detection model is optimized by OpenVINO and runs at
25 frames per second on CPU. When the lecturer moves at normal speed, he or she is captured by the
camera and is in the center of the screen via the panning of a servo motor to adjust the angle of the
camera. The servo motor is controlled by Arduino Uno Wifi [25] and rotates to a certain angle based
on the location result of the face detection module, which are described in detail below.

2.2. Capturing Module

Arduino Uno WiFi is the most important component in the proposed capturing module, which
integrates the microcontroller ATmega328 and WiFi ESP8266 [25]. As depicted in Figure 2, Arduino
Uno WiFi provides three functions:

1. Communicating with the computer via the universal serial bus.
2. Controlling the servo motor to rotate the camera mounted on the motor.
3. Receiving data collected by wireless stations, which are connected with IR thermal sensors.

As mentioned in the previous section, the frames captured by the camera are processed in the face
detection module to locate the lecturer. Based on the location of the lecturer’s face, the servo motor
rotates to a certain angle. The angle is calculated using the following equation:

Ai =

{
Ai−1 |Cl −C| ≤ T

Ai−1 − (Cl −C)/C otherwise
, (2)

where Ai and Ai−1 are respectively the angles of the servo motor for the current frame and the previous
frame. C is the center of the frame in the horizontal direction, which is equal to one-half of the width of
the frame. Cl is the center of the lecturer in the horizontal direction. T is a threshold for rotation. T is
set to 50 when the resolution of the frame is 450 × 320. Specifically, if the horizontal offset between the
lecturer and the screen center is less than 50 pixels, the camera need not be rotated by the servo motor
to avoid frequent movement. Meanwhile, the rotation speed is less than 1 degree per frame to make
the camera move smoothly.
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2.3. Infrared Tracking Module

For smooth motion, the lecturer can be detected in the proposed face detection module. However,
if the lecturer moves abruptly or rapidly, the face detection method will fail to track the object. It is
a general problem in learning-based tracking methods [26,27]. To overcome this difficulty, IR thermal
sensors are introduced to detect the lecturer when the face detection method does not work in the
ILTC system. As shown in the lower right part of Figure 2, two AMG8833 IR thermal sensors with
a sampling rate of 10 fps are employed to detect the lecturer. Furthermore, two WiFi modules (WiPy
3.0) are connected with the two sensors, respectively, to transmit temperature data to the Arduino Uno
WiFi via the wireless communication network.

2.3.1. IR Thermal Sensors

AMG8833 (GRIDEYE) is an 8 × 8 array of IR thermal sensors, which can measure temperatures
ranging from 0 ◦C to 80 ◦C and detect a human from a distance of up to 7 m [28–30]. The 8-connected
component labeling algorithm [31] is used to distinguish the human from noise. If the maximum value
in the 8 × 8 array is higher than room temperature, subsequently, it is determined whether the amount
of the grids connected to the grid with the maximum temperature is greater than or equal to 2.
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Accordingly, it is considered that the lecturer is detected only when the maximum value is higher
than room temperature and the corresponding amount of the grid of the connected grids is greater than
or equal to 2. In both scenarios, room temperature is always kept below 27 ◦C using air conditioners.
When the maximum value among the 64 grids is higher than 27, the 8-connected component labeling
method is introduced to identify the noise. The process of 8-connected component labeling is indicated
by the following equation:

lr,c =


0 ir,c = 0

lmin ∃(i, j) ∈
{
(r− 1, c− 1), (r− 1, c), (r− 1, c + 1), (r, c− 1)

}
, li, j > 0

lnew otherwise
, (3)

For the current pixel (r, c), its label lr,c is set to zero if the intensity of the pixel ir,c is zero.
Alternatively, if there exist nonzero values in the upper left, upper, upper right, and left neighbors, lr,c

is set to the minimum of the labels in the four neighbors. Otherwise, lr,c is set to a new value which
is numbered sequentially. Afterwards, the connected pixels are relabeled with the same number by
traversing the image (top-to-bottom, left-to-right). Finally, the total amounts of the connected pixels
for each number are counted. In the ILTC system, it need only count the total amount of the connected
pixels to the grid with maximum temperature.

The data obtained by AMG8833 sensors include maximum temperature, row, column, and the
totality of the connected pixels. The next step is transferring the data to Arduino UNO WiFi in the
capturing module via the wireless communication device.

