
sensors

Article

Time-Series Laplacian Semi-Supervised Learning for
Indoor Localization †

Jaehyun Yoo

Department of Electrical, Electronic and Control Engineering, Hankyong National University, Anseoung 17579,
Korea; jhyoo@hknu.ac.kr
† This paper is an extended version of our paper published in Yoo, J.; Johansson, K.H. Semi-supervised

learning for mobile robot localization using wireless signal strengths. In Proceedings of the 2017 International
Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017.

Received: 10 July 2019; Accepted: 5 September 2019; Published: 7 September 2019
����������
�������

Abstract: Machine learning-based indoor localization used to suffer from the collection, construction,
and maintenance of labeled training databases for practical implementation. Semi-supervised
learning methods have been developed as efficient indoor localization methods to reduce use
of labeled training data. To boost the efficiency and the accuracy of indoor localization, this
paper proposes a new time-series semi-supervised learning algorithm. The key aspect of the
developed method, which distinguishes it from conventional semi-supervised algorithms, is the use
of unlabeled data. The learning algorithm finds spatio-temporal relationships in the unlabeled data,
and pseudolabels are generated to compensate for the lack of labeled training data. In the next step,
another balancing-optimization learning algorithm learns a positioning model. The proposed method
is evaluated for estimating the location of a smartphone user by using a Wi-Fi received signal strength
indicator (RSSI) measurement. The experimental results show that the developed learning algorithm
outperforms some existing semi-supervised algorithms according to the variation of the number of
training data and access points. Also, the proposed method is discussed in terms of why it gives
better performance, by the analysis of the impact of the learning parameters. Moreover, the extended
localization scheme in conjunction with a particle filter is executed to include additional information,
such as a floor plan.

Keywords: Wi-Fi RSSI-based indoor localization; semi-supervised learning; time-series learning

1. Introduction

Wi-Fi received signal strength indicator (RSSI) is one of the basic sensory observations widely
used for indoor localization. Due to its nonlinear and random properties, many machine learning
approaches have been applied to Wi-Fi RSSI localization [1–5]. In particular, semi-supervised learning
algorithms have been suggested to improve the efficiency, which reduces the human effort necessary
for calibrating training data. For example, a large amount of unlabeled data can be easily collected by
recording only Wi-Fi RSSI measurements, without assigning position labels, which can save resources
for collection and calibration. By contrast, labeled training data must be created manually. Adding a
large amount of unlabeled data in the semi-supervised learning framework can prevent the decrement
in localization accuracy when using a small amount of labeled data.

The majority of the existing semi-supervised learning algorithms use the unlabeled data for
the manifold regularization that captures the intrinsic geometric structure of the whole training
data [6–10]. More progressed usage of unlabeled data is the pseudolabeling where unlabeled data
are artificially labeled, and it is used for learning the estimation model. In [11–13], pseudolabels are
iteratively updated, and the localization model is learned by the final pseudolabels. In [14], usage
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of unlabeled data avoids the biased parameter estimation against a small number of labeled data
points, to obtain the probabilistic location-RSSI model. In [15,16], unlabeled data are used to find
an embedding function from RSSI signal space to 2D location space. Semi-supervised deep learning
approaches [17–20] improve positioning accuracy by using the unlabeled data for extracting features
from the RSSI measurements in deep neutral network framework. Compared to discriminative model
such as support vector machine (SVM); however, the deep learning methods normally take much time
to finish the learning.

This paper proposes a new semi-supervised learning algorithm by interpreting the unlabeled
data as spatio-temporal data. In the previous paper [21], the older version of the semi-supervised
learning algorithm was applied to a mobile robot in a room size toy experiment. In this paper,
the scalable algorithm has been developed for public indoor localization. The algorithm has two
separate pseudolabeling and learning processes. First, in the pseudolabeling process, the time-series
graph Laplacian SVM optimization is constructed, which estimates labels of the unlabeled data.
The existing Laplacian SVM algorithms [6–10] consider only spatial relationship for the training data.
To add the temporal meaning to the unlabeled data, this paper attaches the time-series regularization
into the Laplacian SVM framework. Time-series learning is reasonable for the indoor localization
targeting a smoothly moving human, and the corresponding data comes in a chronological order. As a
result, the accurate pseudolabels are made by the proposed time-series semi-supervised learning.

