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Abstract: The fingerprint method has been widely adopted in Wi-Fi indoor positioning because of its
advantage in non-line-of-sight channels between access points (APs) and mobile users. However,
the received signal strength (RSS) during the fingerprint positioning process generally varies due to
the dissimilar hardware configurations of heterogeneous smartphones. This difference may degrade
the accuracy of fingerprint matching between fingerprint and test data. Thus, this paper puts
forward a fingerprint method based on grey relational analysis (GRA) to approach the challenge
of heterogeneous smartphones and to improve positioning accuracy. Initially, the grey relational
coefficient (GRC) between the RSS comparability sequence of each reference point (RP) and the RSS
reference sequence of the test point (TP) is calculated. Subsequently, the grey relational degree (GRD)
between each RP and TP is determined on the basis of GRC, and the K most relational RPs are selected
in accordance with the value of GRD. Finally, the user location is determined by weighting the K
most relational RPs that correspond to the coordinates. The main advantage of this GRA method
is that it does not require device calibration when handling heterogeneous smartphone problems.
We further carry out extensive experiments using heterogeneous Android smartphones in an office
environment to verify the positioning performance of the proposed method. Experimental results
indicate that the proposed method outperforms the existing ones no matter whether heterogeneous
smartphones are used.

Keywords: Wi-Fi fingerprint; grey relational analysis; heterogeneous smartphones; indoor positioning

1. Introduction

At present, location-based service requirements have rapidly increased. Nowadays, the global
navigation satellite system (GNSS) can satisfactorily addressed location service requirements in
outdoor environments. However, GNSS cannot meet the indoor positioning requirement because of
the fading signal and multipath effect in indoor environments [1–3]. Several technologies, such as
ultrasound, Wi-Fi, RFID, Bluetooth, ZigBee, geomagnetic positioning, and ultrawide band, have been
used for indoor positioning. Amongst these technologies, indoor positioning with Wi-Fi has attracted
considerable attention because it does not require additional equipment and has low cost [4]. Several
methods, such as angle of arrival (AOA), time of arrival (TOA), time difference of arrival (TDOA), and
fingerprint method, have been adopted in Wi-Fi indoor positioning [5–11]. AOA, TOA, and TDOA
require point-to-point distance or angle information. These methods have simple calculations, but
they are developed under the condition of line-of-sight (LOS) channels between access points (APs)
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and mobile users. The fingerprint method does not require LOS propagation between APs and mobile
users and has been widely adopted for indoor positioning [12–21].

Smartphones are becoming highly intelligent with the development of science and technology.
Smartphones can help in solving many problems, such as navigation and positioning, which have
become a part of people’s lives. The use of a smartphone-based positioning system is convenient
because of the popularity and abundance of various embedded sensors in smartphones. On this basis,
several studies investigated smartphone-based indoor positioning and various solutions have been
presented in the literature [22–24]. Common fingerprint methods firstly collect the received signal
strength (RSS) data and corresponding coordinate information as the fingerprint database at each
reference point (RP) in the offline phase. In the online phase, the user’s location can be determined with
the best-fitted fingerprint by comparing the online-measured RSS with the fingerprint database [25–29].
Several conventional matching algorithms, such as K nearest neighbour (KNN) [30], weighted KNN
(WKNN) [31], and Bayesian probability algorithm [32], can be used as fingerprint methods. Meanwhile,
Euclidean distance is widely adopted in KNN and WKNN. RSS data are usually collected using the
same smartphone in the offline and online phases when these conventional algorithms are used for
fingerprint matching; otherwise, heterogeneous smartphone problems can be hardly avoided and
positioning accuracy is degraded. Such phenomenon is caused by the collected RSS data, which are
influenced by certain hardware factors, such as antenna gains, antenna location, and different WLAN
chipsets [33]. The heterogeneous smartphone problem mentioned in this work indicates that the RSS
data are collected by using heterogeneous smartphones in the offline and online phases.

Haeberlen et al. [34] and Kjærgaard et al. [35] presented different device calibration methods,
namely, manual, quasi-automatic, and automatic, to solve this problem. Such device calibration methods
are used to mitigate the influence of RSS difference due to the use of heterogeneous smartphones.
These methods are time consuming and have low scalability as the number of new smartphones
increases. They acquire the calibration parameters by training samples. Laoudias et al. [36] presented
a self-calibration method, which did not need to collect a series of RSS data at several known locations
with a pair of heterogeneous devices and which did not require any user intervention for calibration.
The online RSS data of user device were calibrated and updated in the positioning process. Although it
is a self-calibration method (SC), the method still needs a calibration process, which adds the complexity
of positioning. Moreover, the accuracy is not adequate at the beginning of positioning because the
device has not been calibrated at the beginning. Tsui et al. [37] reduced the training time of smartphones
to address the time-consuming problem for realising rapid device calibration. Nevertheless, it is still
impractical for all kinds of smartphones to be trained. Therefore, device calibration-free methods were
investigated to reduce the effects caused by the use of heterogeneous smartphones.

A type of device calibration-free method, which does not need to collect training data for
device calibration, utilises the RSS difference between APs or locations to mitigate the effect of
using heterogeneous smartphones. Shu et al. [38] proposed a gradient fingerprinting method, which
leveraged RSS differences amongst locations. Firstly, the method creates a gradient-based fingerprint
map by comparing the absolute RSS values at nearby positions. Secondly, it runs an online extended
particle filter to determine the user position. Dong et al. [39] used the signal strength difference
between pairwise APs, which are called difference of signal strength (DIFF), to reduce the impact of
using heterogeneous smartphones. Hossain et al. [40] proposed an enhanced method called signal
strength difference (SSD), which selected a DIFF independent subset to reduce computational overhead.
Liu et al. [41] and Kjærgaard et al. [42] utilised signal strength ratios, such as hyperbolic location
fingerprinting (HLF), as fingerprints to overcome the hardware variance problem and to minimise
the positioning error. The device calibration-free methods based on RSS difference reduce time
consumption and increase adaptability for heterogeneous smartphones. However, these methods are
used at the expense of losing certain discriminative information. Fang et al. [43] established a novel
positioning feature called delta-fused principal strength to improve the accuracy and to solve the
problem of Wi-Fi positioning when heterogeneous smartphones were used. The main idea utilises the
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complementary advantages of various positioning features. However, the aforementioned methods
based on the RSS difference led to a potential reduction in accuracy when RSS data in the offline and
online phases are collected using homogenous smartphones [44].

Another type of device calibration-free method uses the similarity between fingerprint and online
RSS data instead of the conventional Euclidean distance. Han et al. [45] and Caso et al. [46] presented
a fingerprint algorithm based on cosine similarity and Pearson’s correlation, respectively. These
approaches do not require device calibration and complicated computation. However, maintaining
a desired positioning accuracy for these methods in the real-world environment is difficult because
the methods assume that the RSS differences caused by heterogeneous mobile devices are constants.
In complex indoor environments, the positioning effect of these methods are not ideal.

In addition, other device calibration-free methods were presented. Yang et al. [47] built RSS
datasets from all APs at test point (TP) and each RP, and the subset of each AP in each dataset contained
the APs with lower RSSs than it. The similarity of TP and RP fingerprints can be determined by
the accumulating number of common subset sizes of each AP in the dataset for positioning. The
method uses only relative relationship information among RSS values rather than absolute RSS values.
Chen et al. [48] proposed an algorithm based on the idea of longest common subsequences (LCS) to
deal with the AP changes and RSS variation of heterogeneous devices in an AP-intensive environment.
The method utilizes similarities between TP and RP fingerprints for positioning. The similarity of two
fingerprints can be determined by the length of the longest common subsequence between TP and
RP fingerprint sequences ordered by signal strengths. However, the two methods need a lot of APs
deployed, and the positioning performance is not ideal when the number of APs is not enough.

