
sensors

Article

Congestion Control in CoAP Observe
Group Communication

Chanwit Suwannapong and Chatchai Khunboa *

Department of Computer Engineering, Faculty of Engineering, Khon Kaen University, 40002 Khon Kaen, Thailand
* Correspondence: chatchai@kku.ac.th

Received: 20 June 2019; Accepted: 3 August 2019; Published: 5 August 2019
����������
�������

Abstract: The Constrained Application Protocol (CoAP) is a simple and lightweight machine-to-
machine (M2M) protocol for constrained devices for use in lossy networks which offers a small
memory capacity and limited processing. Designed and developed by the Internet Engineering
Task Force (IETF), it functions as an application layer protocol and benefits from reliable delivery
and simple congestion control. It is implemented for request/response message exchanges over
the User Datagram Protocol (UDP) to support the Internet of Things (IoT). CoAP also provides a
basic congestion control mechanism. In dealing with its own congestion, it relies on a fixed interval
retransmission timeout (RTO) and binary exponential backoff (BEB). However, the default CoAP
congestion control is considered to be unable to effectively perform group communication and observe
resources, and it cannot handle rapid, frequent requests. This results in buffer overflow and packet loss.
To overcome these problems, we proposed a new congestion control mechanism for CoAP Observe
Group Communication, namely Congestion Control Random Early Detection (CoCo-RED), consisting
of (1) determining and calculating an RTO timer, (2) a Revised Random Early Detection (RevRED)
algorithm which has recently been developed and primarily based on the buffer management of
TCP congestion control, and (3) a Fibonacci Pre-Increment Backoff (FPB) algorithm which waits for
backoff time prior to retransmission. All the aforementioned algorithms were therefore implemented
instead of the default CoAP mechanism. In this study, evaluations were carried out regarding the
efficiency of the developed CoCo-RED using a Cooja simulator. The congestion control mechanism
can quickly handle the changing behaviors of network communication, and thus it prevents the
buffer overflow that leads to congestions. The results of our experiments indicate that CoCo-RED can
control congestion more effectively than the default CoAP in every condition.

Keywords: Internet of Things; constrained application protocol; wireless sensor networks; congestion
control; observing resource; group communication

1. Introduction

The Internet of Things (IoT) is a technology which has been developed to provide internet
connectivity in various networking systems, everyday objects, and electronic devices. Such connectivity
works under the IEEE 802.15.4 standard [1] and relies on IP-based systems which employ IP for
communication; e.g., Thread and 6LoWPAN. To account for such communication, the Internet
Engineering Task Force (IETF) [2] developed a Constrained Application Protocol (CoAP), which is a
specialized web transfer protocol for constrained devices and constrained networks. Its operations are
similar to those of a Hypertext Transfer Protocol (HTTP) [3]. In addition, the CoAP runs over the User
Datagram Protocol (UDP) instead of the Transmission Control Protocol (TCP) and does not require a
three-way handshake and the maintenance of a connection status; it is therefore considered to be more
suitable for constrained devices and technological operations that support communications between
objects or devices or so-called machine-to-machine (M2M) protocols. A commonplace example can

Sensors 2019, 19, 3433; doi:10.3390/s19153433 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-7970-3088
https://orcid.org/0000-0001-9685-1974
http://dx.doi.org/10.3390/s19153433
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/19/15/3433?type=check_update&version=3

Sensors 2019, 19, 3433 2 of 14

be taken from an application that helps monitor and send warnings/alerts about natural disasters.
This application generates continuous traffic and burst traffic. Sensor nodes in a network tend to
receive or cache sets of captured sensory data together and then deliver them to a base station, resulting
in a huge load of information in the network [4–8].

Generally, there are two communication patterns, both CoAP-based and Observing Resource
(Obs), which are considered as one-to-one communication [9]. Since a variety of application domains
require data from IoT devices, data communication between a sender and a receiver is essential,
contributing to the emergence of group communication [10–13]. At the same time, congestion control
for group communication has also been developed as a crucial communication platform for networks
with a large number of sensor nodes [14–18]. Under these circumstances, only the congestion control
for CoAP-based Group Communication, or the so-called default CoAP mechanism, has been developed.
This functions similarly to TCP congestion control, but it is based on the CoAP message exchange
via UDP by a request message (a confirmable message) which is transferred from a client to a server.
This also requires the client to wait for an acknowledgement message with the data/response that
the client needs. The default CoAP mechanism is, however, not suitable for Obs congestion control.
When notifications are sent from the server to the client, the system users are unable to determine
the duration of the delay before each notification, and they cannot determine the data rate for such
notifications. These problems have led to the development of the congestion control mechanism for
CoAP in order to facilitate the observation of group communication.