Second, in the learning process, another learning framework to estimate position is constructed.
Because the pseudolabels are artificial, the pseudolabeled data cannot be reliable as much as the
labeled data. Therefore, it is desirable to limit the reliance on the pseudolabeled data. This can
be dealt with a balancing optimization by weighting different balancing parameters between the
labeled and pseudolabeled data. The existing semi-supervised methods [22], Ref. [11] might address
this balance issue. In [22], the optimization framework consists of a singular value decomposition,
a manifold regularization, and a loss function. In [11], the intermediate variable is introduced as
a substitute of the original labeled data based on the graph Laplacian optimization framework.
However, because many balancing parameters in [22], Ref. [11] are coupled to both the labeled and the
unlabeled (or pseudolabeled) terms, it is difficult to adjust the balance. Also, as fewer labeled data
are used, the pseudolabels become inaccurate. The proposed method solves this imbalance problem
by adding Laplacian Least Square (LapLS) that is produced in this paper by combining the manifold
regularization into the transductive SVM (TSVM [23]) structure. Because the pseudolabels are used as
the learning input of LapLS, the proposed optimization becomes a linear problem that can be solved
fast. In this learning process, two decoupled balancing parameters are individually weighed to the
labeled term and the pseudolabeled term, separately, which makes it simple to balance the labeled and
the pseudolabeled data. This balancing optimization adjusts the reliance on the pseudolabeled data
relative to the labeled data. Outstanding performance of the proposed method is found even when a
small amount of labeled training data are used.

The proposed algorithm is evaluated to estimate location of a smartphone carried by a user,
and it is compared with some SVM-oriented semi-supervised algorithms. The accurate performance is
validated by the analysis of the impact of the learning parameters. Also, according to the variation of
the number of the labeled training data and the Wi-Fi access points, the proposed algorithm gives the
best localization performance without sacrificing the computation time. In addition, the combination
of the proposed learning-based estimation and the particle filter is implemented.

This paper is organized as follows. Section 2 overviews the learning-based indoor localization
problem with description of experimental setup for Wi-Fi RSSI use. Section 3 presents the semi-supervised
learning algorithms based on the graph Laplacian manifold learning. Section 4 devotes to introduce
the proposed algorithm. Section 5 reports empirical results with the parameter setting, the localization
with the variance of the number of the training data and access points, the computational time, and the
filter-combined localization. Finally, concluding remarks are given in Section 6.
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2. Learning-Based Indoor Localization

Figure 1a shows the localization setup where 8 Wi-Fi access points (APs) are deployed in the
37 × 18 m2 floor. The APs are pre-installed by Korean telecommunication companies such as SKT and
LGT. By distinguishing APs’ unique MAC (media access control) addresses, it can define a concentrated
set by assigning each RSSI measurement sent from the different APs to the specific location in the set.
The experimental floor consists of 3 rooms, open space, and aisle. Each room is filled with desks and
chairs, and there are some obstacles such as a vase and a rubbish bin in places on the floor. 5 different
people join to collect the training data. In case of collecting the labeled data, the trainers are guided
to record the labeled data points on every 1.5 × 1.5 m2 grid. During the calibration, the repeated
measurement sets whose labels are the same location are averaged. As a result, 283 labeled training
data are obtained. Similarly, another user is employed to collect 283 labeled test data, which are not
used for any training algorithm. The smartphone device is Samsung Galaxy S7 operated by Android OS.
The smartphone application to measure the Wi-Fi RSSIs and the locations is developed by Java Eclipse.
The Wi-Fi scan function in the Android platform provides the information of MAC address and name of
AP, and the RSSI value in dBm. Also, in this experiment, only 2.4 GHz RSSI signal can be collected.

(a) Testbed in 37 m × 18 m with 8 Wi-Fi access points.
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(b) RSSI distribution sent from #3 Wi-Fi access point across the floor

Figure 1. Cont.
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(c) Learning-based localization using Wi-Fi RSSI.

Figure 1. (a) Experimental floor with the 8 visible Wi-Fi access points, (b) Wi-Fi RSSI distribution of the
#3 access point across the floor, and (c) learning-based localization architecture using Wi-Fi RSSI.

Labeled training data are obtained by placing the receiver at different locations. Let us define the
Wi-Fi observation set as xi = {zi1, . . . , zin} ∈ Rn received from n different APs (n = 8 in this paper),
where zij (1 ≤ j ≤ n) is a scalar RSSI measurement sent from the j-th access point corresponding to the
user’s location (yXi, yYi). Total of the l labeled training data are given by {xi}l

i=1 with xi ∈ X ⊆ Rn,
and {yXi}l

i=1, {yYi}l
i=1. The unlabeled data set {xi}l+u

i=l+1 consists of only the RSSI measurements,
without position labels. The training phase builds separate mappings fX : X → R and fY : X → R
which refer to relationships between Wi-Fi signal strength and location, using the labeled training data
{(xi, yXi)}l

i=1 and {(xi, yYi)}l
i=1, respectively, and the unlabeled data {xi}l+u

i=l+1. Because the models
fX and fY are learned independently, we omit the subscripts of fX , fY, and yX , yY, for simplification.

Figure 1c illustrates overview of the proposed indoor localization architecture using Wi-Fi RSSI.
The main purpose of the semi-supervised learning-based localization is to learn the accurate positioning
model even when a small amount of labeled data is used. For example, Figure 1b shows the Wi-Fi
RSSI distribution of the access point #3 that is in a room. Contribution of the semi-supervised learning
is to prevent the distribution from being distorted when using much less labeled training data. This
will be restated in Example 1 of Section 4.1.