Since the grey system theory was proposed in 1982, it has been widely applied in social and
economic fields because of its advantages in evaluating complex systems with multiple criteria and
multiple factors, such as investment returns of various sectors of national economy, analysis of regional
economic advantages, and adjustment of industrial structure [49,50]. Grey system theory puts forward
the concept of GRA for a system. GRA is a multifactor analysis method. The basic principle is to
determine the close degree of multifactor in a system by comparing the geometric relationship between
reference and comparability sequences. The closer the geometric shape of sequence curves is, the
larger the GRD between them is. Conversely, if the curves are remarkably different, the GRD between
them becomes small. Thus, the GRA is also used by researchers in positioning and location recognition.
Du et al. [51] investigated a novel TOA-based location estimation algorithm by using cellular geometric
analysis and GRA. Xiao et al. [52] realised human location recognition based on GRA. This method
could determine whether the user’s location is an indoor or outdoor environment in order to decide
whether to offer wireless network access. The grey systems are called “grey”, implying poor, incomplete,
and uncertain information. Therefore, GRA is suitable for small data samples; nonlinear, existing
uncertain information; and samples without typical distribution regulation. When the fingerprint
method is used for positioning in heterogeneous smartphones, the RSS sample only contains RSS
data from several APs at each RP in the fingerprint database and there is not enough RSS data for the
sample. The RSS samples at each TP and RP do not have typical distribution regulation. The pair
curves consisting of RSS data from all APs using heterogeneous smartphones at the same location are
not absolutely similar, and a nonlinear relation between them in the real-world environment exists.
In the positioning process, the relational degree between each RP and the TP is also uncertain. In these
cases, GRA is beneficial for solving the heterogeneous problem of smartphones in fingerprint methods.
Therefore, a device calibration-free fingerprint method based on GRA is proposed.

In this method, firstly, average RSS data received from all APs at the TP form a reference sequence
and average RSS data received from all APs at each RP form each comparability sequence. Then, the
grey relational coefficient (GRC) between the RSS comparability and reference sequence is calculated by
the RSS difference between curves, which is used to describe the correlation between them. Next, GRD
is calculated by the GRC between reference and comparability sequences. The closer the comparability
sequence curve is to the reference sequence curve, the larger the GRD between them is. Subsequently,
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the K most relational RPs are selected. Finally, the user location is determined by weighting K
most relational RPs that correspond to the coordinates. This above-proposed method guarantees the
completeness of RSS information. Moreover, the method is applicable to the nonlinear relationship
between vectors and has no requirement for typical distribution regulation of vectors. This method
avoids the fingerprint matching errors of conventional positioning methods by using similarity of
comparability and reference sequences. The proposed method can adapt to the changes of RSS data
between two vectors better than other fingerprint methods in terms of similarity because the GRD
is determined by the RSS difference between curves, which does not require complete similarity
between curves. Another advantage of the method is that it can avoid missing the raw RSS fingerprint
information compared with other RSS difference-based fingerprint methods. In addition, the proposed
GRA method also has the advantages of less calculation and of a simple principle. The positioning
performance of the proposed method is improved whether heterogeneous smartphones are used.

The remainder of this work is organised as follows: Section 2 analyses the RSS difference and
positioning performance of conventional fingerprint methods when heterogeneous smartphones are
used. Section 3 illustrates the proposed GRA-based device calibration-free fingerprint method in
detail. Section 4 evaluates the experimental results of the GRA-based fingerprint method. Section 5
summarises our conclusions.

2. Impact of Heterogeneous Smartphones on Fingerprint Positioning

In this section, the RSS difference of heterogeneous smartphones is analysed and the influence of
heterogeneous smartphones on positioning accuracy is discussed. The result indicates that the received
RSS data have large differences and that the positioning performance of conventional fingerprint
algorithms is degraded when heterogeneous smartphones are used.

2.1. Difference Analysis of RSS Collected by Heterogeneous Smartphones

An experiment is carried out in a conference room to analyse the influence of heterogeneous
smartphones on RSS. Two heterogeneous smartphones are used to measure the RSS data from the same
AP and location. A total of 300 RSS data are collected within 5 min at a frequency of 1 Hz. Figure 1a
shows the results. Differences in the RSS values are observed when heterogeneous smartphones are
used, and the average difference of RSS data collected by two heterogeneous smartphones over a
period of time is approximately 8 dBm.

Another experiment is designed to further analyse the difference of the collected RSS data from
various APs in the same location using heterogeneous smartphones. Four heterogeneous smartphones
are used to collect RSS data from 16 APs at the same location. RSS data are collected for 5 min at a
frequency of 1 Hz. Figure 1b shows the results. Each curve consists of the average RSS data collected
from 16 APs. The result also shows that the RSS data collected by using heterogeneous smartphones
significantly vary, thereby further verifying the effect of smartphone heterogeneity on the RSS value.
Figure 1b also shows that the measured RSS data from some APs using Mi 6 smartphones are the
strongest but that the measured RSS data from other APs using Mi 6 smartphones are the weakest.
The reason is that the collected RSS data from some APs using Mi 6 smartphones are incomplete and
missing. We default the missing data for a constant of −95 dBm as preprocessing of the missing data. If
part of the collected RSS data is missing, the average value from some APs over a period of time will be
reduced. This figure clearly indicates that the curve shapes display a relatively consistent fluctuating
trend even though differences between any pair of curves from various smartphones exist. However,
any pair of curves from heterogeneous smartphones is not absolutely similar. Specifically, one curve
cannot be absolutely coincident with another one via translation operations. The influence of RSS
differences on positioning performance will be discussed in the next sections.
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Figure 1. Variations in received signal strength (RSS) values resulting from different conditions: (a) 
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at the same location. 
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Figure 1. Variations in received signal strength (RSS) values resulting from different conditions: (a) The
RSS value collection from the same access point (AP) using two heterogeneous smartphones at the
same location and (b) the RSS value collection from the 16 APs using heterogeneous smartphones at
the same location.

2.2. Influence of Added Test Constant on the Positioning Performance for the Same Smartphone

In the previous experiment, the RSS value has differences when heterogeneous smartphones are
used. Thus, we hypothesize that differences between the received RSS in the offline and online phases
affect positioning performance. An experiment is designed to verify this conjecture. The experiment is
conducted in an office building of the School of Geodesy and Geomatics, Wuhan University. The office
area measures 6.4 m × 12.8 m. Nine APs are distributed in the office as transmitters. A total of 28 RPs
and 39 TPs are present in the office. RSS data are collected for 1 min at a frequency of 1 Hz at each
RP and TP. RSS data are collected by using the same smartphone in the offline and online phases.
Conventional algorithms are adopted in the experiment. The positioning performance is tested by
adding several constants in the online phase on the basis of RSS data collected from TPs. Figure 2a
shows the positioning results of all TPs. When the RSS data collected from TPs are truth values in the
offline and online phases, the positioning accuracy of the WKNN algorithm is optimal. The positioning
accuracy of WKNN algorithm is decreased when the RSS values from TPs add a constant of five
compared with the truth values in the online phase. The positioning accuracy gradually decreases
with the increase in the constant value (Figure 2a). The positioning results of the all TPs are calculated
by using the Bayesian algorithm (Figure 2b). The results also show that the positioning accuracy
of the Bayesian algorithm gradually decreases with the increase of the constant in the online phase.
Therefore, the difference between the received RSS in the offline and online phases evidently affects the
positioning performance.
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2.3. Influence of Heterogeneous Smartphones in Conventional Positioning Methods

A new experiment is designed to further verify the influence of heterogeneous smartphones on
positioning accuracy. The experimental setting is the same as that in Section 2.2. The RSS data are
collected by using two heterogeneous smartphones in the offline and online phases. The WKNN and
Bayesian algorithms are used for positioning in this experiment. In Figure 3, the test results show
that the positioning performance of the WKNN algorithm using the same smartphone outperforms
the WKNN algorithm when heterogeneous smartphones are used. The positioning performance of
the Bayesian algorithm using the same smartphone also outperforms the Bayesian algorithm when
heterogeneous ones are used. Accordingly, the positioning performance of conventional methods
is not ideal and presents degradation when heterogeneous smartphones are used in the offline and
online phases.
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Figure 3. Comparison of the positioning performance of conventional methods in the same and
different smartphones.

