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Abstract: Short-term traffic speed prediction has become one of the most important parts of intelligent
transportation systems (ITSs). In recent years, deep learning methods have demonstrated their
superiority both in accuracy and efficiency. However, most of them only consider the temporal
information, overlooking the spatial or some environmental factors, especially the different correlations
between the target road and the surrounding roads. This paper proposes a traffic speed prediction
approach based on temporal clustering and hierarchical attention (TCHA) to address the above
issues. We apply temporal clustering to the target road to distinguish the traffic environment.
Traffic data in each cluster have a similar distribution, which can help improve the prediction accuracy.
A hierarchical attention-based mechanism is then used to extract the features at each time step.
The encoder measures the importance of spatial features, and the decoder measures the temporal ones.
The proposed method is evaluated over the data of a certain area in Hangzhou, and experiments
have shown that this method can outperform the state of the art for traffic speed prediction.

Keywords: intelligent transportation system; traffic speed prediction; attention mechanism; temporal
clustering analysis

1. Introduction

Traffic speed prediction, especially short-term prediction (less than 20 min), has become
increasingly important in intelligent transportation systems (ITSs) [1]. Many modern traffic facilities
and applications rely heavily on the accuracy of prediction. For example, the navigation system can
provide an optimal route for travelers based on real-time prediction, and can calculate the cost of
travel time, which is helpful for making plans. The traffic speed can reflect the traffic state of the road
network; based on the current value of traffic speed and its future short-term change trend, managers
can partition the traffic network [2], optimize the signal timing, and guide the traffic traveling, so as to
make full use of road resources and alleviate traffic congestion.

Because of the substantial amount of potential, traffic prediction has become a hot topic in the
field of traffic over the past few decades. Considering that the current traffic states are relevant to the
upstream and downstream roads, and are also similar to the same horizon of previous weekdays and
weekends, various data-driven algorithms have been proposed to increase the prediction reliability
and accuracy. In general, approaches can be categorized into three parts: parametric methods,
non-parametric methods, and deep learning methods [3–5].

Parametric approaches rely on a fixed parameter set, assuming that the collected data satisfy a
similar distribution. A most widely used approach is the auto-regressive integrated moving average
model (ARIMA), which is a time-series prediction model and assumes that the data are stationary,
that is to say, the mean value and variance remain unchanged. The ARIMA model was first used in
traffic prediction in [6], and in the past few decades, a number of its extensions have been proposed [7,8].
Although such method is easy to implement, it can only be used in linear system. The traffic system is
far more complex, if using such method, the prediction accuracy is not reliable enough.
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Different from parametric methods, non-parametric methods are believed to more flexibly fit the
nonlinear characteristics and are better able to process noisy data [9]. A Kalman filter is a main model to
predict future states, which can be applied to any dynamic system whose state variables are uncertain.
Kalman-filter-based approaches have been applied in traffic prediction in [10–12]. Other statistical
techniques such as the hidden Markov model [13] and Bayesian interference [14] have also been
under research in recent years. Recently, along with the arrival of big data, machine-learning-based
methods have drawn academic attention. Davis and Nihan first applied the k-nearest-neighbors
(k-NN) method to short-term traffic prediction, considering the stochastic traffic features. The results
were comparable but were unable to reach the benchmarks [15]. One deficiency of k-NN is that the
selection of k relies heavily on priori or experiential knowledge. Besides, as the historical data are
growing every day, the search space becomes even more enormous, resulting in substantial costs
when searching for an optimal solution. To resolve this problem, Simon et al. proposed an improved
sequential search strategy with k-NN [16]. The support vector machine (SVM) and support vector
regression (SVR) are considered as two other efficient algorithms for short-term traffic speed prediction.
SVR maps multi-dimensional traffic data into a feature space and performs a linear regression within
that space [17]. Several studies [18–20] have proved that SVR can outperform time-series methods.
However, these studies with shallow architectures have been proved to have limitations in such a
high-dimensional and complex traffic state [21].