3. Semi-Supervised Learning

This section describes basic semi-supervised learning framework in Section 3.1 and reviews
Laplacian least square SVR (LapLS) in Section 3.2 and Laplacian embedded regression least square
(LapERLS) in Section 3.3. Key ideas from these algorithms will be applied for the proposed algorithm
in the next Section 4.

3.1. Basic Semi-Supervised SVM Framework

Given a set of l labeled samples {(xi, yi)}l
i=1 and a set of u unlabeled samples {xi}l+u

i=l+1,
Laplacian semi-supervised learning aims to establish a mapping f by the following regularized
minimization functional [24]:

f ∗ = arg min
f∈Hk

C ∑
i

V(xi, yi, f ) + γA‖ f ‖2
A + γI‖ f ‖2

I , (1)

where V is a loss function, ‖ f ‖2
A is the norm of the function in the Reproducing Kernel Hilbert Space

(RKHS)Hk, ‖ f ‖2
I is the norm of the function in the low-dimensional manifold, and C, γA, γI are the

regularization weight parameters.
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The solution of (1) is defined as an expansion of kernel function over the labeled and the unlabeled
data, given by

f (x) =
l+u

∑
i=1

αiK(xi, x) + b, (2)

with the bias term b and the kernel function K(xi, xj) = 〈φ(xi), φ(xj)〉, where φ(·) is a nonlinear
mapping to RKHS.

The regularization term ‖ f ‖2
A associated with RKHS is defined as

‖ f ‖2
A = (Φα)T(Φα) = αTKα, (3)

where Φ = [φ(x1), . . . , φ(xl+u)], α = [α1, . . . , αl+u]
T , and K is the (l + u)× (l + u) kernel matrix whose

element is Kij. We adopt Gaussian kernel given by

Kij = K(xi, xj) = exp
(
−‖xi − xj‖2/σ2

k

)
, (4)

where σ2
k is the kernel width parameter.

According to the manifold regularization, data points are samples obtained from a
low-dimensional manifold embedded in a high-dimensional space. This is represented by the
graph Laplacian:

‖ f ‖2
I = 1

(l+u)2 ∑l+u
i=1 ∑l+u

j=1 Wij
(

f (xi)− f (xj)
)2 ,

= 1
(l+u)2 fT Lf,

(5)

where L is the normalized graph Laplacian given by L = D−1/2(D − W)D−1/2,
f = [ f (x1), . . . , f (xl+u)]

T , W is the adjacency matrix of the data graph, and D is the diagonal
matrix given by Dii = ∑l+u

j=1 Wij. In general, the edge weights Wij are defined as Gaussian function of
Euclidean distance, given by

Wij = exp
(
−‖xi − xj‖2/σ2

w

)
, (6)

where σ2
w is the kernel width parameter.

Minimizing ‖ f ‖2
I is equivalent to penalizing the rapid changes of the regression function

evaluated between two data points. Therefore, γI‖ f ‖2
I in (1) controls the smoothness of the data

geometric structure.

3.2. Laplacian Least Square (LapLS)

This section describes developing of the LapLS algorithm algorithm by combining manifold
regularization defined in (5) and transductive SVM (TSVM) [23]. In LapLS, the loss function V in (1) is
defined by

V(xi, yi, f ) = ei = yi −
(

l+u

∑
i=1

αiK(xi, x) + b

)
. (7)

LapLS finds optimal parameters α, b, and the labels y∗1 , . . . , y∗u of the unlabeled data when regularization
parameters C and C∗ are given:

min
α,e,e∗ ,b,y∗1 ,...,y∗u

C
2 ∑l

i=1 e2
i +

C∗
2 ∑u

j=1(e
∗
j )

2 + γAαTKα + γIα
TKLKα,

subject to : yi −∑l+u
k=1 αkKik − b− ei = 0, i = 1, . . . , l.

y∗j −∑l+u
k=1 αkKjk − b− e∗j = 0, j = 1, . . . , u.

(8)
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Optimization in (8) with respect to all y∗1 , . . . , y∗u is a combinatorial problem [23]. To find the solution,
we must search over all possible 2u labels of the unlabeled data. Therefore, this method is not useful
when a large amount of the unlabeled data is applied.

3.3. Laplacian Embedded Regularized Least Square (LapERLS)

LapERLS introduces an intermediate decision variable g ∈ R(l+u) and additional regularization
parameter γC into the Laplacian semi-supervised framework (1), as follows [11]:

min
f∈Hk ,g∈R(l+u)

C
l+u

∑
i=1

V(xi, gi, f ) + γC

l

∑
i=1

(gi − yi)
2 + γA‖ f ‖2

A + γI‖g‖2
I .

The optimization problem of (9) enforces the intermediate decision variable g to be close to the labeled
data and to be smooth with respect to the graph manifold.