In this article, we introduce the Congestion Control Random Early Detection (CoCo-RED)
mechanism which combines the use of the RevRED algorithm for buffer management and the FPB
algorithm to obtain retransmission timeout (RTO) estimations for the transmission of the CoAP
messages. CoCo-RED was designed to deliver a congestion control that is not only adaptive to network
conditions but suitable for IoT characteristics.

The rest of the paper is organized as follows. In Section 2, we summarize how the CoAP yields
congestion control mechanisms and then derive two core mechanisms from it. We also analyze how
these two core mechanisms are implemented in the CoAP. In Section 3, we propose a new approach to
a congestion control mechanism for CoAP Observe Group Communication: CoCo-RED. In Section 4,
we introduce a simulation setup and communication protocol stack configurations that can be used to
carry out performance evaluations of CoCo-RED and compare them to the default CoAP mechanism.
The results of these evaluations are presented in Section 5, and the conclusions of this paper are
provided in Section 6.

2. CoAP Congestion Control

CoAP is regarded as a Representational State Transfer style (RESTful) protocol [19] designed for
constrained nodes and constrained networks which support IoT functions. With lightweight messages,
it requires fewer resources and less server energy consumption than other competing protocols. It can
also support activations from clients. As mentioned earlier, it was designed and developed by the
Internet Engineering Task Force (IETF) [20]. It falls under a two-layer structure: (1) a messaging layer
which deals with the UDP for communications, and (2) a request/response layer which supports the
RESTful protocol. The latter is based on the URI/URL of the request message for retrieving data.

Broadly speaking, CoAP defines four message or transaction types: (1) confirmable (CON),
(2) non-confirmable (NON), (3) acknowledgement (ACK), and (4) reset (RST) [19]. Regarding the
CoAP message exchange in the request/response layer interaction model, the request layer deals with
either the CON request or the NON request in terms of message transmission. The response layer
deals with delivering messages by means of a piggyback response which goes along with the ACK
message. In other words, reliable message transmission in the CoAP occurs due to the CON message,
which is reliable and is based on the default timeout and Binary Exponential Backoff (BEB) during
the retransmissions. At this stage, the server that receives the data sends back the ACK message with
exactly the same (confirmable) message ID (MID) as the client previously delivered. On the other hand,

Sensors 2019, 19, 3433 3 of 14

for unreliable message transmissions, the CoAP can send the NON message, meaning the server does
not send back the ACK response. The server itself records the MID to detect the same message instead.

Specifically, the reliable message transmission [21–23] of the CoAP for the CON message exchange
is classified into two types: (1) the CoAP (CoAP-based) protocol, and the Observing Resource (Obs)
protocol, as illustrated in Figure 1a,b, respectively. It is notable that the Obs, which this study focuses
on, requires registration from the client as an observer. Then, the server sends notifications with the
CON message. This differs from the CoAP-based protocol whereby the CON message is initially sent
from the client.

Sensors 2019, 19, x FOR PEER REVIEW 3 of 14

exactly the same (confirmable) message ID (MID) as the client previously delivered. On the other
hand, for unreliable message transmissions, the CoAP can send the NON message, meaning the
server does not send back the ACK response. The server itself records the MID to detect the same
message instead.

Specifically, the reliable message transmission [21–23] of the CoAP for the CON message
exchange is classified into two types: (1) the CoAP (CoAP-based) protocol, and the Observing
Resource (Obs) protocol, as illustrated in Figure 1a,bFigure 1a; Figure 1b, respectively. It is notable that the Obs,
which this study focuses on, requires registration from the client as an observer. Then, the server
sends notifications with the CON message. This differs from the CoAP-based protocol whereby the
CON message is initially sent from the client.

(a) (b)

Figure 1. (a) Constrained Application Protocol (CoAP)-based message transmission; (b) Observing
Resource message transmission. CON: confirmable; ACK: acknowledgement.

Another important aspect relies on the CoAP congestion control [17,18], which was established
to limit the delay between requests for message transmission and to limit the number of messages
exchanged. As the CoAP works on the four message types previously mentioned, this operation is
performed under the request/response layer. The reliable messages in the CoAP-based
communication from either the CoAP-based transmission or the Obs transmission were obtained
using the CON message and required an ACK message from the server. In addition, the congestion
control mechanisms allow the CON message to retransmit up to four times before considering the
transmitted message to be an error or failure. For the first message transmission, the RTO value was
randomly selected from an interval of 2–3 s as an initial value. The BEB was also applied to the RTO,
causing the RTO value for each transmission to double. This was, therefore, similar to TCP [3]. Please
see Figure 2 for the whole picture of the congestion control via reliable messages.