With the enrichment of data and rapid development of data processing, neural network-based
methods have become one of the most researched algorithms due to its capability of dealing with
non-linear and multi-dimensional data [22–25]. Ma et al. utilized the long short-term memory (LSTM)
structure to perform traffic speed prediction and obtained a higher accuracy compared to statistical
or other classical methods [22]. Du et al. took multi-parameters as inputs, and presented a hybrid
neural network that combined convolutional neural networks (CNNs) and LSTM to predict traffic [23].
However, the algorithms mentioned above do not consider spatial relations between roads or segments;
that is to say, a certain road’s traffic speed is relevant to, or will be influenced by, its upstream and
downstream roads’ speed. Zeng et al. incorporated the previous (temporal) inputs and exogenous
(spatial) inputs to train a recurrent neural network (RNN) [26]. Li et al. used deep belief networks
(DBNs) to predict short-term traffic flow using temporal-spatial traffic data, and a multi-objective
particle swarm algorithm was used to optimize some of the parameters in certain networks [27].
Gu et al. captured the lane-level spatio-temporal characteristics traffic speed using the fusion deep
learning (FDL) model [28]. Ma et al. converted the network traffic to images, and constructed a
time–space matrix using time and space dimension data, which were collected from GPS devices, and a
CNN-based network was finally introduced for prediction [22]. Yu et al. captured spatial-temporal
features through graph convolution [29].

Furthermore, as traffic speed prediction can also be regarded as a sequence prediction task, research
shows that the longer the length of sequences is, the lower the accuracy will be [30]. Consequently,
an attention mechanism is processed to determine which part of the sequence is more important
for improving prediction precision. As an attention mechanism has been demonstrated to have a
better performance in many fields [31–33], a hybrid attention-based model with CNN to mine spatial
features and a gated recurrent neural network (GRU) to mine temporal features was proposed [34].
GRU is a variant of RNN, which can model the long-term dependencies and vanishing error problem.
The attention mechanism is aimed to measure the importance of the past inputs correlated to the future
states. However, the space dimension still contains some temporal information, and the CNN model
somewhat neglects the inner temporal relations. Liao et al. [35] applied an attention mechanism to
predict traffic speed with map query data; however, it can only predict speeds around the busy roads,
and was limited to the query data. Since there are various applications to queries, the integration may
be a challenge.

To deal with the problems above, we introduce a novel traffic speed prediction approach based on
temporal clustering and hierarchical attention (TCHA). Firstly, according to the time series information
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and the topological structure between the target road and the surrounding road, the historical data
are divided into two parts: spatial data and temporal data. Secondly, to distinguish the traffic
environment, temporal clustering analysis is applied to the target road [36], which separates the
historical data into several clusters. Traffic data in each cluster have similar distribution, which can
help improve the prediction accuracy. Thirdly, a hierarchical attention-based mechanism is used to
measure the importance of each feature at each time step, the spatial attention in the encoder measures
the importance of spatial features, and the temporal attention in the decoder measures the temporal
ones. In each module, bi-directional LSTM (BiLSTM) is used to capture further nonlinear information.

The principal contributions of this paper are as follows:

1. A novel deep learning framework is proposed for short-term traffic speed prediction.
2. Temporal clustering is used to improve dataset partition for enhancing performance.
3. Two attention mechanisms are introduced to capture important spatio-temporal information.
4. The effectiveness of the proposed model is validated in two real-word traffic datasets.

2. Methodology

With the overview of recent studies on short-term traffic speed prediction, a traffic speed prediction
approach based on temporal clustering and hierarchical attention (TCHA) is proposed. Figure 1 shows
the framework of this paper. We collected raw traffic speed data from cameras equipped on roads,
capturing the passing vehicles and saving information into databases. Certain data cleaning methods
were then employed to remove anomaly elements. The third step was to partition the pre-processed
data into several clusters using a hierarchical temporal clustering algorithm. Traffic data in each
cluster has a similar distribution, which can help improve the prediction accuracy. Following the
above steps, two traffic speed vectors, which contain temporal speeds and spatial speeds respectively,
were generated, and a hierarchical attention-based method was then applied to these two vectors to
capture spatial and temporal features. In the encoder, spatial vectors were taken as inputs, and the
relevance of each selected road was determined with the spatial attention. The hidden states computed
from the encoder together with the temporal vectors were concatenated as inputs for the decoder.
In the decoder, the importance of each time step was calculated with the temporal attention. Finally,
a fully connected layer was used for prediction. Each part is detailed in the following subsections.
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2.1. Data Partition