The RSS differences and positioning performances of conventional methods in heterogeneous
smartphones are analysed. The results show that there is a difference between the RSS values and that
the positioning performance of conventional methods are degraded when heterogeneous smartphones
are used. Therefore, we aim to explore a novel fingerprint method to improve the positioning
accuracy when heterogeneous smartphones are used. Accordingly, a GRA-based device calibration-free
fingerprint method is proposed. The positioning performance of the proposed method will be analysed
and compared in detail in the subsequent sections.

3. GRA-Based Fingerprint Method

GRA is a multifactor analysis method in grey system theory, which analyses uncertain relations
between one main factor and all the other factors. GRA usually is used to determinate the relational
degree according to the similarity of the geometric shape among factors. In the GRA-based fingerprint
method, the GRD is used to determine user location through the similarity between the reference
sequence and the comparability sequence. The closer the comparability sequence curve is to the
reference sequence curve, the larger the GRD between them is.

A GRA-based device calibration-free fingerprint method is proposed to mitigate the impact of
heterogeneous smartphones on positioning performance. The positioning performance is improved
by the proposed method when heterogeneous smartphones are used. In this section, the GRA-based
device calibration-free fingerprint method is described with an overall positioning flow.

3.1. Overview of GRA-Based Fingerprint Method

Fingerprint positioning is a widely used method for Wi-Fi indoor positioning because it does not
require LOS conditions. Conventional fingerprint methods consist of two phases, namely, offline and
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online phases. In the offline phase, the location area is divided into grids. The RPs are deployed in the
grids. The RSS values at each RP are collected at preset time intervals. The collected RSS data are used
as fingerprint data in the offline phase. The RSS data, MAC addresses of Aps, and location information
of RPs are used to develop the fingerprint database. In the online phase, the online RSS data measured
at unknown user locations are firstly collected to determine user location. Secondly, the online RSS
data and fingerprint of the fingerprint database are matched according to the conventional positioning
algorithms, such as WKNN and Bayesian, to find the nearby RPs. Finally, the user location is estimated
according to the corresponding coordinates of the selected RPs. In this work, the GRA-based method
is proposed on the basis of fingerprint positioning. Figure 4 shows the processing procedure of the
proposed method. Such a procedure can be divided into three parts, namely, offline, online collecting,
and online matching phases. In the offline phase, the process of creating the fingerprint is the same
as that of the conventional methods. In the online collecting phase, we only collect the RSS data at
the TP. In the online matching phase, online RSS data are firstly used as a reference sequence and the
fingerprint database is used as comparability sequences. The GRC between the RSS comparability
sequence of RP and the RSS reference sequence of the TP is subsequently calculated, and the GRD is
obtained by the GRC. Finally, the K most relational RPs are selected by using the GRD between each
RP and TP. The user location is determined by weighting K coordinates associated with the K most
relational RPs. Figure 5 illustrates the GRA-based fingerprint positioning method.
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Figure 4. Overview of the fingerprint positioning method based on grey relational analysis.

3.2. Implementation of Fingerprint Method Based on GRA

In this work, our approach consists of three phases, namely, offline, online collecting, and online
matching phases. Firstly, a fingerprint database is developed by using the RSS data collected at each
RP. Secondly, the online RSS data are collected at a TP. Finally, GRC and GRD between reference and
comparability sequences are calculated and the user location is determined. Each phase is explained in
the following sections.

The RSS data are collected from different APs at each RP to develop a fingerprint database. Each
RP location is known. A total of 60 RSS data are collected within 1 min at each RP, and the average RSS
value of each RP is calculated as fingerprint data. The fingerprint data, MAC addresses of all Aps, and
location information of RPs are used to develop the fingerprint database. In Equation (1), FDRP is a
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matrix of the fingerprint data and RSSi, j is the average of the collected RSS data of the jth AP at the ith
RP. n and L represent the total amount of deployed APs and RPs in the environment, respectively.

FDRP =



RSS1,1 RSS1,2 RSS1,3 · · · RSS1,n
RSS2,1 RSS2,2 RSS2,3 · · · RSS2,n

RSS3,1 RSS3,2 RSS3,3 · · · RSS3,n
...

...
... · · ·

...
RSSL,1 RSSL,2 RSSL,3 · · · RSSL,n


(1)

In the fingerprint data, the RSS data vector from all APs at each RP is defined as a comparability
sequence. The comparability sequences of all RPs form a comparability sequence matrix. In
Equation (2), CSRP is a comparability sequence matrix and each column of the matrix represents a
comparability sequence.

CSRP = FDRP
T (2)

The collected average RSS data from all APs at a TP is used as a reference sequence. As shown in
Equation (3), RSTP is a reference sequence vector.

RSTP =
(

RSS1 RSS2 RSS3 · · · RSSn
)T

(3)

In grey relational analysis, reference sequence and comparability sequence cannot be compared
directly since they may have different dimensions and magnitudes. Therefore, normalization is
needed to translate the original sequence to a comparable sequence, which is generally dimensionless.
Data normalization is also necessary when the sequence scatter range is large. According to the
characteristics of data sequence, there are some normalized methods for grey relational analysis such
as zero-mean normalization, min-max normalization, initialization method, and mean value method.
In this paper, the units of data between original reference and comparability sequences are the same.
Thus, the original sequences only need to be simply normalized by the most basic methodology to
reduce the sequence scatter range, i.e., let the values of original sequence be divided by the mean of
the sequence. In Equation (4), RSS∗i, j is a normalized result of the RSS data of the jth AP at the ith RP (i
= 1, 2, . . . , L; j = 1, 2, . . . , n).

RSS∗i, j =
RSSi, j

1
n

n∑
k=1

RSSi,k

(4)

In Equation (5), RSS∗j is a normalized processing result of the RSS data of the ith AP at a TP (j = 1,
2, . . . , n).

RSS∗j =
RSS j

1
n

n∑
k=1

RSSk

(5)

From the geometry analysis, the GRD is the similarity between the reference and the comparability
sequence curves. The closer the comparability sequence curve is to the reference sequence curve,
the larger the GRD between them is. Conversely, if the curves are remarkably different, the GRD
between them becomes small. Therefore, the RSS difference between curves can be used as a scale
standard of GRD. Firstly, the RSS absolute differences between the elements of the comparability
sequence of each RP and the elements of the reference sequence of TP are calculated in Equation (6)
to determine the GRC. The maximum and minimum RSS differences are then obtained in all RSS
differences between comparability and reference sequences (Equations (7) and (8)). Finally, GRC is
calculated by using Equation (9).

∆i, j =
∣∣∣∣RSS∗j −RSS∗i, j

∣∣∣∣ (6)
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where ∆i, j is the RSS absolute difference between the jth AP at the ith RP (i = 1, 2, . . . , L; j = 1, 2, . . . , n)
and the jth AP at the TP.

∆min =
L

min
i=1

n
min
j=1

∆i, j (7)

∆max =
L

max
i=1

n
max
j=1

∆i, j (8)

ri, j =
∆min + ρ∆max

∆i, j + ρ∆max
(9)

where ri, j indicates the GRC between the RSS data of the jth AP at the ith RP (i = 1, 2, . . . , L; j = 1, 2, . . . , n)
and RSS data of the jth AP at the TP. ∆max is the maximum RSS difference in all RSS differences between
the comparability and reference sequences, and ∆min is the minimum one. ρ is the identification
coefficient, which is a value between 0 and 1, and 0.5 is generally used. This identification coefficient is
introduced artificially to improve the difference between GRCs.

