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Abstract: Passive multiple sound source localization is a challenging problem in underwater acoustics,
especially for a short hydrophone array in the deep ocean. Several attempts have been made to solve
this problem by applying compressive sensing (CS) techniques. In this study, one greedy algorithm
in CS theory combined with a spatial filter was developed and applied to a two-source localization
scenario in the deep ocean. This method facilitates localization by utilizing the greedy algorithm
with a spatial filter at several iterative loops. The simulated and experimental data suggest that
the proposed method provides a certain localization performance improvement over the use of the
Bartlett processor and the greedy algorithm without a spatial filter. Additionally, the effects on the
source localization caused by factors such as the array aperture, number of hydrophones or snapshots,
and signal-to-noise ratio (SNR) are demonstrated.

Keywords: sound source localization; compressive sensing; spatial filter; short hydrophone array;
deep ocean

1. Introduction

Sound source localization with a short vertical line array (VLA) of hydrophones is challenging in
the deep ocean (the array aperture is less than one-tenth the ocean depth) for the reason that a small
aperture and a limited number of sensors cannot sample enough acoustic modes [1,2]. Furthermore, the
source of interest can be obscured by a strong interfering source, which complicates the environment
and limits the localization performance. For example, a target (an autonomous underwater vehicle or a
whale) can be masked by a ship (a tanker or a cargo ship) near the VLA, as shown in Figure 1. And the
aim of this paper is to propose a matched field processing (MFP) framework based on compressive
sensing (CS) applied to the localization of two sources at single frequency with a short aperture array
in the deep ocean.

There are a large number of published studies that propose methods for multiple source
localization, which can generally be categorized into three types. The first type use the eigenvectors
of the cross-spectral density matrix (CSDM) to estimate the positions of uncorrelated sources [3–6].
Collins et al. proposed a multivalued Bartlett processor based on the eigenvalue decomposition (EVD)
of CSDM to estimate the moving source position [3]. Zurk et al. presented three motion mitigation
techniques to improve the localization performance of moving targets [4]. The second type employs
methods based on the Bayesian approach, utilizing the optimization of source parameters with the
Markov Chain Monte Carlo sampling method [7–11]. Dosso and Wilmut provided two approaches
utilizing the posterior probability density over the parameters of source position in uncertain shallow
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water [7]. Michalopoulou suggested that multiple sources can be localized using the maximum
a posterior through Gibbs sampling [10]. The third type employ methods that use a spatial filter
to subtract the contributions of the strongest source in the output of the modified matched field
processor [12–14]. The CLEAN algorithm, which has been applied in astronomy to denoise images,
was introduced for eliminating strong interferences to localize a weak source [12]. In most cases, this
procedure can be applied repeatedly until each source’s localization is estimated. Neilsen reported am
iterative inversion approach based on simulated annealing algorithms with a spatial matrix filter to
locate multiple sources [13].
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Figure 1. A schematic of an acoustic target (autonomous underwater vehicle or a whale) masked by a
ship (a tanker or a cargo ship). The dashed lines represent the propagation paths from the sources to
the hydrophone VLA.

Recent studies have been carried out using the compressive sensing algorithms, which can
be applied to underwater acoustics to achieve results with a high resolution [15]. The number of
sources is far less than the number of possible positions, resulting in a sparse solution set. Therefore,
the localization problem can be reformulated as a problem of obtaining the sparse solution of the
source positions with CS methods. Liu et al. chose the basis pursuit de-noising method to solve the
sparse representation problem with the homotopy approach and coordinate descent search to increase
efficiency [16]. Zhang et al. combined the orthogonal matching pursuit (OMP) algorithm with efficient
matched phase coherent MFP to solve the broadband multiple source localization problem in shallow
water [17]. Gemba et al. investigated the performance of compressive MFP in shallow water [18].
Furthermore, Gemba et al. applied sparse Bayesian learning for the localization of robust multiple
sources with SWellEx-96 data [19,20].

To date, little attention has been paid to the problem of multiple source localization with a short
array in the deep ocean. The importance and originality of this study is that it explores the feasibility
of two-source localization using a short array in the deep ocean, which is different from the above
localization methods. In most cases that multiple source localization methods were applied in shallow
water, the results could be obtained directly without many iterations. This is because enough acoustic
modes can be sampled with the aperture of the array approximating to the ocean depth, which is
impossible in the deep ocean. In practice, the cost of a large array is high and the deployment and
maintenance of it are difficult in the deep ocean. Therefore, a short array is a more attractive choice for
source localization in the deep ocean. Based on the depth-dependent interference between direct and
surface-reflected arrivals, Mccargar and Zurk proposed a depth-based signal separation (DBSS) method
using a short VLA on the reliable acoustic path, where the depths of different sources can be passively
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estimated by a modified Fourier transform to the power output of the vertical beamformer [21].
Moreover, Kniffin et al. analyzed the factors impacting the performance of the DBSS and introduced a
depth estimation method utilizing the null spacing in the interference structure [22]. However, this
method requires sources that have been moving for a relatively long time period to implement DBSS.

This paper proposes a new methodology for estimating two-source locations, employing one
greedy method in an iterative manner. The greedy method is one type of recovery algorithms to
obtain the sparse signals [23]. This method shows that the source localized directly by conventional
methods may not be the real target. Furthermore, the technique has no need for the motion of sources.
Compared to conventional methods, this technique can estimate the target with a high resolution,
owing to the characteristics of CS theory. It is beyond the scope of this study to examine the robustness
of this method to the environmental uncertainties of the ocean, which would affect the performance of
this technique.