2.3.2. Wireless Communication

WiPy 3.0 is introduced to realize communication between the AMG8833 and the Arduino UNO
WiFi, which is an enabled WiFi and Bluetooth IoT development platform [32]. Two WiPy 3.0 modules
are connected to two AMG8833 sensors respectively. Arduino UNO WiFi sends out ‘ID1’ and ‘ID2’
commands alternately via the wireless communication network. Two WiPy 3.0 modules respond to
‘ID1’ and ‘ID2’ respectively. The execution flowchart of WiPy 3.0 named ‘ID1’ is indicated in Figure 5.

First, the wireless network connection is initialized and the counter is set to zero. Then, the
data from Arduino UNO WiFi in the capturing module is read via the wireless network. If the data
is ‘ID1’, the processed data is transmitted from AMG8833 back to Arduino UNO WiFi. Further, the
blocking mode is set to False before reading data from the socket and True before transmitting data to
switch between blocking mode and non-blocking mode. The goal here is to avoid blocking up the
program and ensure transmitting all pending data. Furthermore, soft resetting is executed to solve the
memory shortage problem caused by synchronizing, according to the advice from the official website
of Pycom [33].

In summary, the face detection module is responsible for locating the lecturer and the capturing
module is responsible for rotating the camera. If the face detection module fails to obtain the location
of the lecturer, the infrared tracking module is involved to locate the lecturer via detecting his/her
temperature. The rotation angle of the servo motor is determined by the detected results of the face
detection module or the infrared tracking module.
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3. Experimental Results

In this section, the experimental results are presented to evaluate the performance of the proposed
ILTC system. The first subsection describes the experimental environment. The qualitative and
quantitative analyses are then described. The last subsection shows the survey of 32 teachers on three
modes for recording online course videos.

3.1. Experimental Environment

The experiments were carried out in a classroom and a laboratory, respectively, by use of Python
3.6 with a 3.2 GHz Intel i7-8700 CPU and 32 GB RAM. The resolution of the videos is 450 × 320 and the
frame rate is 24 fps. Figure 6 shows one of the experimental scenarios, the classroom.
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Figure 6. One of the experimental scenarios.

The experimental results are related to four distances, which determine the capturing range.
As depicted in Figure 6, they are (1) the distance between two AMG8833 sensors, (2) the distance
between the sensor and the ground, (3) the distance between the camera and the whiteboard and (4)
the range of the lecturer’s movement. Table 1 gives the values of the distances in the classroom and
the laboratory.

Table 1. The distances in the classroom and the laboratory.

Scenario (1) (2) (3) (4)

Classroom 2.85 m 2.69 m 1.50 m 3.60 m
Laboratory 2.02 m 3.30 m 1.52 m 2.45 m

As shown in Figure 7a, a computer was placed in the first row of the classroom, connected with
Arduino UNO WiFi, shown in Figure 7b. Figure 7c presents AMG8833 integrated with WiPy 3.0.
Table 2 shows the list of hardware and software platforms used in the ILTC system.Sensors 2019, 19, x FOR PEER REVIEW 11 of 17 
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Table 2. Hardware and software platforms used in the intelligent lecturer tracking and capturing
(ILTC) system.

Hardware Software

Arduino UNO WiFi Arduino IDE 1.8.9
Servo Motor MG996R Pycharm in Python 3.6
Logitech C170 webcamera
Adafruit AMG8833 IR thermal sensor

ATOM 1.37.0Pycom WiPy 3.0

3.2. Qualitative Analysis

The key technologies of the ILTC system are human localization and tracking. Accordingly, we
compared the pros and cons of the proposed system with the existing localization and tracking
methods, as described in Table 3. There are two typical categories of the existing methods:
device-based [10,12–15] and learning-based methods [26,27]. Some of the device-based methods
require special and expensive devices. Further, most of them are the contact method and the
non-real-time system. For state-of-the-art learning-based human localization and tracking methods,
GPU is essential to achieve high accuracy and performance. Furthermore, abrupt and rapid movements
cause tracking failures in the learning-based methods.

Table 3. Comparative Analysis among the existing localization and tracking methods.