The GRD represents the level of correlation between the reference sequence and the comparability
sequence. Due to the GRD between each comparability sequence and reference sequence being
reflected by n GRCs, GRD is not easy to compare when the correlation information is scattered.
Therefore, it is necessary to centralize the correlation information. Average value is a method of
information centralization. That is, the GRD between the comparability and reference sequences
can be quantitatively reflected by the average value of the all GRCs of each factor between the
comparability sequence and the reference sequence. GRD is calculated by the GRC between reference
and comparability sequences.

Ri =
1
n

n∑
j=1

ri, j (10)

where Ri is the GRD between the ith RP and TP (i = 1, 2, . . . , L). The value of Ri represents the
correlation level. If R2 is larger than R1, then the correlation between the second RP and TP is higher
than that between the first RP and TP.

We sort amongst RPs, select the K most relational RPs by GRD between each RP and TP, and
calculate the weight of the K RP with the corresponding GRD in Equation (11) to obtain the user
location. In Equation (12), the user location is obtained by weighting K coordinates associated with the
K most relational RPs.

wi =
Ri

K∑
t=1

Rt

(11)

where Ri is the GRD between the ith RP and the TP and wi represents the weight of the ith RP in the K
RPs (i = 1, 2, . . . , K).

(x, y) =
K∑
i

wi(xi, yi) (12)

where (x, y) denotes the coordinates of the user location and (xi, yi) denotes the ith most relational RP
that correspond to the coordinates (i = 1, 2, . . . , K).

4. Experiments and Results

In this study, the experiments are conducted to evaluate the performance of the proposed
fingerprint method. The evaluation metrics of the positioning performance are selected in Section 4.2.
Several factors, such as K values that influence the positioning methods and selection of Max AP, are
discussed in Section 4.3. The comparison of the positioning performance of the different methods
under heterogeneous smartphones is provided in Section 4.4.
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4.1. Experimental Setup

The positioning performance of the proposed algorithm is tested. The experiment is conducted in
an office building of the School of Geodesy and Geomatics, Wuhan University. The office area measures
6.4 m × 12.8 m. The AP and RP locations are shown in Figure 5. Nine APs are distributed in the office as
transmitters, and their locations are unknown. Two transmitter models are presented. The first model
is a TL-WR842N wireless router, which has two transmitting antennas and only transmits 2.4 GHz
band signals. The second model is a TL-WDR5620 wireless router, which can transmit two kinds of
frequency band signals, namely, 2.4 GHz and 5 GHz. The TL-WDR5620 wireless router has three
transmitting antennas. The green circles represent the RPs. The location of each RP is known. The blue
symbol indicates the TL-WR842N wireless router, and another model is represented by the purple
symbol. The distance between two consecutive RPs is 1.6 m. The red diamond symbols represent the
TPs. A total of 28 RPs and 39 TPs are deployed in the office.
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points (RPs), and the red, diamond symbols represent test points (TPs).

On the software side, the RSS data are collected by a smartphone application developed by our
research team. We perform the same setting in the process of collecting RSS data at each TP and RP.
Four heterogeneous smartphones are used to collect the RSS data at a rate of 1 Hz. Table 1 shows the
Wi-Fi modules from the four heterogeneous smartphones. Smartphones from distinct brands usually
have different Wi-Fi modules from various manufacturers. In addition, various smartphone models
from the same brand may have different Wi-Fi modules. The antenna positions of each smartphone
may be different in smartphones of distinct brands. In order to eliminate the effect of body shadowing
on positioning, the RSS data are collected from four different orientations: east, west, north, and south.
The RSS data are collected in each direction for 15 s for a total of 60 s (60 RSS data) at each RP and TP.
When RSS data are simultaneously collected from four heterogeneous smartphones at each TP and RP,
each smartphone is in the hand, held at chest level, and maintains the same pose in the experimental
scene of Figure 6. For convenience, an independent coordinate system is established in the office
for positioning.
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Figure 6. Photos of the experimental scene: (a,b) experimental scene photos from different angles and
(c) data status collection.

Table 1. Wi-Fi module conditions of heterogeneous smartphones.

Smartphones Wi-Fi Module Standards Antenna Position

Redmi 5plus Qualcomm-QFE2101 IEEE 802.11 a/b/g/n Both near top and bottom
Honor 9 Broadcom-BCM43455XKUBG IEEE 802.11 a/b/g/n/ac Near upper left

Redmi Note 3 MT6630QP IEEE 802.11 a/b/g/n/ac Near bottom of the phone
Mi 6 Qualcomm-WCN3990 IEEE 802.11 a/b/g/n/ac Near the four corners

4.2. Evaluation Metrics of Positioning Performance

The mean absolute error (MAE), standard deviation (STD), and root mean square error (RMSE) are
selected as accuracy evaluation metrics to evaluate positioning performance. The absolute errors are
calculated by the Euclidean distances between the estimated and true coordinates at TPs. Uncertainty
is commonly used in measurements [53]. Uncertainty of measurement refers to doubt on the result of
any measurement. Error refers to the difference between the measured and true values. Uncertainty is
a quantification of the doubt about the measurement result. Here, standard uncertainty (STU) is used
as an evaluation metric of positioning performance. The definitions of the evaluation parameters are
listed in Table 2.

Table 2. Definition of evaluation parameters.

Evaluation Parameters Definition

Estimated TP Location TL
True TP Location TLtruth
Absolute Error errTL = |TL− TLtruth|

Mean Absolute Error errTL = 1
N

N∑
k=1

(∣∣∣TLk
− TLk

truth
∣∣∣)

Standard Deviation

√
1

N−1

N∑
k=1

(∣∣∣errTLk − errTL
∣∣∣)2

Standard Uncertainty

√
1

(N−1)N

N∑
k=1

(∣∣∣errTLk − errTL
∣∣∣)2

Root Mean Square Error

√
1
N

N∑
k=1

(
TLk − TLk

truth
)2

4.3. Parameter Analysis of Different Positioning Methods

In the proposed method, some parameter settings will affect the positioning accuracy.
The positioning results with different parameters, namely, the K value and number of Max AP,
are analysed to determine the optimal parameters of the method for achieving the optimal positioning
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performance. We firstly rank all APs by using the received RSS data from each AP in a descending
order at each RP to determine the number of Max AP. Subsequently, we select the Top-N APs from the
descending sequence at each RP. Thereafter, the appearance frequency of each AP is counted in Top-N
APs of all RPs. Finally, we select the n (n < N) most-counted APs.

Figure 7a shows that the mean errors of all TPs are calculated by the WKNN and proposed method
and that the error changes with the K value. Figure 7a demonstrates that the positioning error shows a
decreasing trend with the increase of K. The positioning error gradually increases when it is reduced to
a certain extent. Accordingly, the positioning results of K = 4 and K = 8 are optimal with the GRA and
WKNN algorithms in the office scenario, respectively.

Figure 7b presents that the mean errors of the WKNN algorithm and proposed GRA-based method
changed with the increase in the selected Max APs. When the numbers of the selected Max APs are 6
and 13, the positioning results are optimal with the proposed GRA method and WKNN algorithm,
respectively. However, when the numbers of the selected Max APs exceed 6 and 13, the positioning
errors of the two methods demonstrate a slight change. This condition is attributed to all APs deployed
in the same office, and RSS data from most APs have differences. When the number of selected Max
APs is less than six, the positioning errors of the two methods have a notable change. This finding is
attributed to the RSS fingerprint from a few APs at certain RPs, which are unstable due to existing
pillars and office separators in the experimental environment. Thus, the optimal parameter setting can
help improve the positioning accuracy.
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Figure 7. Positioning performance of the conventional fingerprint method and proposed method with
the parameter changing: (a) parameter K and (b) the number of selected Max access points (APs).