Loss function is given by:

V(xi, gi, f ) = ξi = gi −
(

l+u

∑
j=1

αjK(xi, xj)

)
. (9)

After reorganizing the terms in (9) with respect to manifold regularization and decision function and
corresponding parameter, the primal optimization problem is as follows:

min
α,g,ξ∈R(l+u)

C
2 ∑l+u

i=1 ξ2
i + αTKα + 1

2 (g− y)TΛ(g− y) + 1
2 µgT Lg,

subject to : ξi = gi −∑l+u
k=1 αkKik, i = 1, . . . , l + u,

(10)

where Λ is a diagonal matrix of trade-off parameters with Λii = λ if xi is a labeled data point, and
Λii = 0 if xi is unlabeled, y = [y1, . . . , yl , 0, . . . , 0]T ∈ R(l+u), and C, λ, µ are tuning parameters.

Also, dual formulation of (10) is given by:

min
β∈R(l+u)

1
2

βTQ̃β + βT ỹ, (11)

where

Q̃ = K + (Λ + µL)−1,

ỹ = (Λ + µL)−1Λy, (12)

β = −α.

The main characteristics of this method lies in using ỹ as the input to learning, unlike standard
semi-supervised learning that uses y = [y1, . . . , yl , 0, . . . , 0]T . In other words, zero values in y are
modified to some values denoting pseudolabels of unlabeled data.

It is noted that when the original labeled set y is replaced with the intermediate decision variable
g, the accuracy of the learning may decrease. Moreover, when amount of available labeled data is
small, the accuracy of the pseudolabels, which is difference between true labels of unlabeled data
points and pseudolabels of the unlabeled data points, decreases significantly.

4. Time-Series Semi-Supervised Learning

This section describes a new algorithm by extracting key ideas from LapLS and LapERLS
introduced in the previous section. In Section 4.1, a time-series representation is added to the unlabeled
data to obtain pseudolabels. In Section 4.2, the pseudolabels are used in LapLS structure to derive an
optimal solution by balancing the pseudolabeled and the labeled data. Notations are equivalent to the
previous section.



Sensors 2019, 19, 3867 7 of 18

4.1. Time-Series LapERLS

In [25], a time-series learning optimization problem is suggested by applying Hodric-Prescott
(H-P) filter [26], which can capture a smoothed-curve representation of a time-series from the training
data, given by

min
f

t

∑
i=1

( f (xi)− yi)
2 + γT

t

∑
i=3

( f (xi) + f (xi−2)− 2 f (xi−1))
2 , (13)

where {(xi, yi)}t
i=1 is the time-series labeled training data. The second term is to make the sequential

points f (xi), f (xi−1), f (xi−2) on a line. The solution of (13) in the matrix form is,

f =
(

I + γT DDT
)−1

y,

where

D =



0 0 · · · · · · · · · · · · 0
0 0 0 · · · · · · · · · 0
1 −2 1 0 · · · · · · 0
0 1 −2 1 0 · · · 0
...

...
...

...
...

...
...

0 · · · · · · 0 1 −2 1


t×t .

(14)

The main idea for a new semi-supervised learning is to assign additional temporal meaning to the
unlabeled data. In the proposed algorithm, the H-P filter is added into the LapERLS formulation (9) in
the following optimization:

min
f∈Hk ,g∈R(l+u)

C ∑l+u
i=1 V(xi, gi, f ) + γC ∑l

i=1(gi − yi)
2 + γA‖ f ‖2

A + γI‖g‖2
I

+γT ∑l+u
i=3 (g(xi) + g(xi−2)− 2g(xi−1))

2 .
(15)

After rearranging (15) using the process similar to Equations (9)–(11), the optimization form of the
proposed time-series LapERLS is given by:

min
β∈R(l+u)

1
2

βTQ̃β + βT ỹ, (16)

where

Q̃ = K + (Λ + µ1L + µ2DDT)−1, (17)

ỹ = (Λ + µ1L + µ2DDT)−1Λy, (18)

β = −α.

In comparison with (12) of the standard LapERLS, µ2DDT is added to (18). In the following, the
experimental examples for describing the difference of the standard LapERLS and the time-series
LapERLS are introduced.

Example 1. Figure 2 examines the accuracy comparison between the standard LapERLS and the time-series
LapERLS. In this example, a time-series training data set is collected as a user moves along the path illustrated in
Figure 2a. This simulation uses 20% of the labeled training data and 80% of the unlabeled data among total 283
training data. Figure 2 illustrates estimations of the pseudolabels using each time-series LapERLS and standard
LapERLS. As shown in Figure 2b,c, the pseudolabels produced by the time-series LapERLS are accurate while
the standard LapERLS does not show meaningful pseudolabels. Therefore, the trajectory of pseudolabels from
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the time-series LapERLS can recover the true trajectory while the standard LapERLS cannot. Obviously, many
incorrect pseudolabels such as Figure 2c will derive inaccurate localization performance.