Technology Pros Cons

Panoramic camera and WiFi [10] Convenient construction and low cost Distorted images, not suitable for great
varying illumination and blurred face

Multi cameras [12] Indoor and outdoor localizations under
different time and weather condition

Selected places, multi cameras, contact
devices and non-real-time system

Ultra wide band [13] More robust time-delay localization Contact devices and non-real-time
system

Magnetic field and WiFi [14] Convenient construction and
high accuracy

Contact devices in a fixed
body position

Accelerometer and optical
receivers [15] High accuracy Sensitive to light noise, contact devices

Multi-domain convolutional
neural networks [26] Fast and accurate GPU-only, fail to track object with

abrupt or rapid movement

deep reinforcement learning [27] Semi-supervised learning and
high accuracy

15 fps on GPU, fail to track object with
abrupt or rapid movement

Camera, WiFi and IR thermal
sensors (the proposed
ILTC System)

Low cost, real-time stable performance,
contactless devices and convenient
construction

Temporary detecting failure

Table 3 shows that the proposed method is the optimal scheme for lecturer tracking and
capturing system in the compared methods, benefiting from low cost, real-time stable performance,
contactless devices, and convenient construction. However, although switching between blocking and
non-blocking modes and soft resetting were introduced to improve the stability of the ILTC system, the
temporary detecting failure still occurred because of the limitations of the sensor performance. That is
to say, the tracked object is lost temporarily. This may be due to two reasons: the low sampling rate of
AMG8833 IR thermal sensors and the time-consuming procedure for soft resetting of the sensors to
free up the memory. This topic is worth pursuing in future work.
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3.3. Quantitative Analysis

To evaluate the accuracy of the ILTC system, Center_rate, the ratio of the number of the frames,
in which the lecturer is in the center of the screen, and the number of all frames is calculated based on
the following equation:

Center_rate =
Center_num
Frame_num

, (4)

where Center_num is the number of the frames, in which the lecturer is captured in the center of the
screen. According to Section 2.2, if the horizontal offset between the lecturer and the screen center is
less than 50 pixels, it implies that the lecturer is in the center of the screen. Frame_num is the number of
all frames in the video. When the lecturer moves frequently, there are lots of frames captured by the
panning camera, so another ratio is considered as below.

In_rate =
In_num

Frame_num
, (5)

In_num is the number of the frames in which the lecturer appears on the screen. To illustrate the
role of IR thermal sensors, the ratios are recalculated after removing the AMG8833 sensors from the
ILTC system. Ten videos are recorded by the system without AMG8833 sensors. To compare with
them, another ten videos are further recorded by the entire ILTC system. Table 4 gives the comparative
result of the ratios in the two cases.

Table 4. Comparative result of the ratios in the two cases.

Video
Entire System Without AMG8833

Frame_Num Center_Rate (%) In_Rate (%) Frame_Num Center_Rate (%) In_Rate (%)

Video1 1705 55.72 83.28 1124 43.68 69.13
Video2 2405 60.50 91.10 1215 41.07 71.77
Video3 1928 59.02 85.53 1531 53.23 66.04
Video4 1945 66.02 89.97 1693 52.22 66.69
Video5 1999 63.08 86.99 2234 46.20 65.76
Video6 2259 64.81 83.05 1978 49.80 66.73
Video7 2181 58.28 84.09 2089 41.31 61.51
Video8 2405 60.29 87.03 1355 48.63 65.17
Video9 2086 65.00 92.14 1475 45.36 63.73
Video10 2401 63.81 86.30 1666 38.90 59.00
Average 2131 61.65 86.95 1636 46.04 65.55

As indicated in Table 4, Center_rate in the entire system varies between 55.72% and 66.02%. In_rate
in the entire system varies between 83.05% and 92.14%. However, the values of these items in the
system without AMG8833 sensors are much lower than the values in the entire system. As shown in
the last row of Table 4, the average of Center_rate of the entire system is greater than that of the system
without AMG8833 sensors by 15.61%, and its In_rate average is 21.40% greater. Consequently, the
introduction of IR thermal sensors greatly improves the accuracy of the ILTC system.

A total of 20 videos are recorded by the entire ILTC system in two scenarios. The results of twenty
videos are depicted in Table 5. The first seven videos are captured in the laboratory, and others are
captured in the classroom. The average Center_rate and In_rate of the videos captured in two scenarios
are calculated respectively. The total average of 20 videos is also calculated and shown in the last row
of Table 5.