4.4. Performance Evaluations of the Proposed Positioning Method

To test the positioning performance of the proposed GRA-based fingerprint method when
heterogeneous smartphones are used, we selected RSS data from a pair of heterogeneous smartphones.
The positioning performance of the different fingerprint methods are compared under heterogeneous
and same smartphones. Our experimental results are shown in Figure 8 and Table 3. The RSS data from
the same Redmi 5plus smartphone in the offline and online phases are used to verify the positioning
performance of different methods when the same smartphones are used. The result is shown in
Figure 8a and Table 3. The positioning error probability within 1.5 m for the proposed method based
on GRA is better and above 10% compared with the other positioning methods based on Euclidean
distance and similarity. The mean positioning error of the proposed fingerprint method is reduced by
more than 0.1 m compared with Bayesian, cosine similarity (CS), and Pearson correlation ratio (PCR),
and the proposed method enhances the positioning accuracy by more than 8% compared with the
three other methods. The positioning performance of the proposed method slightly improved when
the same smartphone is used.

In this work, we mainly consider the positioning performance when heterogeneous smartphones
are used. Three pairs of heterogeneous smartphones are compared in Figure 8b–d and Table 3.
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The probability of error within 2 m for the proposed GRA-based method is better by 20% compared
with the other positioning methods in Figure 8b,c and above 10% in Figure 8d. The mean positioning
error of the proposed fingerprint method is reduced by 0.3 m, and the proposed method enhances
the positioning accuracy by more than 15% compared with the four other methods in Table 3.
The positioning performance of the proposed GRA-based fingerprint method is improved when
heterogeneous smartphones are used. In addition, the positioning performances of CS and PCR are
mostly unsatisfactory. This condition is attributed to the methods, which only utilise similarity to match
fingerprint, and the fingerprint and test data do not effectively match. However, the fingerprint and
test data can achieve optimal matching when the proposed method uses heterogeneous smartphones.
In Table 3, the RMSE of the proposed fingerprint method is also reduced compared with the
other methods. The positioning precision of the proposed fingerprint method is improved under
heterogeneous smartphones. In Table 3, we can see that the STD and STU values of the proposed
GRA method is minimal among the all methods, which indicates that the proposed method has good
stability and availability in positioning performance. Table 3 also shows that the positioning errors of
all methods that use heterogeneous smartphones are larger than those that use the same smartphone.
The result indicates that the positioning performance of the proposed fingerprint method outperforms
the other methods when heterogeneous smartphones are used. The comparison results in Figure 8b–d)
shows that the positioning errors of all methods for any two pairs of different smartphones vary.
By contrast, the positioning performance of the proposed fingerprint method is optimal in each pair of
heterogeneous smartphones.
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Figure 8. Comparison of positioning performance for different methods under heterogeneous and
the same smartphones: Fingerprint data are collected with the Redmi 5plus smartphone in the offline
phase, and the test data are collected with four different smartphones in the online phase: (a) Redmi
5plus, (b) Honor 9, (c) Redmi Note 3, and (d) Mi 6.
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Table 3. Detailed positioning errors for different methods under heterogeneous and the
same smartphones.

Fingerprint
Data

Testing
Data Method MAE

(m)
RMSE

(m)
STD
(m)

STU
(m)

Redmi5
plus

Redmi5
plus

WKNN 1.3824 1.4908 0.5653 0.0905
Bayesian 1.5139 1.8072 0.9998 0.1601

CS 2.1217 2.3199 0.9505 0.1522
GRA 1.2682 1.3687 0.5214 0.0835
PCR 2.0520 2.1991 0.8009 0.1282

Redmi5
plus Honor 9

WKNN 1.7378 1.8728 0.7235 0.1159
Bayesian 1.8328 2.1251 1.0897 0.1745

CS 2.6342 2.8704 1.1550 0.1849
GRA 1.3302 1.5240 0.7074 0.1133
PCR 2.5834 2.8058 1.1090 0.1776

Redmi5
plus

Redmi
Note 3

WKNN 1.8772 2.0375 0.8025 0.1285
Bayesian 2.1427 2.4307 1.1627 0.1862

CS 2.6682 2.9119 1.1815 0.1892
GRA 1.5288 1.7205 0.7997 0.1281
PCR 2.6188 2.8272 1.0794 0.1728

Redmi5
plus Mi 6

WKNN 2.4767 2.7356 1.1769 0.1885
Bayesian 3.1304 3.6815 1.9630 0.3143

CS 2.6776 2.9156 1.1690 0.1872
GRA 2.1027 2.3112 0.9718 0.1556
PCR 2.5581 2.7549 1.0360 0.1659

To further verify the positioning performance of the proposed GRA-based fingerprint method,
we selected RSS data from another pair of heterogeneous smartphones. The positioning performance
of the different fingerprint methods are compared under heterogeneous and the same smartphones.
The experimental results are shown in Figure 9 and Table 4. Here, the RSS data from the Honor 9
smartphone are used as fingerprint data and the RSS data of four different smartphones are used as
test data. In Figure 9, the positioning performance of the proposed GRA-based fingerprint method is
also improved under heterogeneous smartphones. Table 4 shows that the mean positioning error of the
proposed fingerprint method is also reduced compared to the others. The positioning accuracy of the
proposed fingerprint method outperforms other methods when heterogeneous smartphones are used.
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Redmi5 
plus 

Honor 9 

WKNN 1.7378 1.8728 0.7235  0.1159  
Bayesian 1.8328 2.1251 1.0897  0.1745  

CS 2.6342 2.8704 1.1550  0.1849  
GRA 1.3302 1.5240 0.7074  0.1133  
PCR 2.5834 2.8058 1.1090  0.1776  

Redmi5 
plus 

Redmi 
Note 3 

WKNN 1.8772 2.0375 0.8025  0.1285  
Bayesian 2.1427 2.4307 1.1627  0.1862  

CS 2.6682 2.9119 1.1815  0.1892  
GRA 1.5288 1.7205 0.7997  0.1281  
PCR 2.6188 2.8272 1.0794  0.1728  

Redmi5 
plus Mi 6 

WKNN 2.4767 2.7356 1.1769  0.1885  
Bayesian 3.1304 3.6815 1.9630  0.3143  

CS 2.6776 2.9156 1.1690  0.1872  
GRA 2.1027 2.3112 0.9718  0.1556  
PCR 2.5581 2.7549 1.0360  0.1659  

To further verify the positioning performance of the proposed GRA-based fingerprint method, 
we selected RSS data from another pair of heterogeneous smartphones. The positioning performance 
of the different fingerprint methods are compared under heterogeneous and the same smartphones. 
The experimental results are shown in Figure 9 and Table 4. Here, the RSS data from the Honor 9 
smartphone are used as fingerprint data and the RSS data of four different smartphones are used as 
test data. In Figure 9, the positioning performance of the proposed GRA-based fingerprint method is 
also improved under heterogeneous smartphones. Table 4 shows that the mean positioning error of 
the proposed fingerprint method is also reduced compared to the others. The positioning accuracy 
of the proposed fingerprint method outperforms other methods when heterogeneous smartphones 
are used. 
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same smartphones: Fingerprint data are collected with the Honor 9 smartphone in the offline phase,
and the test data are collected with four heterogeneous smartphones in the online phase: (a) Honor 9,
(b) Redmi 5plus, (c) Redmi Note 3, and (d) Mi 6.

Table 4. Positioning errors for different methods under heterogeneous and the same smartphones.