Traffic environments are changing every day, and some researchers [37] have proved that the
traffic environment (or context) dimension is the most relevant to traffic prediction. The context
includes the day of a week (weekday or weekend), emergency events (or how far it happens away
from the target road), weather (rainy, sunny, etc.), and so on. Accuracy may be low if we take all of the
pre-processed speed data as training or testing samples, this fact is quite evident, e.g., a model is highly
likely to be unable to detect a dog if it is trained by thousands of cats and tens of dogs. However,
traffic environments are complex. There is no clear boundary or auto-adjusted model to partition.
In this paper, we apply an unsupervised method, temporal clustering (TC), to partition raw traffic data.
Temporal clustering analysis uses hierarchical clustering to obtain several clusters, in which all of the
traffic speed data have similar traffic variation patterns. Algorithm 1 illustrates the details of this part.
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All of the historical traffic speed data are divided by days before clustering, as the input dataset
sequence is D = (d1, d2, . . . , dp) with di ∈ Rq, where q represents the number of data in one day, and p
is the number of samples, i.e., the number of initial cluster. Threshold θ and sim_max is first initialized.
sim_max is a constant that represents the maximum value of an integer. In each loop, the similarity
within clusters is calculated, and two clusters whose similarity obtains the maximum are aggregated.
The whole procedure will be stopped when there is only one cluster, or the maximum similarity is less
than the threshold. In this paper, the Pearson correlation coefficient [38] is employed as a similarity
function. The data of each cluster can be used to train a prediction model. Before the prediction,
the similarity between the current day’s data and each cluster is calculated, the closest cluster and its
model are selected to predict the short-term traffic speed.

Algorithm 1: Temporal clustering analysis.
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Figure 2. Graphic illustration of temporal clustering and hierarchical attention (TCHA). 

2.2. The Attention Model

The attention model is aimed to determine how strong the target road’s speed is relative to several
time steps and the surrounding roads. As we know, the historical traffic speed data at a closer time step
and the surrounding road will have a greater impact on future speed data [39,40], but the influence
factor may differ in different cases.

There are two attention mechanisms in the model, i.e., the spatial attention and the temporal
attention (see Figure 2). The spatial attention is used in the encoder to capture the spatial features and
determine the importance of each space point with a BiLSTM network, and the temporal attention is
applied in the decoder to capture temporal relations and decide the importance of each time step with
another BiLSTM network.
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2.2.1. The Encoder Module

The encoder is essentially a BiLSTM network [41], aiming to determine the importance of each

space point. Given the input spatial sequences at time step t, S = (St−l+1, St−l+2, . . . , St

)T
∈ Rl×n, where

n is the number of selected surrounding roads, and l is the time lags. The spatial matrix can also be
written as S = (S1, S2, . . . , Sn

)
, where Si

∈ Rl represents the speed matrix of road i at all time steps.
The spatial attention mechanism can be constructed by a soft attention mechanism:

ei
t = ZT

e tanh(We
[
he,t−1; ct−1; Si

]
+ be) + bi

ze, (1)

αi
t =

exp(ei
t)∑n

i=1 exp(ei
t)

, (2)

where
[
he,t−1; ct−1; Si

]
∈ R2m+l is a concatenation of the previous encoder hidden state, memory cell,

and current spatial data, m is the encoder hidden size, Ze ∈ Rl and We ∈ Rl×(2m+l) are the weights of
linear functions, be ∈ Rl and bze ∈ Rn are the bias terms, which are all the parameters to learn, ct and
he,t ∈ Rm are memory cells and the linear transformation of hidden states in the encoder procedure,
which are initialized as zero tensors and will be illustrated in detail, and tanh(·) is the hyperbolic tangent
function. A SoftMax function is applied to compute the spatial attention weights αt ∈ Rn, which
represent the scores of each selected road, with the higher score representing the stronger relation.