The remaining part of the paper proceeds as follows: Section 2 introduces the new processor
for solving the reformulated sparse representation problem in a deep ocean scenario. In Section 3,
the proposed method is applied to the simulated and experimental data and the factors affecting the
localization performance are also presented. Finally, Section 4 gives a brief summary of the results, the
limitations of the proposed method and future studies.

2. Source Localization Based on CS with Matrix Filter

2.1. Source Localization Using MFP and Spatial Filter

An oceanic waveguide is considered in this paper where the acoustic field yk(rk) is induced by
one source at single frequency in the coordinates rk = (rk, zk), where the index k of yk represents the
received signals from the kth source. A VLA consists of N sensors, which is used for receiving signals.
The data at the VLA can be expressed as

y =
K∑

k=1

yk(rk) =
K∑

k=1

SkGk(rk) + N (1)

where K is the number of sources, N represents the uncorrelated additive ambient noise across
frequencies at the VLA, Gk(rk) is the Green function vector, which represents the transferring function
from the kth source at position rk to the VLA, and Sk is the frequency spectra of the kth source. The
CSDM is estimated by the spectral snapshots yl:

R =
1
L

L∑
l=1

yly
H
l , (2)

where the index l represents the lth snapshot, L is the number of the snapshots and the superscript H
denotes the conjugate transpose operation.

In MFP, replica field refers to the received signal vectors at the VLA, which are calculated by the
acoustic models. One source in the replica field can be assumed to be at position r̂s = (r̂s, ẑs), and the
acoustic field can be expressed as G(r̂s). The normalized replica vector is w(r̂s) = G(r̂s)/

∣∣∣G(r̂s)
∣∣∣. Then,

the conventional Bartlett processor can be written as:

BB = wH(r̂s)Rw(r̂s). (3)

By computing Equation (3) for all the possible source positions, one can make an ambiguity
surface, where the main lobe is the position of the source with the largest power.
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The spatial matrix filter is applied to suppress the interference or multiple source localization.
The filtered received signals can be expressed as

z = Py, (4)

where P is an N ×N matrix of complex numbers. Two major design methods for the matrix filter exist,
where the passband fidelity is minimized subject to controlled stopband attenuation and vice versa.
This problem, which is treated as a semidefinite program (SDP), can be solved by SEDUMI in the CVX
toolbox [24]. However, the computation complexity of solving an SDP is high. Mantzel et al. proposed
a method named by ROMOLO for multiple source localization with a simpler matrix filter, where a
low-rank projection matrix is constructed by minimizing the average stopband attenuation subject to
the controlled passband fidelity [25]. This method can enhance the computation efficiency greatly and
be applied to the multiple source localization in this work. First, the source positions from r̂1 to r̂Q are
estimated in sequence, where Q is the maximum iterative number. Then, the correlation matrix at the
qth loop is constructed as follows:

Mq = Gq(arq)Gq(arq)
H, (5)

where arq is an elliptical area surround the estimated position rq and q is the iteration index. For the
estimated source position in the qth loop, the ellipse area adopted for a spatial filter can be expressed
as arq =

{
(r, d) : Dq < 1

}
, where r and d represent the range and depth of the search grids, respectively.

The distance Dq between the estimated position and the grid point position is constructed as follows:

Dq =

√( r− rq−1

rw

)
+

(d− dq−1

dw

)
, (6)

where rq−1 and dq−1 are the estimated range and depth in the previous loop, and the index w represent
the weight coefficient in range and depth. Then, EVD is applied to the correlation matrix to extract the
eigenvectors Un, n = 1, . . . , N. Lastly, the projection matrix is constructed by the first nr (nulling rank)
columns of the eigenvector matrix:

P = I−UnrUH
nr. (7)

where Unr represents the first nr eigenvectors, Unr = [U1, U2, . . . , Unr].
In a word, the above methods are the conventional methods for source localization. Then, a new

method combined the CS theory and matrix filter is introduced.

2.2. Localization Method Combined with CS and Spatial Filter

In real ocean environments, the number of sources is far less than that of potential positions. Thus,
a sparse solution can be estimated for the source localizations with a large size dictionary of replicas in
CS. For simplification, the notations are as follows:

A = [a1, a2, ..., aM],
am = Gm(r̂s)/‖Gm(r̂s)‖2,
xk = Sk‖Gk(r̂s)‖2,

where M is the number of research grids. Then, the array data can be rewritten as

y = Ax + N, (8)

where A ∈ CN×M is the replica matrix for the potential positions, while x = [x1, x2, ..., xM]T and y
denote a signal vector and the measurement vector, respectively. The source positions correspond to
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the nonzero elements in x. The estimation of the sources can be expressed as the l0-norm minimization
problem:

argmin‖x‖0, s.t.‖y−Ax‖2 < ε, (9)

where the objective function ‖x‖0 is nonconvex and ε is the error threshold. The techniques used to solve
this problem based on the sparse theory can be categorized into four major types: Greedy algorithms,
convex relaxation techniques, iterative algorithms, and statistic sparse recovery techniques [23]. The
computation complexity of convex relaxation techniques (e.g., Basis Pursuit De-noising) and statistic
sparse recovery (e.g., sparse Bayesian learning) is larger than that of greedy algorithms (e.g., OMP).
The application of iterative algorithms is limited. Therefore, one of the greedy algorithms called the
sparsity adaptive matching pursuit (SAMP) algorithm is introduced in this paper [26]. The greatest
advantage of SAMP is that the signal can be reconstructed without the knowledge of the sparsity, which
is hard to be obtained practically. Moreover, a regularized step is added into the SAMP algorithm to
improve the reconstruction performance and decrease the computational power [27]. The regularized
SAMP algorithm (RAMP) is summarized in Algorithm 1.