Fingerprint
Data

Testing
Data Method MAE

(m)
RMSE

(m)
STD
(m)

STU
(m)

Honor 9 Honor 9

WKNN 1.5234 1.6392 0.6131 0.0982
Bayesian 1.6259 1.8977 0.9913 0.1587

CS 2.1477 2.3336 0.9248 0.1481
GRA 1.3958 1.5852 0.5612 0.0899
PCR 1.9985 2.1450 0.7892 0.1264

Honor 9
Redmi5

plus

WKNN 1.7649 1.8874 0.6778 0.1085
Bayesian 1.8667 2.0040 0.7385 0.1183

CS 2.6538 2.9000 1.1846 0.1897
GRA 1.5232 1.7072 0.6509 0.1042
PCR 2.6402 2.8611 1.1166 0.1788

Honor 9 Redmi
Note 3

WKNN 1.8500 1.9953 0.7572 0.1212
Bayesian 2.1344 2.4489 1.2163 0.1948

CS 2.6740 2.9300 1.2132 0.1943
GRA 1.6273 1.8510 0.6935 0.1110
PCR 2.5801 2.7815 1.0527 0.1686

Honor 9 Mi 6

WKNN 2.5087 2.6865 1.0737 0.1719
Bayesian 2.7199 3.1779 1.6652 0.2666

CS 2.7084 2.9596 1.2088 0.1936
GRA 2.0892 2.3252 1.0341 0.1656
PCR 2.5180 2.7088 1.1219 0.1796

In the comparative analysis of positioning performance using two pairs of heterogeneous
smartphones, the positioning accuracies of the GRA-based fingerprint method are both improved
compared with other positioning methods. The positioning performance of the proposed fingerprint
method outperforms other methods when heterogeneous smartphones are used. These results
indicate that the proposed fingerprint method has good stability to solve the heterogeneity problem.
The positioning accuracies of all methods are unsatisfactory when the test data are from the Mi 6
smartphone and when the fingerprint data are from the Honor 9 or Redmi 5plus smartphones. The
results suggest that the Wi-Fi module of the Mi 6 smartphone may exhibit certain problems in the
collected RSS data.
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The positioning performance of the proposed GRA-based method is compared with those based
on RSS difference when the same and heterogeneous smartphones are used. The RSS data from Redmi
5plus are used as fingerprint data. By contrast, the RSS data from the Honor 9 and Redmi 5plus
smartphones are used as the test data. Here, we illustrate the proposed method based on GRA and
other existing methods, including DIFF, SSD, and HLF, based on RSS difference. The WKNN algorithm
is selected to estimate positioning performance. The RSS method is added for comparison, which only
uses raw RSS data. The positioning performance of the proposed method based on GRA is evaluated
by comparing the positioning performance of various preprocessing methods based on RSS difference.
In addition, the LCS method is compared with other methods, which uses only relative relationship
information among RSS values.

Figure 10 and Table 5 show that the mean positioning error of the proposed fingerprint method is
reduced by more than 0.1 m when the same smartphone is used and above 0.15 m when heterogeneous
smartphones are used (Table 4). The positioning performance of the proposed method based on GRA
outperforms the other methods based on the RSS difference when heterogeneous smartphones are
used. The positioning performance of the WKNN algorithms based on RSS difference is good when
the heterogeneous smartphones are used in the WKNN algorithms. By contrast, the WKNN algorithm
using raw RSS data has the better performance when the same smartphone is used. This outcome
illustrates the adverse influence of the methods based on RSS difference on positioning accuracy.
In Figure 10, the positioning performance of the DIFF method is slightly better than that of SSD. That
is because the SSD method only preserves the difference between adjacent APs, resulting in loss of
certain useful information, thereby affecting the overall performance. The positioning performance
of the LCS method is not ideal when heterogeneous smartphones are used because the number of
APs is insufficient in the experiment environment. Thus, the proposed GRA-based method is better
compared with other methods.
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Figure 10. Comparison of positioning performance for different methods under heterogeneous and the
same smartphones: The cumulative error probability represents the cumulative probability of absolute
error of each TP. Fingerprint data are collected with the Redmi 5plus smartphone in the offline phase,
and the test data are collected with different smartphones in the online phase: (a) Redmi 5plus and
(b) Honor 9.
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Table 5. Detailed positioning errors for different methods under heterogeneous and the
same smartphones.

Fingerprint
Data

Testing
Data Method MAE

(m)
RMSE

(m)
STD
(m)

STU
(m)

Redmi5
plus

Redmi5
plus

WKNN(RSS)1.3824 1.4908 0.5653 0.0905
WKNN(DIFF)1.4286 1.5508 0.6113 0.0979
WKNN(SSD)1.5372 1.6606 0.6362 0.1019
WKNN(HLF)1.6554 1.8069 0.7336 0.1175
GRA(RSS) 1.2682 1.3687 0.5214 0.0835

LCS 1.5736 1.7201 0.7037 0.1127

Redmi5plus Honor 9

WKNN(RSS)1.7378 1.8728 0.7074 0.1133
WKNN(DIFF)1.4969 1.6217 0.6520 0.1044
WKNN(SSD)1.5975 1.7202 0.6464 0.1035
WKNN(HLF)1.7105 1.8556 0.7288 0.1167
GRA(RSS) 1.3302 1.5240 0.6235 0.0998

LCS 1.6581 1.7881 0.6738 0.1086

5. Conclusions

RSS data from heterogeneous smartphones have differences even if the RSS data are measured
from the same AP and location. Thus, the impacts of using heterogeneous smartphones on the
fingerprint method are further analysed. We find that the positioning performance of conventional
fingerprint algorithms are degraded. GRA theory is introduced to Wi-Fi indoor positioning to address
this heterogeneous smartphones problem, and a device calibration-free fingerprint method based on
GRA is proposed. In the proposed method, GRC are determined by the RSS absolute difference between
the elements of the comparability sequence of each RP and the elements of the reference sequence of TP
and GRD is determined by the GRC between reference and comparability sequences. The TP location
is subsequently determined by the GRD information between TP and each RP. The proposed method
can adapt to the changes in RSS data between two vectors better than other fingerprint methods in
terms of similarity. The proposed method can also avoid missing the raw RSS fingerprint information
compared with other RSS difference-based fingerprint methods. All experimental results show that the
mean positioning error and RMSE of the proposed fingerprint method are reduced relative to other
positioning methods when heterogeneous smartphones are used, which indicates that the positioning
accuracy and precision of the proposed fingerprint method are improved. The experimental results also
show that the STD and STU values of the proposed GRA method is minimal among the all methods in
the heterogeneous smartphones, which indicates that the proposed method has good stability and
availability. Accordingly, the proposed fingerprint method based on GRA has an optimal positioning
performance when heterogeneous smartphones are used. However, the area of the experiment
environment is limited. We will further conduct experiments to verify reliability of the proposed GRA
method in other scenarios and within large experimental areas in the next step.

Author Contributions: This paper is a collaborative work by all the authors. S.Z. proposed the idea, designed the
experiments, performed the experiments, analysed the data, and wrote the manuscript. J.G. and N.L. added the
experiments, gave suggestions, and revised the rough draft; L.W., W.W., and D.Z. assisted with certain experiments,
and all authors proofread the paper.

Funding: This research was sponsored by the National Natural Science Foundation of China (No. 41604019,
41474004, and 41704002). The work was also supported by funds from the Key Laboratory of Precise Engineering
and Industry Surveying, NASMG (PF2017-7) and the Open Fund of Guangxi Key Laboratory of Spatial Information
and Geomatics (Grant No. 17-259-16-03).

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2019, 19, 3885 18 of 20

References

1. Enge, P.; Misra, P. Special Issue on Global Positioning System. Proc. IEEE 1999, 87, 3–15. [CrossRef]
2. Bulusu, N.; Heidemann, J.; Estrin, D. GPS-less low-cost outdoor localization for very small devices.

IEEE Pers. Commun. 2000, 7, 28–34. [CrossRef]
3. Karegar, P.A. Wireless fingerprinting indoor positioning using affinity propagation clustering methods. Wirel.