As shown in Table 5, Center_rate of the videos captured in the laboratory varies between 55.72%
and 68.38%. In_rate varies between 83.05% and 91.10%. Center_rate of the videos captured in the
classroom varies between 58.28% and 72.79%. In_rate varies between 84.09% and 93.90%. The average
Center_rate of the videos recorded in the classroom is 2.26% greater than the laboratory, and the average
In_rate is 1.68% greater. In theory, the shorter the distance between the sensor and the ground, the
higher the accuracy of the ILTC system. Taken altogether, seven out of twenty videos have Center_rate
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greater than 65% and six out of them have In_rate greater than 90%. The average Center_rate is 63.97%,
and the average In_rate is 88.20%.

Table 5. The results of twenty videos captured in two scenarios.

Video Captured in the
Laboratory Center_Num In_Num Frame_Num Center_Rate (%) In_Rate (%)

Video1 950 1420 1705 55.72 83.28
Video2 1455 2191 2405 60.50 91.10
Video3 1138 1649 1928 59.02 85.53
Video4 1284 1750 1945 66.02 89.97
Video5 1261 1739 1999 63.08 86.99
Video6 1464 1876 2259 64.81 83.05
Video11 1546 2030 2261 68.38 89.78
Average 1300 1808 2072 62.50 87.10

Video Captured in the
Classroom Center_Num In_Num Frame_Num Center_Rate (%) In_Rate (%)

Video7 1271 1834 2181 58.28 84.09
Video8 1450 2093 2405 60.29 87.03
Video9 1356 1922 2086 65.00 92.14
Video10 1532 2072 2401 63.81 86.30
Video12 2067 2773 2953 70.00 93.90
Video13 2096 2742 3190 65.71 85.96
Video14 1857 2460 2716 68.37 90.57
Video15 2231 2784 3065 72.79 90.83
Video16 1880 2482 2834 66.34 87.58
Video17 1657 2446 2762 59.99 88.56
Video18 2953 4060 4614 64.00 87.99
Video19 2421 3679 3965 61.06 92.79
Video20 2800 3651 4223 66.30 86.46
Average 1967 2692 3030 64.76 88.78

Total Average 1733 2383 2695 63.97 88.20

3.4. Survey

In order to assess the practicality of the ILTC system, we surveyed 32 teachers from two universities
including departments of mechanics, chemistry, electronics, management, and general education on
three modes for recording online course videos described in Figure 1, which are:

1. Mode A: Capturing in office or professional studio.
2. Mode B: Capturing with static camera in classroom.
3. Mode C: Auto tracking and capturing in classroom.

The 32 teachers scored the four items of the three modes described on the survey questionnaire,
using a 5-point Likert scale (1=strongly disagree, 5=strongly agree). The surveyed items include:

1. Acceptability: reasonable time and financial costs.
2. Simplicity: simple to operate, non-manually.
3. Appeal: helpful to bring out the enthusiasm of the lecturer.
4. Effectiveness: effective to satisfy the audience’s requirement.

For easy comparison between the three modes, the mean score is calculated on each item. As shown
in Figure 8, all of the scores in mode C are greater than those of the other two modes, especially in
terms of acceptability and simplicity. That is to say, most of the respondents considered that mode C
has more reasonable costs than the other two modes. Meanwhile, they thought that Mode C was the
simplest way to operate the capturing system among the compared modes. All modes were considered
effective to satisfy the audience’s requirement. Of the survey respondents 37.5% had experience in
recording course video in professional studios. All of them gave the lowest scores in acceptability to
mode A for its high time and financial costs.
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4. Conclusions

This study proposes an intelligent lecturer tracking and capturing system by taking the advantages
of artificial intelligence and wireless sensing technology. The proposed ILTC system consists of three
modules: face detection module, capturing module, and infrared tracking module. In the face detection
module, the location of the lecturer is obtained by detecting the face of the lecturer. Afterwards, the
camera is panned toward the lecturer in the capturing module. If the face detection module fails to
detect the lecturer, an infrared tracking module can contribute to lecturer detection by IR thermal
sensors. The experimental result indicates that the proposed system can automatically track and
capture the lecturer, placing him/her in the center of the screen. By comparing the proposed system
with the other two capturing modes on surveying the teachers from different departments, it was
proved that the ILTC system has greater practicality.

In order to further improve the accuracy of the ILTC system, learning-based tracking methods
for abrupt and rapid movements and sensing technologies with low memory requirements can be
considered as a topic for future research.
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