The other physical interpretation about the pseudolabels can be seen from Figure 3. Figure 3a shows the
RSSI distribution as the ground truth by using the entire labeled training data, Figure 3b shows the RSSI
distribution recovered by the pseudolabels obtained by the time-series LapERLS, and Figure 3c is the RSSI
distribution estimated by the pseudolabels of the standard LapERLS. In case of the standard LapERLS as shown
in Figure 3c, the distribution is severely distorted due to the incorrectly estimated pseudolabels. On the other
hand, the time-series LapERLS gives the very similar distribution to the original distribution.

(a)

x (m)
0 2 4 6 8 10 12 14 16 18

y 
(m

)

0

5

10

15
Time-series LapERLS

Labels
Unlabels
Peudolabels

(b)

x (m)
0 2 4 6 8 10 12 14 16 18

y 
(m

)

0

5

10

15
Standard LapERLS

(c)

Figure 2. Comparison of accuracy of pseudolabels between time-series LapERLS (18) and standard
LapERLS (12). The labeled, unlabeled, and pseudolabeled data points are marked by red circles, blue
circles, and black crosses, respectively. (a) A user follows the red path and collects the labeled and
unlabeled data. (b) The resultant pseudolabels from time-series LapERLS are so accurate that the
trajectory made by the pseudolabels is close to the user’s true path. (c) Due to inaccurate pseudolabels
obtained from the standard LapERLS, this trajectory is severely incorrect.

100% Labeled training data

W
i-F

i R
S

S
I (

dB
m

)

-75

-70

-65

-60

-55

-50

-45

-40

-35

(a) RSSI distribution
(ground truth)

Time-series LapERLS

W
i-F

i R
S

S
I (

dB
m

)

-75

-70

-65

-60

-55

-50

-45

-40

-35

(b) Recovered distribution
with 20% labeled data
usage

Standard LapERLS

W
i-F

i R
S

S
I (

dB
m

)

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

(c) Recovered distribution
with 20% labeled data
usage

Figure 3. Comparison of the Wi-Fi RSSI distributions made by the pseudolabels between the time-series
LapERLS (proposed) and the standard LapERLS (compared). In (a), the original RSSI distribution
sent from #3 access point marked in Figure 1 is given as the ground truth and is made by using
the entire labeled training data. In (b), the time-series LapERLS algorithm with usage of 20% of the
labeled training data produces the similar distribution to the original distribution due to the accurately
estimated pseudolabels. In (c), the standard LapERLS with usage of 20% labeled training data produces
the severely distorted distribution.
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Example 2. Accuracy of the pseudolabels is examined by the three cases with comparison to a linear interpolation.

• Sinusoidal trajectory:

A situation that a user moves a sinusoidal trajectory as described in Figure 4a is considered.
The linear interpolation produces the pseudolabels laying on the straight line between two
consecutive labeled points. On the other hand, because the proposed algorithm considers
both spatial and temporal relation by using manifold and time-series learning, the result of
the suggested algorithm can generate accurate pseudolabels as shown in Figure 4b.

(a) User path

x (m)
0 5 10 15 20 25

y 
(m

)

0

5

10

15

Labels
Unlabels
Peudolabels
Interpolation

(b) Estimation

Figure 4. Estimated pseudolabels on the sinusoidal trajectory in comparison with the linear interpolation.

• Wandered trajectory:

The other case in which the linear interpolation is not useful is when the user does not walk
straight forward to a destination. For example, in Figure 5, the user wanders around middle
of the path. Because there are only two labeled data (one is at bottom, and the other is at top),
the linear interpolation could not represent the wandered trajectory. In Figure 5b, it is shown that
the developed algorithm generates accurate pseudolabels with respect to the wandered motion of
the user.
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(a)
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o
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14
True
Pseudolabel
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(b)

Figure 5. Estimated pseudolabels on the wandered trajectory in (a), in comparison with the linear interpolation
in (b).

• Revisiting the learned trajectory:

The user used to revisit the same site during collecting training data. Suppose that the locations
corresponding to the Wi-Fi RSSI measurements are not recorded during walking a path, except the
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start and end points as shown in Figure 6. It is assumed that we have already learned those area.
The result under this situation is shown in Figure 6, where the developed algorithm generates
accurate pseudolabels, while the linear interpolation cannot reflect the reality.

x (m)
0 5 10 15

y 
(m

)

0

5

10

15

Labels
Unlabels
Peudolabels
Interpolation

Figure 6. Estimated pseudolabels when revisiting the learned trajectory in comparison with the
linear interpolation.

4.2. Balancing Labeled and Pseudolabeled Data

Regardless of how accurate the pseudolabels are, it is impossible to regard the pseudolabels as
the labeled data, because true labels of the unlabeled data are unknown. One desirable approach is
to properly balance the labeled and the pseudolabeled data in the learning process. This is feasible
by applying LapLS structure in Section 3.2, which can control the balance of training data by the
decoupled parameters C and C∗ introduced in (8).