With the attention weights, the input spatial matrices can be transferred to

S̃t= (α1
t S1

t ,α2
t S2

t , . . . ,αn
t Sn

t

)T
, (3)

where S̃t contains spatial information.
To extract further features and learn parameters, an activation function should be applied. In this

paper, we use BiLSTM, which is specialized for sequence learning. BiLSTM contains the forward LSTM

(denoted as
→

LSTM), which processes spatial data from S̃t−l+1 to S̃t, and the backward
←

LSTM (LSTM),
which processes spatial data from S̃t to S̃t−l+1.

The outputs of BiLSTM can be expressed as follows:

→

h t =
→

LSTM(wt1,
→

h t−1), (4)

←

h t =
←

LSTM(wt2,
←

h t−1), (5)

ht = [
→

h t;
←

h t], (6)

he,t = We,tht + be,t, (7)

where
→

h t ∈ Rm represents the forward hidden state, and
←

h t ∈ Rm represents the backward hidden state,

both of which capture the deeper information of all inputs at time t. ht ∈ R2m is the concatenation of
→

h t

and
←

h t, which represents the encoder hidden state and will be decoded in temporal attention. he,t ∈ Rm

is the linear transformation of ht, which will be used for spatial attention calculation, We,t ∈ Rm×2m

and be,t ∈ Rm are weight terms and bias terms.
With the proposed spatial attention, the encoder will focus more on several roads that obtain

higher weights.

2.2.2. The Decoder Module

Another BiLSTM network is used in the decoder to determine how strong each time step will
influence the predicted traffic speed.
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With the computed hidden states (ht−l+1, ht−l+2, . . . , ht) in the encoder layer, we calculate the
temporal attention weights as follows:

di
t = ZT

d tanh(Wd
[
h′d,t−1; c′t−1; hi

]
+ bwd) + bi

zd, (8)

βi
t =

exp(di
t)∑l

i=1 exp(di
t)

, (9)

where
[
h′d,t−1; c′t−1; hi

]
∈ R2m+2k is a concatenation of the previous decoder hidden state, memory

cell, and encoder hidden state, k is the decoder hidden size, Wd ∈ Rm×(2m+2k), Zd ∈ Rm, bzd ∈ Rl,
and bwd ∈ Rm are the weights and the bias terms in the decoder, which are all the parameters to learn.
The temporal attention weights represent how much each encoder hidden state will influence the
prediction results. Since each encoder hidden state has contained the spatial factors, a context vector
that represents the sum of all encoder hidden states can be computed in the attention mechanism:

ct =
∑l

i=1
βi

tht−i+1. (10)

Combined with context vectors, the input temporal sequence at time t
(
yt−l+1, yt−l+2, . . . , yt

)
can

be transferred to

ỹt = WT
c

[
ct

yt

]
+ bc, (11)

where
[

ct

yt

]
∈ R2m+1 is the concatenation of the target road’s speed at time t and context vector;

Wc ∈ R2m+1 and bc ∈ R are parameters to learn, which help map the concatenation to new inputs in
the decoder. Similarly, we apply BiLSTM to extract further features in the time dimension. The outputs
can be expressed as follows:

→

h
′

t =
→

LSTM(w′t1,
→

h
′

t−1), (12)

←

h
′

t =
←

LSTM(w′t2,
←

h
′

t−1), (13)

h′t = [
→

h
′

t;
←

h
′

t], (14)

hd,t = Wd,th
′

t + bd,t, (15)

where
→

h
′

t ∈ Rk represents the forward hidden state, and
←

h
′

t ∈ Rk represents the backward hidden state,
both of which capture the deeper information of entire inputs at time t. h′t ∈ R2k is the concatenation

of
→

h
′

t and
←

h
′

t, hd,t ∈ Rk is the linear transformation of h′t, which will be used for temporal attention
calculation, Wd,t ∈ Rk×2k and be,t ∈ Rk are weight terms and bias terms.