The default CoAP mechanism typically relies on RTO and BEB as its two core algorithms.
Indeed, the CoAP does not adjust the RTO in accordance with the round-trip time (RTT).
Consequently, if the chosen RTO value for the default CoAP mechanism is below a certain RTT, this
may result in a failure of retransmission from the CoAP. On the other hand, the CoAP tends to be
implemented in networks where the bit error rate (BER) is high, and it can produce long idle times if
the RTO value greatly overestimates the RTT.

Figure 1. (a) Constrained Application Protocol (CoAP)-based message transmission; (b) Observing
Resource message transmission. CON: confirmable; ACK: acknowledgement.

Another important aspect relies on the CoAP congestion control [17,18], which was established
to limit the delay between requests for message transmission and to limit the number of messages
exchanged. As the CoAP works on the four message types previously mentioned, this operation is
performed under the request/response layer. The reliable messages in the CoAP-based communication
from either the CoAP-based transmission or the Obs transmission were obtained using the CON
message and required an ACK message from the server. In addition, the congestion control mechanisms
allow the CON message to retransmit up to four times before considering the transmitted message to
be an error or failure. For the first message transmission, the RTO value was randomly selected from
an interval of 2–3 s as an initial value. The BEB was also applied to the RTO, causing the RTO value for
each transmission to double. This was, therefore, similar to TCP [3]. Please see Figure 2 for the whole
picture of the congestion control via reliable messages.
Sensors 2019, 19, x FOR PEER REVIEW 4 of 14

(a)

(b)

Figure 2. (a) Default CoAP-CON mode; (b) Observing Resource-CON mode. RTO: retransmission
timeout; BEB: binary exponential backoff.

3. CoCo-RED: Congestion Control Random Early Detection

According to the problems of the CoAP congestion control mechanisms suggested in the
previous section, we propose the Congestion Control Random Early Detection (CoCo-RED)
mechanism, which emerges from Random Early Detection (RED) gateways [24] for congestion
avoidance in packet-switched networks. However, from a standard linear model of the packet drop
function, it was found that the packet drop always occurred when the average queue size (AvgQ) was
higher than the maximum threshold [25]. Thus, all the packets were dropped continuously, which
might have some negative effects regarding the efficiency of a network. In this study, we adjusted
this operation using an exponential function to lower the drop probability, but this can also cause the
buffer to overflow; therefore, consecutive packets would be dropped. Such problems can be
addressed by signaling sources to slow down the packet drop at the initial stage, followed by
increasing the rate of the packet drop if the queue size is close to the size of the buffer. Our proposed
CoCo-RED mechanism was comprised of three major components: an RTO calculation randomly
selected from the interval of 2–4 s, buffer management from the client, and retransmission. All the
components were under the control of this mechanism in both the client and the server, which is
explained in the next paragraph.

Regarding the outstanding feature of our CoCo-RED mechanism, it works dynamically,
depending on the Revised Random Early Detection algorithm (RevRED), which calculates network
density from the AvgQ. To illustrate this, as network congestion starts, the RevRED can solve this
problem by dropping arriving packets in the system before the queue in the client’s buffer overflows.
Owing to statistical probabilities corresponding to AvgQ that prevent burst traffic congestion, the
buffer queue management of the RevRED algorithm is shown in Figure 3. Another distinctive feature
of this mechanism is that when a packet drop occurs in the RevRED algorithm, there is a backoff for
the first retransmission or until the packet which had the same previous MID can be sent or
acknowledged successfully. The backoff time can be calculated with a Fibonacci Pre-Increment
Backoff (FPB) algorithm. The waiting period for retransmission helps to reduce network traffic since
the sever nodes at which the packets were dropped cannot communicate. Also, this indirectly causes
the queue on the client’s buffer to decrease. Figure 4 shows the timing diagram of CoCo-RED and the
functions of the CoCo-RED mechanism. The figure is subsequently explained in two parts: the server
and the client.

Figure 2. (a) Default CoAP-CON mode; (b) Observing Resource-CON mode. RTO: retransmission
timeout; BEB: binary exponential backoff.