Example 3. Figure 7 illustrates an estimation of the sine function using LapLS in Section 3.2, where we divide
the labeled training set in half and use the different values of the parameters, i.e., C = 0.5 and C∗ = 0.1. In the
latter part, the estimation with C∗ = 0.1 is not accurate. This result can be validated from (8). As the parameter
C(∗) becomes smaller, the related term C(∗) ∑i(e

(∗)
i )2 becomes also smaller. In other words, the optimization

focuses less on the training data points with the smaller parameter value of C(∗).
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C=0.5 C*=0.1

Figure 7. Sine function estimation using LapLS in Section 3.2 with different values of balancing
parameters C and C∗.
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For the final step in the suggested algorithm, the idea is to treat pseudolabels ỹ in (18) as the labels
of the unlabeled data in the LapLS (8) framework, which forms the following optimization:

min
α∈R(l+u),e∈Rl ,e∗∈Ru ,b∈R

C
2 ∑l

i=1 e2
i +

C∗
2 ∑u

j=1(ẽ
∗
j )

2 + γAαTKα + γIα
TKLKα,

subject to : yi −∑l+u
k=1 αkKik − b− ei = 0, i = 1, . . . , l.

ỹ∗j −∑l+u
k=1 αkKjk − b− ẽ∗j = 0, j = 1, . . . , u,

(19)

where ỹ∗j are pseudolabels of the unlabeled data from ỹ (18). Therefore, the non-convex problem of
LapLS (8) is modified to a convex problem due to insertion of the pseudolabels. After KKT conditions,
we obtain the following linear system:

AX = Y, (20)

with

A =

[
K + Γ 1(l+u)×1

11×(l+u) 0

]
,

X =

[
α

b

]
, Y =

[
Ỹ
0

]
,

where K is the kernel matrix in (4), α = [α1, . . . , αl+u] ∈ R(l+u), b ∈ R in (2) is the bias value,
1(l+u)×1 = [1, . . . , 1]T ∈ R(l+u) is the one vector, and Γ is the diagonal matrix with Γii = 1/C for
i = 1, . . . , l and Γii = 1/C∗ for i = l + 1, . . . , l + u. The pseudolabel vector Ỹ ∈ R(l+u) is a time-series
set of the labeled and pseudolabeled data. The optimal solution α∗ and b∗ obtained after solving (20)
becomes the final parameters of the localization model, which is defined in (2). In the test phase, when
a user queries location by sending a RSSI measurement set, the location is estimated based on the
learned localization model.

The proposed algorithm in (20) improves the performance of LapERLS by combining the structure
of LapLS. First, the pseudolabels are accurately estimated by assigning temporal-spatio representation
into the unlabeled data. Second, it is easy to adjust the balance between the pseudolabels and the
labeled data. Moreover, by incorporating the pseudolabels into the LapLS structure, the non-convex
problem is transformed to a convex problem that can be computed far faster. The proposed algorithm
is summarized in Algorithm 1.

Algorithm 1 Proposed semi-supervised learning for localization

Step 1: Collect labeled training data set {(xi, yi)}l
i=1 and unlabeled data set {xj}u

j=1 in a time-series.

Step 2: Obtain kernel matrix K in (4), normalized Laplacian matrix L in (5) and matrix Λ in (10).

Step 3: Choose values of µ1 and µ2 in (18), and then calculate the pseudolabels in (18).

Step 4: Choose values of C and C∗, and then solve the linear equation in (20).

Step 5: Based on the optimal solution α∗ and b∗ from Step 4, builds the localization model in (2).

5. Experiments

To evaluate the proposed algorithm in comparison with other semi-supervised learning
algorithms, two kinds of error are defined. First is the pseudolabel error defined as the average
of the distance errors between unlabeled data and pseudolabeled data. Second is the test error is
defined as the average of the distance errors between true locations and estimates.

This section consists of the parameter setting in Section 5.1 and the compared localization results
according to the variation of the training data in Section 5.2. In Section 5.3, the result according to
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the variation of the number of Wi-Fi access points and the computation analysis are given. Finally,
Section 5.4 describes a combination of particle filter and the suggested learning algorithm.

5.1. Parameter Setting

The hyper-parameters in machine learning algorithms are generally tuned by cross validation
that selects parameters values to minimize training error of some split training data sets, e.g., 10-fold
cross validation [27]. However, most semi-supervised learning applications use a small number of the
labeled data, so it is not suitable to employ the cross validation. This section provides a guideline for
selecting all the parameters used in the developed algorithm, by describing the physical meaning of
each parameter.