Finally, the prediction result can be iteratively computed through the fully connected layer:

yt+1
pred = WT

y

[
ct

h′t

]
+ by, (16)

where
[

ct

h′t

]
∈ R2m+2k is the concatenation of the context vector and the decoder hidden state,

Wy ∈ R2m+2k, by ∈ R are parameters to learn, and yt+1
pred represents the predicted result at time step t + 1.
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2.3. Model Optimization

As mentioned above, there are parameters to learn with training samples. The Adam [42]
optimizer is used to train the model, and the mean square error in Equation (17) is employed as a loss
function to measure the difference between the ground truth values and the predicted results:

loss =
1
N

N∑
i=1

(yi
pred − yi

true)
2
, (17)

where yi
pred is the predicted result, yi

true is the ground truth value, and N denotes the number of
training samples.

3. Results

In this section, the traffic speed data collected from Xiaoshan District, Hangzhou, China, are used
to demonstrate the effectiveness of the proposed TCHA method, through comparing to several
state-of-the-art prediction approaches with deep architectures.

3.1. Experimental Setup

As is shown in Figure 3, to evaluate the performance of the proposed TCHA method, part of
the Xiaoshan District was chosen to performance experiments (in black), Shixin Road (in red) and
Tonghui Road (in green) were selected as target roads, and the remaining segments were used to
determine the spatial features. There were 38 detectors along the whole roads, and the traffic speed
data were collected and calculated every 5 min. Consequently, one detector preserved 288 data per day.
As mentioned before, we partitioned the raw traffic speed data into two vectors; however, due to the
malfunction of detectors and the failure of data transmission, there were some incorrect data, which
includes the following:

• Missing data. There are some zero elements in the raw data, which are marked as missing data.
• Outliers. Considering that the speed limits in Hangzhou are usually lower than 80 km/h, we set

the maximum traffic speed as 100 km/h, which means that, if a certain record of speed is higher
than the threshold, it is marked as an outlier.

• Noisy data. Since it is a real-world traffic speed dataset, dramatic changes should be avoided.
Consequently, traffic speeds differing more than 20 km/h between two adjacent time points are
considered as noisy data.
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The traffic speed data marked as any type of anomaly data are replaced by the average speed of
the previous 10 min. In general, the proportion of anomaly records is less than 10%.

Figure 4 is a plot of several typical traffic speeds over time, which demonstrates obvious period
patterns. Different distributions of traffic speed data in different clusters after employing TC can be
seen in Figure 5. It is clear that the traffic speed data in the same cluster have similar distributions,
while the distribution may differ more when the data come from two clusters.
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The TCHA method is evaluated on different prediction horizons, and the time lag l is set as
12. Prediction horizons are set up to 5, which means that 60 min of historical traffic speed data are
used to predict speed of the following 25 min. For example, suppose the current time is 7:00 a.m.:
The proposed method will predict the speed of 7:05 a.m., 7:10 a.m., 7:15 a.m., 7:20 a.m., and 7:25 a.m.

The proposed TCHA method is compared to several state-of-the-art prediction approaches, which
includes the following:

• support vector regression (SVR) [43], which uses linear support vector machine for regression
tasks, especially time-series prediction;

• stacked autoencoder (SAE) [21], which encodes the inputs into dense or sparse representations by
using multi-layer autoencoders;
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• long short-term memory (LSTM) [44], which is an extension of recurrent neural networks (RNNs)
and has an input gate, a forget gate, and an output gate so as to deal with the long-term dependency
and gradient vanishing/explosion problems;

• the gated recurrent unit (GRU) [44], which has an architecture similar to LSTM but only has
two gates, a reset gate, and an update gate, which makes GRU have fewer tensor operations
than LSTM;

• the hierarchical attention model (HA), which uses spatial and temporal attention mechanisms
to capture spatial and temporal features respectively, but TC is not employed to the input data,
and it is different from the proposed TCHA.