Sensors 2019, 19, 3433 4 of 14

The default CoAP mechanism typically relies on RTO and BEB as its two core algorithms. Indeed,
the CoAP does not adjust the RTO in accordance with the round-trip time (RTT). Consequently, if the
chosen RTO value for the default CoAP mechanism is below a certain RTT, this may result in a failure
of retransmission from the CoAP. On the other hand, the CoAP tends to be implemented in networks
where the bit error rate (BER) is high, and it can produce long idle times if the RTO value greatly
overestimates the RTT.

3. CoCo-RED: Congestion Control Random Early Detection

According to the problems of the CoAP congestion control mechanisms suggested in the previous
section, we propose the Congestion Control Random Early Detection (CoCo-RED) mechanism,
which emerges from Random Early Detection (RED) gateways [24] for congestion avoidance in
packet-switched networks. However, from a standard linear model of the packet drop function, it was
found that the packet drop always occurred when the average queue size (AvgQ) was higher than the
maximum threshold [25]. Thus, all the packets were dropped continuously, which might have some
negative effects regarding the efficiency of a network. In this study, we adjusted this operation using
an exponential function to lower the drop probability, but this can also cause the buffer to overflow;
therefore, consecutive packets would be dropped. Such problems can be addressed by signaling
sources to slow down the packet drop at the initial stage, followed by increasing the rate of the packet
drop if the queue size is close to the size of the buffer. Our proposed CoCo-RED mechanism was
comprised of three major components: an RTO calculation randomly selected from the interval of 2–4 s,
buffer management from the client, and retransmission. All the components were under the control of
this mechanism in both the client and the server, which is explained in the next paragraph.

Regarding the outstanding feature of our CoCo-RED mechanism, it works dynamically, depending
on the Revised Random Early Detection algorithm (RevRED), which calculates network density from
the AvgQ. To illustrate this, as network congestion starts, the RevRED can solve this problem by
dropping arriving packets in the system before the queue in the client’s buffer overflows. Owing
to statistical probabilities corresponding to AvgQ that prevent burst traffic congestion, the buffer
queue management of the RevRED algorithm is shown in Figure 4. Another distinctive feature of this
mechanism is that when a packet drop occurs in the RevRED algorithm, there is a backoff for the first
retransmission or until the packet which had the same previous MID can be sent or acknowledged
successfully. The backoff time can be calculated with a Fibonacci Pre-Increment Backoff (FPB) algorithm.
The waiting period for retransmission helps to reduce network traffic since the sever nodes at which the
packets were dropped cannot communicate. Also, this indirectly causes the queue on the client’s buffer
to decrease. Figure 5 shows the timing diagram of CoCo-RED and the functions of the CoCo-RED
mechanism. The figure is subsequently explained in two parts: the server and the client.

• Server: The server starts calculating and determining the RTO timer by randomly selecting
in intervals of 2–4 s. Then, it sends the CON message to the client, and the server needs an
ACK message response within the period of the RTO timer; otherwise, the server undergoes
retransmission. In this manner, the CoCo-RED mechanism allows retransmissions up to four
times before considering the notification an error or failure, which was similar to the default CoAP.
Moreover, in each retransmission, the FPB (i.e., Fibonacci fib n, n = {1, 2, 3, 5}) was multiplied
with the RTOinit to determine the new RTO timer for the next retransmission. The work of FPB is
shown in Algorithm 1, and the duration of each retransmission is illustrated in Figure 3. Figure 3
compares the backoff durations for one message transmission and four message retransmissions
in the BEB and the FPB, starting with the RTOinit value of 2 s. Notably, the total duration before
timeout was 62 s for the BEB and 24 s for the FPB. This means that the fast retransmission of FPB
contributes to flexible buffer management and rapid response times.

Sensors 2019, 19, 3433 5 of 14

Algorithm 1. Fibonacci Pre-Increment Backoff

Initialize random value from [2 s, 4 s] to RTOinit
Initialize Fibonacci to [1, 2, 3, 5]
when transmitting CON

RTO = RTOinit
for i = 0 to (size of Fibonacci)-1

if RTO expires without having received an ACK
RTO = RTOprevious * Fibonacci[i]
i = i + 1

else
return transmission success

endfor
return transmission fail

• Client: The client works based on the RevRED algorithm, which is illustrated in Algorithm 2.
When the client has obtained the CON message from the Server, it calculates the AvgQ via the
exponential weighted moving average (EWMA) [26], which can be seen in Formula (1) (below).
This operation conforms to three principles:

(1) If the AvgQ is lower than Thresholdmin, the incoming packet is accepted or placed in
the queue.