First, λ, i.e., the diagonal elements of Λ in Step 2 of Algorithm 1, can be interpreted as the
importance of the labeled data relative to the unlabeled data by (12) and (18). If λ is relatively smaller
than the particular value defined as λcritical , resultant pseudolabels of the labeled data are different
from the true labels. Therefore, it is decided to select value of λ larger than such critical value. Figure 8a
shows the pseudolabel error according to the variation of λ, where λcritical = 10 becomes the proper
parameter selection.
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Figure 8. Impact of the parameters λ in Step 2, µ2, and µ1 in Step 3 of Algorithm 1. (a) Impact of the
value λ when µ1 = 1, µ2 = 1. (b) Impact of the ratio µ2/µ1; we set µ1 = 1 and vary µ2. (c) Impact of
the value of µ1 and µ2 if the ratio µ2/µ1 is fixed, we vary µ1 and µ2 with constraint µ2/µ1 = 1.

Second, selection of µ1 and µ2 in Step 3 of Algorithm 1 represents a trade-off relationship between
spatial and temporal correlation. If it is desirable to weigh the temporal meaning more than the spatial
meaning, µ2 is selected larger than µ1. Figure 8b shows the error of the pseudolabels according to the
variation of µ2 at fixed µ1, which suggests that 1 < µ2 < 10 is proper for this data set. Also, Figure 8c
gives the impact of the ratio µ2/µ1, where µ2/µ1 < 1 is proper to this data set.

Third, selection of C and C∗ in Step 4 of Algorithm 1 represents a trade-off relationship about
the relative importance between the labeled data and the pseudolabeled data, as described in V-B.
It is highlighted again that C∗ should be smaller than C if we want to reduce the reliance of the
pseudolabeled data relative to the labeled data. We used 10%, 25%, and 50% labeled data points among
total of 283 labeled data points to test an effect of the parameters C and C∗ whose results are shown in
Figure 9a,b. From Figure 9a, it is observed that C∗ smaller than C can reduce the test error. In particular,
the same test error is found at C∗ = 1, which implies that the algorithm with only 10% labeled data can
have the same performance when using large amount of 50% used labeled data. This result highlights
the importance of balancing the labeled and the pseudolabeled data and proves why the proposed
algorithm can give good results when using a small number of the labeled data points. Also, Figure 9b
shows the impact of values of C and C∗ when the ratio C/C∗ is fixed. It is shown that 10 < C/C∗ < 50
is proper for this data set. Lastly, Figure 9c shows the test error with respect to the variance of σk used
for the kernel matrix. Table 1. summarizes the parameter values used for the rest of the experiments.



Sensors 2019, 19, 3867 13 of 18

log10(C*)
-1 0 1 2

T
es

t e
rr

or
 (

m
)

5.2

5.4

5.6

5.8

6
Label 10%
Label 25%
Label 50%

(a)

log10(C)
-1 0 1 2

T
es

t e
rr

or
 (

m
)

4.8

5

5.2

5.4

5.6

5.8
Label 10%
Label 25%
Label 50%

(b)

<
k

0 20 40 60 80 100

T
es

t e
rr

or
 (

m
)

4

5

6

7

8

9
Label 10%
Label 25%
Label 50%

(c)

Figure 9. Impact of the parameters C, C∗, and σk in Step 4 of Algorithm 1. Other parameters used in the
prior Step 3 are set to µ1 = 1, µ2 = 3, and λ = 5. (a) Impact of the ratio C∗/C when C = 40. (b) Impact
of the values of C and C∗ if the ratio C/C∗ is fixed, varying C and C∗ with constraint C/C∗ = 1.
(c) Impact of the value of σk when C = 40 and C∗ = 40.

Table 1. Selected parameter values.

Value of Value of Value of Value of Value of Value of
λ µ1 µ2 C C∗ σk

10 5 2 10 1 30

5.2. Variation of Number of Training Data

This experiments compares the semi-supervise algorithms, i.e., SSL [28], SSC [22], LapERLS [11]
to the proposed algorithm with respect to the variation of the number of labeled training data at the
fixed total of the training data, and the results are shown in Figure 10. For example, in case of 75%
labeled data, 25% unlabeled data is used. The total of 283 and 93 training data points are used in
Figure 10a,b, respectively. From the both results, we can observe that our algorithm outperforms the
compared methods. In cases of 100% and 75% labeled data in Figure 10b, SSC gives slightly smaller
error than the others. However, considering the advantage given to only SSC, i.e., the information of
locations of the Wi-Fi access points, this error reduction is not noticeable.
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(b) 93 training data points
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Figure 10. Localization results of the compared algorithms with respect to the variation of the ratio of
the labeled training data over (a) total of 283 training data points and (b) total of 93 training data points.
In (c), accuracy of the pseudolabels obtained from the developed algorithm is examined according to
variation of the number of labeled data.

The major contribution of our algorithm is found from the results when a small amount of labeled
data is used. From Figure 10a,b, our algorithm shows the slightly increasing errors as less labeled
data are used, while the others give the highly increasing error from 25% percentage. To analyze
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this result, we check the error of the pseudolabeled data points made in our algorithm, in Figure 10c.
When using many labeled training data points such as 50%∼75%, accurate pseudolabels are made,
so good learning result is obvious. Even though the pseudolabeled data is inaccurate such that only
10% labeled data is used as in Figure 10c, the test error is still small as in Figure 10a,b. This is because
we balanced the pseudolabeled data by reducing the reliance on the pseudolabeled data relative to the
labeled data.