To guarantee the fairness of experiments, all of the approaches are trained by the Adam optimizer,
which updates the parameters with a gradient descent algorithm, and the batch size is set as 128.
The threshold θ of TC is another hyper-parameter, which is set as 0.6 [36]. All of the neural networks
are built in the pyTorch framework. For support vector regression, radial basis function (RBF) is
applied as a kernel function for its better performance in a non-linear situation.

3.2. Evaluation Criteria

The mean absolute error (MAE), mean relative error (MRE), and the root-mean-squared error
(MRSE) are employed as the evaluation criteria to evaluate the prediction accuracy, which are defined
as follows:

MAE =
1
n

n∑
i=1

|yi
pred − yi

true|, (18)

RMSE =

√√
1
n

n∑
i=1

(|yi
pred − yi

true|)
2, (19)

MRE =
1
n

n∑
i=1

∣∣∣∣∣∣∣∣
yi

pred − yi
true

yi
true

∣∣∣∣∣∣∣∣, (20)

where n denotes the number of prediction samples, yi
pred is the prediction value, and yi

true is the true
value. MSE and MAE can measure the absolute differences between the predicted and true values,
and MRE can measure the relative ones.

3.3. Experiments Result and Analysis

Tables 1 and 2 show the errors of different prediction horizons using different methods for both
target roads. The outperformance of the proposed TCHA method can be seen at all time points.

On Shixin Road, compared to the hierarchical attention model without TC, the TCHA has average
improvements of 0.1029, 0.2369, and 0.0063 on MAE, RMSE, and MRE, and outperforms the relative
accurate method. The GRU showed improvements of 0.5360, 0.496 and 0.0919 on MAE, RMSE,
and MRE. On Tonghui Road, the proposed TCHA model outperforms the HA with improvements of
0.2353, 0.2370, and 0.0082 on MAE, RMSE and MRE.

With the increase in prediction horizons, the errors become larger, whereas the TCHA still reaches
the best performance, which implies that long-term prediction is more difficult and challenging,
and confirms that extracting temporal and spatial features in encoder and decoder mechanisms
is reasonable.
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Table 1. Performance of difference prediction horizons (Shixin Road).

Algorithm Error Index Horizon 1 Horizon 2 Horizon 3 Horizon 4 Horizon 5

SVR
MAE 3.1410 3.2829 3.4212 3.5746 3.7013
RMSE 4.4425 4.5538 4.6558 4.7810 4.8937
MRE 0.1670 0.1750 0.1830 0.1925 0.2004

SAE
MAE 2.2477 2.8831 3.0239 3.1550 3.2762
RMSE 3.0273 3.6742 3.8646 4.0222 4.1691
MRE 0.1226 0.1627 0.1695 0.1761 0.1823

LSTM
MAE 2.4501 2.7280 2.8957 3.0512 3.1998
RMSE 3.2971 3.5613 3.7749 3.9642 4.1405
MRE 0.1283 0.1464 0.1553 0.1635 0.1715

GRU
MAE 2.1859 2.5738 2.7458 2.9019 3.0501
RMSE 2.9850 3.4393 3.6518 3.8358 4.0064
MRE 0.1166 0.1378 0.1464 0.1544 0.1621

HA
MAE 1.6259 2.0841 2.3489 2.5223 2.7112
RMSE 2.3756 3.0004 3.2993 3.5420 3.7166
MRE 0.0768 0.1029 0.1163 0.1259 0.1374

TCHA
MAE 1.5051 2.0017 2.1689 2.3892 2.7127
RMSE 2.3040 2.8217 3.1351 3.4294 3.7481
MRE 0.0681 0.0984 0.1063 0.1182 0.1366

Table 2. Performance of difference prediction horizons (Tonghui Road).