Netw. 2018, 24, 2825–2833. [CrossRef]
4. Bisio, I.; Cerruti, M.; Lavagetto, F.; Marchese, M.; Pastorino, M.; Randazzo, A.; Sciarrone, A. A trainingless

WiFi fingerprint positioning approach over mobile devices. IEEE Antennas Wirel. Propag. Lett. 2014, 13,
832–835. [CrossRef]

5. Niculescu, D.; Nath, B. Ad Hoc Positioning System Using AOA. In Proceedings of the Twenty-second Annual
Joint Conference of the IEEE Computer and Communications Societies, San Francisco, CA, USA, 30 March–3
April 2003; pp. 1734–1743.

6. Li, X.; Pahlavan, K. Super-resolution TOA estimation with diversity for indoor geolocation. IEEE Trans.
Wirel. Commun. 2004, 3, 224–234. [CrossRef]

7. Amar, A.; Leus, G. A Reference-free Time Difference of Arrival Source Positioning Using a Passive Sensor
Array. In Proceedings of the IEEE Sensor Array Multichannel Signal Process. Workshop (SAM), Jerusalem,
Israel, 4–7 October 2010; pp. 157–160.

8. Dakkak, M.; Nakib, A.; Daachi, B. Indoor Positioning Method Based on RTT and AOA Using Coordinates
Clustering. Comput. Netw. 2011, 55, 1794–1803. [CrossRef]

9. Li, Z.; Liu, J.; Wang, Z.; Chen, R.Z. A Novel Fingerprinting Method of WiFi Indoor Positioning Based on
Weibull Signal Model. In Proceedings of the China Satellite Navigation Conference (CSNC), Harbin, China,
23–25 May 2018; pp. 2297–2309.

10. Wang, L.; Chen, R.; Shen, L.; Qiu, H.; Li, M.; Zhang, P.; Pan, Y. NLOS Mitigation in Sparse Anchor
Environments with the Misclosure Check Algorithm. Remote Sens. 2019, 11, 773. [CrossRef]

11. Wang, L.; Chen, R.; Chen, L.; Shen, L.; Zhang, P.; Pan, Y.; Li, M. A Robust Filter for TOA Based Indoor
Localization in Mixed LOS/NLOS Environment. In Proceedings of the 2018 Ubiquitous Positioning, Indoor
Navigation and Location-Based Services (UPINLBS), Wuhan, China, 22–23 March 2018; pp. 1–9.

12. Zhang, S.; Guo, J.; Luo, N.; Wang, L.; Wang, W.; Wen, K. Improving Wi-Fi Fingerprint Positioning with a
Pose Recognition-Assisted SVM Algorithm. Remote Sens. 2019, 11, 652. [CrossRef]

13. Oh, J.; Kim, J. Adaptive K-nearest Neighbour Algorithm for WiFi Fingerprint Positioning. ICT Express 2018,
4, 91–94. [CrossRef]

14. Ma, R.; Guo, Q.; Hu, C. An Improved Wi-Fi Indoor Positioning Algorithm by Weighted Fusion. Sensors 2015,
15, 21824–21843. [CrossRef] [PubMed]

15. Sánchez-Rodríguez, D.; Alonso-González, I.; Ley-Bosch, C. A Simple Indoor Localization Methodology for
Fast Building Classification Models Based on Fingerprints. Electronics 2019, 8, 103. [CrossRef]

16. Han, C.; Tan, Q.; Sun, L. CSI Frequency Domain Fingerprint-Based Passive Indoor Human Detection.
Information 2018, 9, 95. [CrossRef]

17. Haider, A.; Wei, Y.; Liu, S. Pre-and Post-Processing Algorithms with Deep Learning Classifier for Wi-Fi
Fingerprint-Based Indoor Positioning. Electronics 2019, 8, 195. [CrossRef]

18. Tan, J.; Fan, X.; Wang, S. Optimization-Based Wi-Fi Radio Map Construction for Indoor Positioning Using
Only Smart Phones. Sensors 2018, 18, 3095. [CrossRef] [PubMed]

19. Yang, F.; Xiong, J.; Liu, J.; Wang, C.; Li, Z.; Tong, P.; Chen, R. A Pairwise SSD Fingerprinting Method of
Smartphone Indoor Localization for Enhanced Usability. Remote Sens. 2019, 11, 566. [CrossRef]

20. Garcia-Villalonga, S.; Perez-Navarro, A. Influence of Human Absorption of Wi-Fi Signal in Indoor Positioning
with Wi-Fi Fingerprinting. In Proceedings of the International Conference on Indoor Positioning & Indoor
Navigation, Banff, AB, Canada, 13–16 October 2015; pp. 1–10.

21. He, S.; Chan, S.H.G. Wi-Fi Fingerprint-based Indoor Positioning: Recent Advances and Comparisons.
IEEE Commun. Surv. Tutorials 2015, 18, 466–489. [CrossRef]

22. Correa, A.; Barcelo, M.; Morell, A.; Vicario, J.L. A Review of Pedestrian Indoor Positioning Systems for Mass
Market Applications. Sensors 2017, 17, 1927. [CrossRef]

23. Zafari, F.; Gkelias, A.; Leung, K. A Survey of Indoor Localization Systems and Technologies. arXiv 2017,
arXiv:1709.01015. [CrossRef]

http://dx.doi.org/10.1109/JPROC.1999.736338
http://dx.doi.org/10.1109/98.878533
http://dx.doi.org/10.1007/s11276-017-1507-0
http://dx.doi.org/10.1109/LAWP.2014.2316973
http://dx.doi.org/10.1109/TWC.2003.819035
http://dx.doi.org/10.1016/j.comnet.2011.01.010
http://dx.doi.org/10.3390/rs11070773
http://dx.doi.org/10.3390/rs11060652
http://dx.doi.org/10.1016/j.icte.2018.04.004
http://dx.doi.org/10.3390/s150921824
http://www.ncbi.nlm.nih.gov/pubmed/26334278
http://dx.doi.org/10.3390/electronics8010103
http://dx.doi.org/10.3390/info9040095
http://dx.doi.org/10.3390/electronics8020195
http://dx.doi.org/10.3390/s18093095
http://www.ncbi.nlm.nih.gov/pubmed/30223461
http://dx.doi.org/10.3390/rs11050566
http://dx.doi.org/10.1109/COMST.2015.2464084
http://dx.doi.org/10.3390/s17081927
http://dx.doi.org/10.1109/COMST.2019.2911558


Sensors 2019, 19, 3885 19 of 20

24. Karaagac, A.; Haxhibeqiri, J.; Ridolfi, M.; Joseph, W.; Moerman, I.; Hoebeke, J. Evaluation of Accurate Indoor
Localization Systems in Industrial Environments. In Proceedings of the IEEE International Conference on
Emerging Technologies and Factory Automation, Limassol, Cyprus, 12–15 September 2017.

25. Dortz, N.L.; Gain, F.; Zetterberg, P. WiFi Fingerprint Indoor Positioning System Using Probability Distribution
Comparison. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing,
Kyoto, Japan, 25–30 March 2012; pp. 2301–2304.

26. Caso, G.; Nardis, L.D. Virtual and Oriented Wi-Fi Fingerprint Indoor Positioning based on Multi-Wall
Multi-Floor Propagation Models. Mobile Netw. Appl. 2017, 22, 825–833. [CrossRef]

27. Nuño-maganda, M.A.; Herrerarivas, H.; Torreshuitzil, C. On-Device Learning of Indoor Location for Wi-Fi
Fingerprint Method. Sensors 2018, 18, 2202. [CrossRef]

28. Santos, R.; Barandas, M.; Leonardo, R. Fingerprints and Floor Plans Construction for Indoor Localisation
Based on Crowdsourcing. Sensors 2019, 19, 919. [CrossRef] [PubMed]

29. Seong, J.H.; Seo, D.H. Real-Time Recursive Fingerprint Radio Map Creation Algorithm Combining Wi-Fi
and Geomagnetism. Sensors 2018, 18, 3390. [CrossRef] [PubMed]

30. Ge, X.; Qu, Z. Optimization WI-FI Indoor Positioning KNN Algorithm Location-based Fingerprint. In
Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science,
Beijing, China, 26–28 August 2016; pp. 135–137.