Algorithm 1 Regularized sparsity adaptive matching pursuit (RAMP) algorithm [27]

Input:
y, A, S (step size), IM (maximum number of iterations), εmin (a positive parameter)

Initialization:
x̂ = 0, rv1 = y, Λ = ∅, L = S (size of the finalist),
t = 1 (iteration index), j = 1 (stage index)

While 1 ≤ t ≤ IM and ‖rvt‖2 > εmin
u =

∣∣∣AHrvt−1
∣∣∣,

J = max(u, L)
Regularize the process to find subset J0, J0 ∈ J∣∣∣u(i)∣∣∣ ≤ 2

∣∣∣u( j)
∣∣∣, i, j ∈ J,

Choose J0 with the maximum energy ‖uJ0‖2
Λt = Λt−1 ∪ J0

x̂t =
(
AH

Λt
AΛt

)−1
AH

Λt
y

F = max(|x̂t|, L)
rvt = y−AH

F AFy
If ‖rvt‖2 ≥ ‖rvt−1‖2

j = j + 1, L = j× S
else

Λ = F, rvt = rvt−1, t = t + 1
End if
End While

Output:
x̂ = AH

F y

The solution of Equation (9) can be expressed as [18,23]

x̂ = argmax
m

∣∣∣rvHam
∣∣∣, (10)

where rv(ω f ) is the residual vector and |·| is the absolute value operator. Note that the sparse model
can be also extended to multiple snapshots to improve the localization performance. Further, the
normalization problem in Equation (9) is transformed into [18]

argmin
M∑

j=1

‖X j‖2, s.t.‖Y−AX‖2F < ε, (11)



Sensors 2019, 19, 3810 6 of 20

where ‖·‖F denotes the Frobenius norm operator and Y ∈ CN×L includes L snapshots for a stationary
source. This problem is also called the multiple measurement vectors problem, which can be solved by
the extension of the aforementioned four major methods. Because matrix X is row sparse, the RAMP
algorithm can be extended by summing up the l2-norm of the each row in the matrices, such as u, rvm

in Algorithm 1. Additionally, for the comparison with the Bartlett processor, the average power at
position r̂k = (r̂k, ẑk) is regarded as [18]

PR(r̂k) = ‖x̂k‖
2
2/L = ‖aH

k Y‖
2
2/L, (12)

where the row vector ak corresponds to r̂k in the replica field and x̂k corresponds to
kth value in the solution of Equation (10). The corresponding ambiguity surface can
be obtained by computing the output at each position r̂s in the replica fields, BR(r̂s) =

10 log10(PR(r̂s)/max([PR(r̂1), . . .PR(r̂s), . . .PR(r̂M)])).
The approach for the localization of two sources is to estimate the peak of the ambiguity surface

as the most prominent source using RAMP and repeatedly apply the matrix filter to suppress its
contribution. This method is similar to ROMULO. However, one of the unknown sources can be
localized accurately in each loop within ROMULO, whereas the contribution of the already estimated
sources are rejected in the latter loop. This is difficult to obtain in a complex ocean environment.
The proposed method is based on the RAMP algorithm and matrix filter. Herein it is referred to as
RAMPMF and summarized in Algorithm 2. Additionally, the performances and comparisons of the
RAMP algorithm and the RAMPMF algorithm are presented in the next section. The originality of this
study is combining the RAMP method and the matrix filter to localize two sources in an iterative way.

Algorithm 2 RAMP algorithm combined with matrix filter (RAMPMF) algorithm

Input:
y, A, (rw, dw) (elliptical norm weighting coefficients), nr (nulling rank)
Q (maximum iterative number), S (step size), εmin (a positive parameter)

Initialization:
x̂ = 0, rv = y, Λ = ∅ (parameters used in the RAMP algorithm), P = I (projection matrix)
RAMP search for a source position r0 = (r0, d0) and x̂0

for q = 1: Q

Dq =

√( r−rsq−1

rw

)
+

(d−dsq−1

dw

)
arq =

{
(r, d) : Dq < 1

}
Mq = Gq(arq)Gq(arq)

H

Mq = U
∑2 UH

if q = 1, P = I
else Pq = I−UnrUH

nr,
endif
yq = Pyq−1
Aq = PAq−1
RAMP search for a new source position rq = (rs, ds), x̂q

End for

Output:[
r1, . . . , rQ

]
and

[
x̂1, . . . , x̂Q

]
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It should be noted that the localized source positions may be different in each iterative loop.
Therefore, the correlation between the different localizations is utilized to search for the similarity
among the different positions. The correlation coefficient can be expressed as cosine law:

coe f
(
ri, r j

)
=

rir j

‖ri‖2‖r j‖2
, (13)

where ri = (ri, di) and r j =
(
r j, d j

)
are the source positions obtained in the ith and jth iterative,

respectively. The range ri is transformed into the same order of magnitude with the depth di. The
degree of correlation is high when the coefficient approaches 1.