5.3. Variation of Number of Wi-Fi Access Points and Computational Time

Figure 11 compares the results when the number of Wi-Fi access points (AP) is changed from 2 to
7, where the APs depicted in Figure 1 are removed by this order #1→ #6→ #3→ #7→ #8→ #4.
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Figure 11. Impact of the number of Wi-Fi access points for localization performance.

Figure 12 summarizes the computational training times of the compared algorithms.
Computational complexity of the optimization of SSL, LapERLS, and the proposed algorithm is
O(dn2 + n3) [29] by the matrix computation and its inversion in (18), where d is the dimension
of training data and n is the number of training data. In case of SSC, it additionally needs the
computation of harmonic function using k-NN search algorithm which is O(nk(n + d)log(n + d)) [30].
The computation time of SSC increases significantly according to the increasing amount of the labeled
data while the others remain lower-bounded in 0.5 s. The proposed algorithm needs little more time
than LapERLS and SSL (at most 0.2 s).
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Figure 12. Computational time of the compared algorithms.
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5.4. Combination with Particle Filter

While the previous sections have shown the results of localization using the Wi-Fi RSSIs based on
the learning algorithms, this section provides a combination with a filtering algorithm. An application
of the particle filter can use other kinds of positioning information such as an IMU measurement and
map information, to improve indoor localization. Because a detailed description about the particle
filter can be found in many works [31–33], this paper simply describes how that information with the
learning-based localization can be combined in the particle filter framework.

First, a dynamic model given an IMU sensor data can be defined by:

Xt+1 = Xt + V̂t∆t

[
cos(θ̂t)

sin(θ̂t)

]
, (21)

where Xt is a 2-D location at time step t, and V̂t and θ̂t are the velocity and direction of an user,
respectively. However, in (21), accurate estimation for the velocity and the direction is difficult to be
obtained for the indoor positioning. For example, for obtaining accurate velocity, the attitude of the
smartphone needs to be kept fixed without rotating. More specifically, the estimates of a step detection
and velocity of the user have the significant error when the user swings the smartphone by walking.
Also, the estimation of the direction is much biased in the indoor environment due to the ferrous
material and the integral gyro error.

For such reasons, an alternative dynamic model without employing IMU measurement is the
random walk defined by the Gaussian distribution as follows:

Xt+1 ∼ N (Xt, Σd) . (22)

Next, the particle filter uses the estimated location obtained from the learning algorithm as the
observation model in the following:

Zt = HXt + Γ,

where Zt = [ fX , fY]
T is the estimated location from the learning algorithm fX , fY, and H is the identity

matrix, and Γ is a Gaussian noise whose mean is zero and variance is Σo.
The key point of the particle filter is to update the weights wi

t of each particle Xi
t for i = 1, . . . , m,

where m is the number of the particles. It decides the estimation X̂t as the weighted summation
X̂t = ∑m

i=1 wi
tX

i
t. The weights are updated in the following:

wi
t = wi

t−1 · P(Zt|Xi
t) · P(Xi

t|Xi
t−1),

where P(Zt|Xi
t) ∼ N(Zt − HXi

t, Σo). The map information can be used in the probability P(Xi
t|Xi

t−1)

in the following:

P(Xi
t|Xi

t−1) =

{
Pm if a particle crossed a wall
1− Pm if a particle did not cross a wall,

where Pm simply set to zero because human cannot pass the wall.
Evaluation of the particle filter based on the learning algorithm is shown in Figure 13. It is

assumed that the user walks constant speed along the designated path. By the records of timestamp
using the smartphone, we calculate the average 5.2 m localization error when using only learning
method, and 2.9 m localization error when combining the particle filtering.
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Figure 13. Combination of the particle filter and the learning algorithm, given map information. The
test data is obtained through the dotted line. Blue circle line is the result when using only learning
localization. Red cross line is the result when we combine the learning with the filter, illustrating a
smoother and more accurate trajectory.

6. Conclusions

This paper proposes a new semi-supervised learning algorithm by combining core concepts of
LapERLS’s pseudolabeling, time-series learning, and LapLS-based balancing optimization. From the
indoor localization experiment, the suggested algorithm achieves high accuracy by using only a
small amount of the labeled training data in comparison with the other semi-supervised algorithms.
Also, this paper provides a guidance and an analysis for selecting all the parameters used in the
proposed algorithm. In addition to the Wi-Fi RSSI-based localization, there are various types of indoor
localization methods using IMU, Bluetooth, UWB (Ultrawide band) and camera. This paper has shown
the combination with the particle filter from which expandability to involve other types of information
is validated. Thus, it is expected that a fusion algorithm with the other positioning approaches might
improve localization accuracy for future work.
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