31. Ma, J.; Li, X.; Tao, X.P.; Lu, J. Cluster filtered KNN: A WLAN-based Indoor Positioning Scheme. In Proceedings
of the 2008 International Symposium on a World of Wireless, Mobile and Multimedia Networks, Newport
Beach, CA, USA, 23–26 June 2008; pp. 1–8.

32. Dawes, B.; Chin, K.W. A Comparison of Deterministic and Probabilistic Methods for Indoor Localization.
J. Syst. Softw. 2011, 84, 442–451. [CrossRef]

33. Chen, L.H.; Wu, H.K.; Jin, M.H.; Chen, G.H. Homogeneous Features Utilization to Address the Device
Heterogeneity Problem in Fingerprint Localization. IEEE Sens. J. 2014, 14, 998–1005. [CrossRef]

34. Haeberlen, A. Practical Robust Localization over Large-scale 802.11 Wireless Networks. In Proceedings of the
International Conference on Mobile Computing and Networking, Philadelphia, PA, USA, 26 September–1
October 2004; pp. 70–84.

35. Kjærgaard, M.B. Automatic Mitigation of Sensor Variations for Signal Strength based Location Systems.
In Proceedings of the International Conference on Location- and Context-Awareness, Dublin, Ireland, 10–11
May 2006; pp. 30–47.

36. Laoudias, C.; Piché, R.; Panayiotou, C.G. Device Signal Strength Self-Calibration using Histograms.
In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Sydney,
Australia, 13–15 November 2012; pp. 1–8.

37. Tsui, A.W.; Chuang, Y.H.; Chu, H.H. Unsupervised Learning for Solving RSS Hardware Variance Problem in
WiFi Localization. Mob. Netw. Appl. 2009, 14, 677–691. [CrossRef]

38. Shu, Y.; Huang, Y.; Zhang, J.; Coué, P.; Cheng, P.; Chen, J.; Kang, G.S. Gradient-Based Fingerprinting for
Indoor Localization and Tracking. IEEE Trans. Ind. Electron. 2016, 63, 2424–2433. [CrossRef]

39. Dong, F.; Chen, Y.; Liu, J.; Ning, Q.; Piao, S. A Calibration-Free Localization Solution for Handling Signal
Strength Variance. In Proceedings of the International Conference on Mobile Entity Localization and Tracking
in GPS-Less Environments, Orlando, FL, USA, 30 September 2009; pp. 79–90.

40. Hossain, A.K.M.M.; Jin, Y.; Soh, W.S.; Van, H.N. SSD: A Robust RF Location Fingerprint Addressing Mobile
Devices’ Heterogeneity. IEEE Trans. Mob. Comput. 2013, 12, 65–77. [CrossRef]

41. Liu, B.C.; Lin, K.H.; Wu, J.C. Analysis of Hyperbolic and Circular Positioning Algorithms Using Stationary
Signal-strength-difference Measurements in Wireless Communications. IEEE Trans. Veh. Technol. 2006, 55,
499–509. [CrossRef]

42. Kjrgaard, M.B.; Munk, C.V. Hyperbolic Location Fingerprinting: A Calibration-Free Solution for Handling
Differences in Signal Strength. In Proceedings of the IEEE International Conference on Pervasive Computing
and Communications, Hong Kong, China, 17–21 March 2008; pp. 110–116.

43. Fang, S.H.; Wang, C.H. A Novel Fused Positioning Feature for Handling Heterogeneous Hardware Problem.
IEEE Trans. Commun. 2015, 63, 2713–2723. [CrossRef]

44. Fang, S.H.; Wang, C.H.; Chiou, S.M.; Lin, P. Calibration-Free Approaches for Robust Wi-Fi Positioning against
Device Diversity: A Performance Comparison. In Proceedings of the Vehicular Technology Conference,
Yokohama, Japan, 6–9 May 2012; pp. 1–5.

http://dx.doi.org/10.1007/s11036-016-0749-x
http://dx.doi.org/10.3390/s18072202
http://dx.doi.org/10.3390/s19040919
http://www.ncbi.nlm.nih.gov/pubmed/30813228
http://dx.doi.org/10.3390/s18103390
http://www.ncbi.nlm.nih.gov/pubmed/30309033
http://dx.doi.org/10.1016/j.jss.2010.11.888
http://dx.doi.org/10.1109/JSEN.2013.2290736
http://dx.doi.org/10.1007/s11036-008-0139-0
http://dx.doi.org/10.1109/TIE.2015.2509917
http://dx.doi.org/10.1109/TMC.2011.243
http://dx.doi.org/10.1109/TVT.2005.863405
http://dx.doi.org/10.1109/TCOMM.2015.2442989


Sensors 2019, 19, 3885 20 of 20

45. Han, S.; Zhao, C.; Meng, W.; Li, C. Cosine Similarity Based Fingerprinting Algorithm in WLAN
Indoor Positioning Against Device Diversity. In Proceedings of the IEEE International Conference on
Communications, London, UK, 8–12 June 2015; pp. 2710–2714.

46. Caso, G.; De Nardis, L.; Di Benedetto, M.G. Frequentist Inference for WiFi Fingerprinting 3D Indoor
Positioning. In Proceedings of the 2015 IEEE International Conference on Communication Workshop,
London, UK, 8–12 June 2015; pp. 809–814.

47. Yang, S.; Dessai, P.; Verma, M.; Gerla, M. FreeLoc: Calibration-free crowdsourced indoor localization.
In Proceedings of the 2013 Proceedings IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 2481–2489.

48. Chen, X.; Kong, J.; Guo, Y.; Chen, X. An empirical study of indoor localization algorithms with densely
deployed APs. In Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX, USA, 8–12
December 2014; pp. 517–522.

49. Ning, C.; Yao, L.; Huaqiang, H. Grey Relational Analysis between Comprehensive Bonded Zone and
Regional Economic Development. In Proceedings of the International Conference on Environmental Science
& Information Application Technology, Wuhan, China, 17–18 July 2010; pp. 273–275.

50. Yin, L.L.; Han, Z.H.; Wu, M. Data Processing in the Application of Grey Relational Analysis Model in
Regional Economic Openness of Evaluation System. Appl. Mechan. Mater. 2014, 685, 744–748. [CrossRef]

51. Du, Z.; Liao, H. A Novel Location Estimation Algorithm Using Grey Relational Analysis. In Proceedings of
the 2006 International Conference on Communication Technology, Guilin, China, 27–30 November 2006;
pp. 1–5.

52. Xiao, F.; Chen, J.; Xie, X.; Sun, L.; Wang, R. TA3C: Teaching-Oriented Adaptive Wi-Fi Authorized Access
Control Based on CSI. In Proceedings of the 12th International Conference on Mobile Ad-Hoc and Sensor
Networks, Hefei, China, 16–18 December 2016; pp. 306–312.

53. Bell, S. A beginner’s guide to uncertainty of measurement. Meas. Good Pract. Guide 1999, 11, 1.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4028/www.scientific.net/AMM.685.744
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Impact of Heterogeneous Smartphones on Fingerprint Positioning 
	Difference Analysis of RSS Collected by Heterogeneous Smartphones 
	Influence of Added Test Constant on the Positioning Performance for the Same Smartphone 
	Influence of Heterogeneous Smartphones in Conventional Positioning Methods 

	GRA-Based Fingerprint Method 
	Overview of GRA-Based Fingerprint Method 
	Implementation of Fingerprint Method Based on GRA 

	Experiments and Results 
	Experimental Setup 
	Evaluation Metrics of Positioning Performance 
	Parameter Analysis of Different Positioning Methods 
	Performance Evaluations of the Proposed Positioning Method 

	Conclusions 
	References