However, the threshold of the correlation coefficient is hard to define for the reason that there are
many values close to one, such as 0.993 and 0.99. A new correlation coefficient between ri and r j is
defined as:

coe f
(
ri, r j

)
=
√

2

∣∣∣di − d j
∣∣∣

di + d j
+
√

2

∣∣∣ri − r j
∣∣∣

ri + r j
. (14)

Contrary to Equation (13), the degree of correlation is high when the coefficient in Equation (14)
approaches zero. In general, the threshold is set as 0.1. For example, the coefficient of r1 = (8220, 48) and
r2 = (9000, 67) in Equation (13) is 0.9938, whereas that in Equation (14) is 0.2977 more than the threshold
of 0.1. Then, the number of potential sources is determined by the correlation coefficient of the different
localizations in the unique circle [rz, rz+1], which corresponds to the source positions. The average

power per snapshot provided by the RAMPMF algorithm is calculated by PRM(r̂k) =
1
2

m+1∑
m
‖x̂k‖

2
2/L,

where k is chosen from z to z+ 1, where z represents the index of one cycle. The corresponding ambiguity
surface can be obtained by BRM(r̂s) = 10 log10(PRM(r̂s)/max([PRM(r̂1), . . .PRM(r̂s), . . .PRM(r̂M)])).

3. Numerical Results

3.1. Simulated Data

The RAMPMF method is applied to a simulated dataset and experimental data to compare the
different processors and demonstrate the performance. A VLA was used for this simulation including
32 hydrophones, which were deployed from 1735 to 1859 m with a 4 m interval. Two sources both
at frequency 187 Hz were treated as the target sources. A flat bathymetry was at a depth of 2000 m.
The schematic geometry of the acoustic propagation in this scenario is shown in Figure 2a. The sound
speed profile in the water was measured by a conductivity–temperature–depth (CTD) probe near the
VLA in the experiment, as shown in Figure 2b. Figure 2c shows that the transmission loss (TL) received
on the VLA below 1700 m is less than that on the sea surface in the range from 3 to 9 km. This is
because the main energy received in the VLA is contributed by the direct arrivals and surface-reflected
arrivals, as shown in Figure 2d. In fact, the ranges of interest are from 1 to 15 km and the depths of
interest are from 0 to 400 m in the deep ocean. One reason for this is that the propagation path of
the sound wave is curved due to the depth-dependent sound speed profile, as shown in Figure 2d.
These characteristic limits the direction of the sources. The elevation angles of the region of interest are
between endfire and boresight.

In the numerical simulation, the ray model BELLHOP [28] was used to compute the replica vectors
at a single frequency of 187 Hz. The corresponding half-wavelength approximates the spacing of the
VLA. The sound speed of the compressional wave as well as the density and attenuation coefficient of the
sediment were 1550 m/s, 1310 kg/m3, and 0.15 dB/λ, respectively. The range-dependent environmental
factors, such as sound fluctuation caused by internal waves, were neglected. Therefore, the theory of
reciprocity [29] was applied to this scenario to reduce the computation, and each of hydrophones of
the VLA was treated as a virtual source to obtain the replicas. The search area was (0.4 km, 15 km) ×
(0 m, 400 m) with a range and depth discretization of 20 and 1 m, respectively.
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Figure 2. (a) Schematic of a source propagating to the vertical line array (VLA) in the deep water.
(rsi, zsi) and (ri, zi) are the positions of a towed source and one hydrophone of the VLA, respectively.
(b) The sound speed profile (SSP) was measured by a conductivity–temperature–depth (CTD) probe
in the experiment. (c,d) Calculated TL and eigenrays using BELLHOP with the SSP shown in (b) at
187 Hz and a source at a depth of 100 m.

A two-source scenario (sources 1 and 2) is considered in the abovementioned environment.
The positions of source 1 and source 2 are (3 km, 70 m) and (6 km, 10 m), respectively. The Gaussian
white noise, which is identically distributed, is added into the signals to obtain:

Y = a1xT
1 + a2xT

2 + N, (15)

where ai represents the Green function between the ith (i = 1, 2) source and the VLA. Each xi ∈ CL

is the complex amplitude vector for the ith source, which is chosen independently from a uniform
distribution for each snapshot to construct the sources. Each snapshot has the same signal-to-noise
ratio (SNR). The definition of the average SNR at one hydrophone of the VLA for the source is shown
below [28,29]:

SNR = 10 log10 E

∑
i

‖aixl‖
2
2

/E
{
‖Nl‖

2
2

}
, (16)

where xl is the complex magnitude for the l-th snapshot. In addition, the SNRs in the simulations
were the ratios of the summation of time domain signals at 3 and 6 km to the white noise. The source
magnitudes are determined with the assumption that the source 1 to source 2 ratio (SSR) is 5 dB. The
SSR at different snapshot is defined as:

SSR = 20 log10

(
‖a1xT

l ‖F/‖a2xT
l ‖F

)
. (17)

For the spatial filter, the elliptical norm weighting coefficients in range and depth (rw and dw)
are assumed to be 72 and 8 m, respectively. The first five (nulling rank) columns of the eigenvector
matrix are selected for constructing the projection matrix. In addition, the maximum iterative number
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is assumed to be 20. To analyze the performance of the RAMPMF method, the estimated range and
source errors are expressed as:

er =
∣∣∣(re − rS)/rS

∣∣∣, ed =
∣∣∣(de − dS)/dS

∣∣∣, (18)

where re and de are the estimated source range and depth of the peak in the ambiguity surface, rS
and dS are the real source range and depth, respectively. In this two-source scenario, the estimated
localization error for each source is computed. The accurate localization (estimation) of one source
means that the estimated range and depth errors er and ed are both below 10% in the configuration in
this study as it can be seen below. Similarly, the accurate localization (estimation) of two sources refers
to the accurate estimation to each source in the same realization. Especially, the Bartlett processor
is always used as the benchmark for the comparisons between different methods in the underwater
acoustics [3,6,12,18].