Algorithm Error Index Horizon 1 Horizon 2 Horizon 3 Horizon 4 Horizon 5

SVR
MAE 4.9455 5.0361 5.1511 5.2186 5.2512
RMSE 6.4193 6.4726 6.5692 6.6283 6.6590
MRE 0.1496 0.1525 0.1558 0.1577 0.1586

SAE
MAE 3.5900 3.6890 3.8020 4.7404 4.9129
RMSE 4.2695 4.4256 4.5911 6.0130 6.2097
MRE 0.1163 0.1191 0.1223 0.1428 0.1482

LSTM
MAE 3.1010 3.2402 3.6749 3.7564 4.0615
RMSE 4.0861 4.2574 4.6404 4.7457 5.0561
MRE 0.0935 0.0977 0.1143 0.1167 0.1280

GRU
MAE 2.8053 2.9635 3.2987 3.5628 3.6247
RMSE 3.8097 4.0104 4.2109 4.4912 4.6136
MRE 0.0826 0.0872 0.1022 0.1112 0.1221

HA
MAE 1.8842 2.7023 2.9582 3.1797 3.3378
RMSE 2.5605 3.6264 3.9319 4.1614 4.3393
MRE 0.0554 0.0806 0.0887 0.0960 0.1012

TCHA
MAE 1.7686 2.4112 2.7111 2.9115 3.0833
RMSE 2.4271 3.3031 3.6741 3.9253 4.1050
MRE 0.0518 0.0706 0.0802 0.0865 0.0916

Figure 6 shows the curves of the predicted results corresponding to the ground truth on both
roads. Different colors represent different algorithms, during the entire day. The proposed TCHA
algorithm fits the true speed data whether it is peak hour or not. In Figure 6b, the difference between
the ground truth and the results of the proposed method is relatively large around 15 h, which may
be due to the large variation when traffic speed meets peak hour. Peak hour and emergencies are
challenges when making short-term predictions. The large influence can be seen more clearly when
using GRU to make prediction. GRU also fits the general trend of traffic speed in one day, but when
traffic speed meets large variation, the prediction performance gets lower, which further emphasizes
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the importance of spatial and temporal mechanisms, and demonstrates that our proposed model is
good approximate to the ground truth.
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Figure 7 shows the attention scores learned by the hierarchical attention mechanism described
in Section 2.2. The darker color indicates a higher importance when making predictions, while the
lighter part indicates a lower importance. Rows represent the parts of all the prediction points, and the
columns in the two subfigures represent the time lag and space point importance, respectively. In the
temporal dimension, closer time lags contribute more to prediction, which matches our intuition that
average traffic speed is always continuous and will not have dramatic changes compared to the speed
at adjacent times. When time lag is 1, the temporal score is always highest, which may reach 0.87 in
some cases. Generally, traffic speed at the farthest time lag (more than 50 min) has little or almost no
contribution to future prediction. While in the spatial dimension, it is harder to find the obvious and
significant regularity, the difference between the largest attention score and the lowest score is only
0.17. However, the proposed TCHA model still achieves higher weights with respect to the upstream
and downstream roads than with respect to the indirect surrounding roads.
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4. Conclusions

In this paper, we propose a traffic speed prediction approach based on temporal clustering and
hierarchical attention (TCHA) for traffic speed prediction. We first divided the historical traffic speed
data into several clusters based on the similarity function of the Pearson correlation coefficient. A spatial
attention mechanism was then designed in the encoder, which can adaptively select the relatively
important segments for prediction, and a temporal attention mechanism was used in the decoder to
determine the importance of each time step. The BiLSTM network was used in both mechanisms,
for its better ability to capture further features in sequence learning. To validate the effectiveness of the
proposed model, five approaches (i.e., SVR, SAE, LSTM, GRU, and the original hierarchical attention
model) are compared to the TCHA based on the same dataset. The experiment results confirm that our
proposed method can learn more temporal and spatial information to increase prediction accuracy.
Several findings can be summarized:

1. With the increasement of prediction horizons, the prediction errors become larger.
2. Making traffic speed prediction during peak hour is challenging.
3. Although GRU can be regarded as a simplification of LSTM, it can reach a higher accuracy in

most cases.

In the future, the model can be improved by considering some environmental factors, social events,
and especially traffic signal control data. Due to the faults of devices and transmission, missing data
and anomaly data will decrease the accuracy of the trained model and predicted results. It is necessary
to generate data from various sources, i.e., camera detectors, GPSs, taxies, etc., and to apply data fusion
methods to improve the confidence of the raw traffic speed data.
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