In the first two-source scenario, the positions of source 1 and source 2 are set as (3 km, 70 m) and
(6 km, 70 m), respectively. The SNR at each snapshot is defined as 5 dB, and the number of snapshots
is set to 28. The ambiguity surfaces (AMSs) of different processors are shown in Figure 3. The range
and depth coordinates are reduced to highlight the localized grids. The true source positions and the
positions estimated by the RAMP and RAMPMF methods are represented as black asterisks, squares,
and inverted triangles, respectively. Strong sidelobes exist in the AMS of the Bartlett processor in
Figure 3a. The two largest peaks in the AMS are (3.38 km, 70 m) and (7.32 km, 49 m), which are deviated
from the true sources. Based on Equation (18), the range and depth errors corresponding to these
points are (12.67% and 0%) and (22% and 30%), respectively. The estimated source positions obtained
by the RAMP method are (2.9 km, 117 m) and (6.92 km, 49 m), as shown in Figure 3b, which are the
two grids corresponding to the two maximum values in the output x̂s. The range errors are 3.33%
and 15.3%, whereas the depth errors are large. Even for the given number of sources, the localization
performance of RAMP is still poor. Part of the reason for this is that the CS method characteristically
generates few solutions. The sparse solutions can be the same pseudo peaks that exist in the AMS of
the Bartlett processor, as shown in Figure 3a, and the values at the true positions are zero. Another
possible reason is that the interference formed by the single-frequency source results in pseudo peaks
at large distances from the true sources, such as the pseudo peaks that appear at (4 km, 400 m) in
Figure 3a. The output r̂s of RAMPMF is shown in Table 1. A repeated circle ((2.98 km, 70 m) and
(5.92 km, 69 m)) can be obtained in the iterative loop. The length of this circle is 2, representing two
localized sources obtained by the RAMPMF method. The range and depth errors are (0.67%, 0%) and
(1.33%, 1.43%), respectively. Based on Equation (12), the ambiguity surface can be the summation of
x̂s3 and x̂s4 , corresponding to the indices in the localization loops. In 500 Monte Carto realizations, the
probability of the accurate estimation of two source positions was found to be 93.4%.
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Figure 3. Ambiguity surfaces from the simulated data at 187 Hz for the localization of two sources
using (a) the Bartlett processor, (b) the RAMP method, and (c) the RAMPMF method. True source
positions and the positions estimated by the RAMP and RAMPMF methods are represented as black
asterisks, squares, and inverted triangles, respectively.
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Table 1. The estimated positions using the RAMP method with a spatial filter in each loop.

Number of Loops 1 2 3 4 5 6

Range (m) 6920 2780 5960 2980 5920 2980
Depth (m) 49 32 70 70 69 70

Due to the sparse solutions shown in Figure 3, the results obtained from the RAMP and RAMPMF
processors, which are represented as squares and inverted triangles, would be placed in the same figure
generated by the Bartlett processor. Then, the effects of factors such as the array aperture, number of
receivers, number of snapshots, and SNR on the localization results could be investigated. Only one
factor was considered at a time, with the other factors remaining the same in the environment. First,
the dependence of the localization on the array aperture was examined with a fixed spacing. The VLA
was spaced between 1735 and 1835 m with a fixed spacing 4 m and the number of hydrophones was 26.
The other parameters, such as SNR and SSR, remained the same. Similar to the results in Figure 3, it is
shown in Figure 4a,b that the localization results by the RAMPMF method are better than the results of
the two other processors. The probability of obtaining an accurate estimation of source depths with
different apertures for 3 and 6 km sources is shown in Figure 4c. A clear trend is shown, indicating
that the localization performance can be improved by increasing the aperture of the VLA. And the
probability of two-source localization above 0.9 can be achieved with the array length greater than 114
m, which is only 5.7% of the total water depth. On the other hand, the probability of depth estimation
for an aperture less than 100 m is relatively low in the 2000-meter deep water. A possible reason for this
is that is difficult to obtain an accurate solution with the measured vector of limited length and a large
sensing matrix using CS theory. Besides, the columns of the sensing matrix are partially correlated,
introducing error to the result.
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Figure 4. (a,b) Ambiguity surfaces generated by different realizations for a VLA from 1735 to 1835 m
with fixed spacing using the RAMPMF method, compared to the results shown in Figure 3. The true
source positions and the positions estimated by the RAMP and RAMPMF methods are represented
by black asterisks, squares, and inverted triangles, respectively; (c) The probability of obtaining an
accurate estimation of the source depth with different apertures for 3 and 6 km sources.

The second studied factor was the number of receivers, which corresponds to the element spacing
with a given array aperture. In this environment, the number of receivers decreases to 16 and the
spacing is approximately 8 m. The other parameters stay the same, such as SNR and SSR. The source
localization performance by RAMPMF degrades, as shown in Figure 5, whereas the main lobe in the
AMS obtained by the Bartlett processor is similar, as shown in Figure 3a, except for the increasing
sidelobes. Therefore, using fewer hydrophones degrades the performance seriously for all the methods.
When the spacing is about the same as the wavelength of the 187 Hz single-frequency signal, pseudo
peaks (such as the grating lobe in the beam pattern) appear, and the true source positions are submerged
in the AMS. On the other hand, the performances of different methods with 2 m spacing are shown in
Figure 6. It is indicated that the RAMPMF method performs well with a spacing that is no more than
half the wavelength.
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Figure 5. (a,b) Ambiguity surfaces generated by different realizations with the elements of the VLA
8 m apart (from 1735 to 1859 m), compared to the results shown in Figure 3. True source positions
and the positions estimated by the RAMP and RAMPMF methods are represented as black asterisks,
squares, and inverted triangles, respectively.
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Also, the number of snapshots affected the localization performance. To determine this result, only
the snapshot is changed while the SNR is 5 dB, the SSR is 5 dB, and the length of the 32 element VLA is
124 m. The source localization with 14 snapshots is shown in Figure 7. The probabilities of accurate
estimation of 3 and 6 km sources in 500 realizations were 95.8% and 69.8%, respectively. The probability
distribution graphs of accurate localization for 3 and 6 km sources with 14 and 28 snapshots are
shown in Figure 8a,b, respectively. Also, the probability of accurate depth estimation increases with an
increase in the number of snapshots, as shown in Figure 8c. The individual depth estimation error for
each source is represented. It is demonstrated from the result that the depth error of further sources is
larger than that of closer sources for any number of snapshots. Further, the probability of accurate
range estimation versus the number of snapshots is also demonstrated in Figure 8d. Compared with
the probability of depth estimation, the estimated ranges for sources at 3 and 6 km were very accurate.
The result also indicates that more snapshots result in more accurate localization.
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The localization performance versus SNR is shown in Figure 9. The SNR is changed with the
increment of noise power whereas SSR is maintained at 5 dB. The probability distribution graphs
of accurate localization for 3 and 6 km sources with −2 and 2 dB SNRs are shown in Figure 9a,b,
respectively. It is clear that the probability of localization for the 3 and 6 km sources increases with the
increase of the SNR to 2 dB. Also, the probabilities of depth and range estimations increase with higher
SNRs, as shown in Figure 9c,d. Still, the range estimation of the RAMPMF method is more robust
than the depth estimation when the SNR changes from −4 dB to 10 dB. Similar to the analysis for the
snapshots, the RAMPMF method was found to perform better with respect to a higher SNR.
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The effect of SSP on the performance was also examined. Another SSP was chosen for computing
the replicas, as shown in Figure 10a. The parameters, such as source positions, SNR, and SSR, were the
same as them in the Figure 3. The positions of two sources estimated by RAMPMF method using the
measured SSP are (2980 m, 70 m) and (5960 m, 70 m) in one realization in Figure 10b. The positions of
two sources estimated by RAMPMF method using the mismatched SSP are (3020 m, 73 m) and (6040 m,
64 m) in the same realization in Figure 10c. Additionally, 500 Monte Carto realizations were conducted
using the mismatched SSP, the probability of the accurate estimation of two source positions was found
to be 73%, less than the probability of 93.4% using the measured SSP. However, the distributions of the
depths of two sources are shown in Figure 11. The result showed that most of the estimated depths
were changed from 70 to 64 m or 73 m for 3 km and 6 km sources. The performance influenced by the
mismatched SSP is not as much as it is affected by SNR. The reason is that main energy received in the
VLA is contributed by the direct arrivals and surface-reflected arrivals, where the grazing angle from
sources are large. This phenomenon is similar to the seasonal effects of SSP on reliable acoustic path
and bottom bounce in the deep ocean [30].

Sensors 2019, 19, x FOR PEER REVIEW 14 of 21 

 

Figure 9. Effect of SNRs on the localization for the two-source case with SSR = 5 dB: (a) −2 dB and (b) 
2 dB. Probabilities of (c) depth estimation and (d) range estimation with different SNRs. 

The effect of SSP on the performance was also examined. Another SSP was chosen for computing 
the replicas, as shown in Figure 10a. The parameters, such as source positions, SNR, and SSR, were 
the same as them in the Figure 3. The positions of two sources estimated by RAMPMF method using 
the measured SSP are (2980 m, 70 m) and (5960 m, 70 m) in one realization in Figure 10b. The positions 
of two sources estimated by RAMPMF method using the mismatched SSP are (3020 m, 73 m) and 
(6040 m, 64 m) in the same realization in Figure 10c. Additionally, 500 Monte Carto realizations were 
conducted using the mismatched SSP, the probability of the accurate estimation of two source 
positions was found to be 73%, less than the probability of 93.4% using the measured SSP. However, 
the distributions of the depths of two sources are shown in Figure 11. The result showed that most of 
the estimated depths were changed from 70 to 64 m or 73 m for 3 km and 6 km sources. The 
performance influenced by the mismatched SSP is not as much as it is affected by SNR. The reason is 
that main energy received in the VLA is contributed by the direct arrivals and surface-reflected 
arrivals, where the grazing angle from sources are large. This phenomenon is similar to the seasonal 
effects of SSP on reliable acoustic path and bottom bounce in the deep ocean [30]. 

 
Figure 10. (a) The measured and mismatched SSPs are represented as the red line and blue line, 
respectively; (b) the ambiguity surfaces calculated by a Bartlett processor and the RAMPMF method 
using the measured SSP; (c) the ambiguity surfaces calculated by a Bartlett processor and the 
RAMPMF method using the mismatched SSP. 

 
Figure 11. The probabilities of depth estimation within 500 realizations using (a) the measured SSP 
and (b) the mismatched SSP. 

In addition, the distance between two sources at a depth of 70 m also has influence on the 
performance of the RAMPMF method. The distances were chosen between 1 km, 1.5 km, and 2 km. 
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Figure 10. (a) The measured and mismatched SSPs are represented as the red line and blue line,
respectively; (b) the ambiguity surfaces calculated by a Bartlett processor and the RAMPMF method
using the measured SSP; (c) the ambiguity surfaces calculated by a Bartlett processor and the RAMPMF
method using the mismatched SSP.
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In addition, the distance between two sources at a depth of 70 m also has influence on the
performance of the RAMPMF method. The distances were chosen between 1 km, 1.5 km, and 2 km. The
corresponding localization results were shown in Figure 12. It could be indicated from Figure 12a−c
that the source positions could be estimated when the distance is greater than 1 km.

The same processing was applied in the same environment, except that the source positions were
(3 km, 70 m) and (6 km, 10 m). The localization performances of processors within three realizations are
presented in Figure 13. Obviously, the RAMPMF performs best. The solutions resulting from pseudo
peaks were eliminated by utilizing the spatial filter recurrently. Also, 500 realizations for this scenario
were applied with the RAMPMF method. The probability of accurate localizations for sources (3 km,
70 m) and (6 km, 10 m) were found to be 96% and 79.6%. Figure 14 presents the distribution graphs
of the estimated depths for two sources. Compared to the localization of sources (3 km, 70 m) and
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(6 km, 70 m), the estimation probability of the 6 km source decreases because the strong interferences
caused by a shallower source can appear in the deep region, as shown in Figure 13, thus affecting the
localization performance.Sensors 2019, 19, x FOR PEER REVIEW 15 of 21 
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Figure 12. Ambiguity surfaces generated with 28 snapshots and a 32 element VLA using the RAMPMF
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and the positions estimated by RAMPMF methods are represented as black asterisks and inverted
triangles, respectively.
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Figure 13. (a–c) Ambiguity surfaces generated by different realizations with 28 snapshots and a 32
element VLA using the RAMPMF method to localize sources (3 km, 70 m) and (6 km, 10 m). True
source positions and the positions estimated by the RAMP and RAMPMF methods are represented as
black asterisks, squares, and inverted triangles, respectively.
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3.2. Experimental Data

The experimental data were sampled with a 32 element VLA with a sample rate of 4 kHz and a
sensitivity of −180 dB re 1 V/µPa. Each hydrophone was treated as a Data acquisition channel of a quad,
24-bit, delta-sigma analog-to-digital converter. The data was saved to a 256 GB secure digital card.
And this hydrophone was rated for operation from 5 Hz to 20 kHz. The hydrophones were deployed
from 1735 to 1859 m with a 4 m interval. A source at frequency 187 Hz was towed by the research ship.
The bathymetry of this region was approximated to be flat at a depth of 2000 m. The towed source was
at depth of 100 m, and the corresponding Global Position System (GPS) positions were recorded. Two
signals, which were transmitted from the towed source at different ranges (3.4 and 4.5 km) from the
VLA, were chosen to demonstrate the performance of the RAMPMF method, as shown in Figure 15a,b.
The unknown broadband interference source can be clearly observed. Therefore, the signals between 4
and 10 s (6 s in length) were used for processing. The received signals at one hydrophone are shown in
Figure 15a,b. And the noise was chosen at the time intervals without the signals transmitted from the
towed source. The corresponding SNRs were 6 and 0 dB, respectively. A Fast Fourier Transform (FFT)
length of 4096 samples with 50% overlap generated 11 snapshots, resulting in time windows with a
length of 2 s and a frequency resolution of approximately 0.5 Hz. The Kaiser window with β = 2.5 was
applied to each snapshot. These signals were combined artificially for demonstrating the performance
of three methods.
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The source localization results by three different processors using the experimental data are
shown in Figure 16a. Simulation of this scenario was also carried out. The positions estimated by
RAMPMF were (3.08 km, 94 m) and (4.72 km, 107 m), respectively. As can be seen from Figure 16a,b,
the RAMPMF method performs best in this scenario. The range and depth relative errors of the two
sources were (9.4%, 6%) and (4.9%, 7%), respectively. The localization result and depth distribution
in 500 realizations are shown in Figure 16b,c, respectively. The RAMPMF method was found to
display fewer ambiguous peaks than the other two processors, similar to the localization results. It
is shown that the probability obtaining an accurately estimated source depth at a range of 4.5 km is
higher than that at range of 3.4 km in Figure 16c. Moreover, it is indicated that the localization error
decreases for the further source in both the experimental and simulated results when the sources were
at depth of 100 m. This behavior is not consistent with the results of the sources at an isothermal depth
(<80 m). Possible reasons for this may be the uncertainty of environmental parameters, and the strong
interference of two close sources.
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Figure 16. Ambiguity surfaces generated by (a) the experimental data and (b) the simulated data using
the RAMPMF method to localize sources (3.4 km, 100 m) and (4.5 km, 100 m). True source positions
and the positions estimated by the RAMP and RAMPMF methods are represented as black asterisks,
squares, and inverted triangles, respectively. The depth distributions in 500 realizations of simulated
data for (c) 3.4 km and (d) 4.5 km sources.

Then, the effects of factors such as the array aperture, number of receivers, and number of
snapshots on the localization with experimental data were also examined. First, the array aperture was
chosen between 94, 100. and 112 m, and the localization results were shown in Figure 17. Similar to
the results shown in Figure 17, the estimated source positions were close to the true source positions,
when the aperture is larger than 100 m. Also, the number of snapshots was chosen between 6, 8 and 10
to estimate two sources positions, as shown in Figure 18. When the number of snapshots is more than
8, the localization results is as good as it using 11 snapshots. Finally, the hydrophone spacing was
changed to 8 m, and the ambiguity surfaces is shown in Figure 19. It could be seen that the results
were all far from the true sources. In summary, the effects influenced by the factors are consistent with
them in the simulation.
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Figure 17. The ambiguity surfaces calculated by a Bartlett processor, the RAMP method, and the
RAMPMF method with the apertures (a) 94 m; (b) 100 m; and (c) 112 m. True source positions and the
positions estimated by the RAMP and RAMPMF methods are represented as black asterisks, squares,
and inverted triangles, respectively.
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estimated by the RAMP and RAMPMF methods are represented as black asterisks, squares, and
inverted triangles, respectively.
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4. Conclusions and Discussion

In this article, a new method (RAMPMF) for two-source localization for single frequency was
presented. The method is based on a practical greedy algorithm in CS theory combined with a
simplified spatial filter. Through searching the maximum value repeatedly, an iteration containing
different source positions can be obtained. In addition, the corresponding estimation of sources are the
positions in the iteration. The RAMPMF method was applied to the simulated and experimental data
in a deep-water region with flat bathymetry, where the transmitting and receiving platforms were a
single-frequency source and a 32 element VLA, respectively. And the performances of this method
were demonstrated by the results of its application. Through the performances of this method, some
conclusions can be summarized as follow:

(1) For the two-source scenario in the simulation, the proposed RAMPMF method was shown
to localize two positions more accurately than the Bartlett and RAMP processors. Furthermore, a
high resolution can be obtained in this method. The performance of the RAMPMF method was also
demonstrated with the received data in the South China Sea, revealing that the estimated source
positions are in good agreement with the depth of the towed source and the GPS measurements
obtained in the experiment.

(2) The feasibility of the proposed method with a short array has been demonstrated by the
impact of the array length on the localization performance. The probability of two-source localization
above 0.9 can be achieved with the array length greater than 114 m, which is only 5.7% of the total
water depth. On the other hand, the probability of depth estimation for an aperture less than 100
m is relatively low in the 2000-meter deep water. And the estimations of the ranges of sources are
more accurate than the estimations of the depths. When the source depth is close to the sea surface at
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6 km, a strong interference would be generated in the deep region. The interference could introduce
pseudo peaks in the results and decrease the probability of accurate localization. Not surprisingly,
the performance can also be improved by increasing the number of hydrophones used, widening the
array aperture, utilizing a larger number of snapshots, and increasing the SNR. Besides, sources at a
greater distance are localized with lower probability compared with sources close to the VLA. This
phenomenon has been verified in both simulation and experiment.

(3) When the mismatched SSP is applied to calculate the replicas, the performance of the RAMPMF
method will decrease. The degree of the influence by the mismatched SSP is not as much as it affected
by SNR due to the physical characteristic of sound propagation from the surface source to the VLA at
the bottom. In addition, the RAMPMF method cannot separate two sources at depth of 70 m, when the
distance between them is less than 1 km.

(4) The high computation level, due to the large size of the sensing matrix with denser discretization
in depth and range, can be decreased by the RAMP method compared to the SAMP method [27]. Also,
a lower-rank projection matrix is used to construct the spatial filter more quickly compared to the
conventional solution for a semidefinite program (SDP) [14]. Therefore, two-source localization can be
completed more quickly by the RAMPMF method, compared to the SAMP method with a spatial filter
obtained by CVX toolbox.

However, the proposed method may not be applicable to all situations. The main limitations and
future studies about the proposed method are shown below:

(1) The major application of the proposed method is to localize a source of interest masked by a
strong interfering source, when only a short array can be used in the deep ocean. The assumption
is that two sources exist in the region of interest. It needs be improved when the number of sources
changes. For one-source, the performance of the RAMP method based on compressive sensing in this
paper is the same with the performance of the Bartlett processor. The proving process can be found
in the appendix in reference [18]. For three sources or more sources, the proposed method needs be
improved to localize all the targets. If the method is applied into a three or more sources scenario, the
results would still be two estimated positions. Therefore, a constraint for the output power in each
iterative may be used to improve the proposed method for a multiple sources scenario.

(2) Due to the ambient noise in the ocean, a very difficult problem to solve, the most common use
of noise in the source localization problem is the white noise in underwater acoustics. The parameters
affecting the performance of the proposed method, such as the aperture, SNR, and so on, has been
demonstrated in this paper. It can be inferred that this method is a high-resolution algorithm with a
high SNR and a large enough aperture. Therefore, effectiveness of the proposed method may decrease
a lot when the noise is closely related to the signals.

(3) The proposed method is not a real-time processing algorithm. Additionally, it needs the
replicas calculated by Bellhop which needs a lot of time. Therefore, a complexity study is not conducted
but the complexity of the CS algorithm used in this paper is presented in the below references.

Further work is needed to fully understand the implications of the proposed method in the deep
ocean. Analysis would be helpful for extending the proposed method to improve its robustness when
taking into consideration the mismatch. Future studies should focus on the complexity of the improved
method for real-time processing in practice.
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