(2) If the AvgQ is between Thresholdmin and Thresholdmax, the incoming packet is dropped
in accordance with the dropping probability in Formula 2. Then, the client waits for a
notification with the same MID which arises from the server’s retransmission.

(3) If the AvgQ is equal to or beyond Thresholdmax, the incoming packet is dropped in
accordance with the exponential dropping probability in Formula 3. Similar to the second
principle, the client waits for a notification with the same MID which arises from the
server’s retransmission.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 14

Figure 5. Figure 5 compares the backoff durations for one message transmission and four
message retransmissions in the BEB and the FPB, starting with the RTOinit value of 2 s. Notably,
the total duration before timeout was 62 s for the BEB and 24 s for the FPB. This means that the
fast retransmission of FPB contributes to flexible buffer management and rapid response times.

Algorithm 1. Fibonacci Pre-Increment Backoff
Initialize random value from [2 s, 4 s] to RTOinit

Initialize Fibonacci to [1, 2, 3, 5]
when transmitting CON
 RTO = RTOinit
 for i = 0 to (size of Fibonacci)-1
 RTOprevious = RTO
 if RTO expires without having received an ACK
 RTO = RTOprevious * Fibonacci[i]
 i = i+1
 else
 return transmission success
 return transmission fail
endfor

Figure 5. Backoff method durations for one message transmission and four message retransmissions,
starting with RTOinit = 2 s.

• Client: The client works based on the RevRED algorithm, which is illustrated in Algorithm
2. When the client has obtained the CON message from the Server, it calculates the AvgQ via
the exponential weighted moving average (EWMA) [26], which can be seen in Formula (1)
(below). This operation conforms to three principles:

(1) If the AvgQ is lower than Thresholdmin, the incoming packet is accepted or placed in
the queue.

Figure 3. Backoff method durations for one message transmission and four message retransmissions,
starting with RTOinit = 2 s.

Sensors 2019, 19, 3433 6 of 14Sensors 2019, 19, x FOR PEER REVIEW 5 of 14

.

Figure 3. Congestion Control Random Early Detection (CoCo-RED) thresholds in the buffer queue.

Figure 4. CoCo-RED timing diagram. FPB: Fibonacci Pre-Increment Backoff.

• Server: The server starts calculating and determining the RTO timer by randomly selecting in
intervals of 2–4 s. Then, it sends the CON message to the client, and the server needs an ACK
message response within the period of the RTO timer; otherwise, the server undergoes
retransmission. In this manner, the CoCo-RED mechanism allows retransmissions up to four
times before considering the notification an error or failure, which was similar to the default
CoAP. Moreover, in each retransmission, the FPB (i.e., Fibonacci fib n, n = {1, 2, 3, 5}) was
multiplied with the RTOprevious to determine the new RTO timer for the next retransmission. The
work of FPB is shown in Algorithm 1, and the duration of each retransmission is illustrated in

Figure 4. Congestion Control Random Early Detection (CoCo-RED) thresholds in the buffer queue.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 14

.

Figure 3. Congestion Control Random Early Detection (CoCo-RED) thresholds in the buffer queue.

Figure 4. CoCo-RED timing diagram. FPB: Fibonacci Pre-Increment Backoff.

• Server: The server starts calculating and determining the RTO timer by randomly selecting in
intervals of 2–4 s. Then, it sends the CON message to the client, and the server needs an ACK
message response within the period of the RTO timer; otherwise, the server undergoes
retransmission. In this manner, the CoCo-RED mechanism allows retransmissions up to four
times before considering the notification an error or failure, which was similar to the default
CoAP. Moreover, in each retransmission, the FPB (i.e., Fibonacci fib n, n = {1, 2, 3, 5}) was
multiplied with the RTOprevious to determine the new RTO timer for the next retransmission. The
work of FPB is shown in Algorithm 1, and the duration of each retransmission is illustrated in

Figure 5. CoCo-RED timing diagram. FPB: Fibonacci Pre-Increment Backoff.

In Formula (2) to Formula (3), dropping the packet when the AvgQ in the buffer is greater
than the threshold can help to decrease the traffic congestion in a particular network and lessen the
communication burdens on the client’s side. Thus, when the packet is dropped, the server still waits
for the backoff during the retransmission before resending the notification.

Sensors 2019, 19, 3433 7 of 14

Algorithm 2. Revised Random Early Detection (RevRED)

for each packet arrival
calculate the average queue size AvgQ (Formula 1)
if Thresholdmin < AvgQ < Thresholdmax

calculate probability pd(AvgQ) (Formula 2)
with probability pd(AvgQ): drop packet

else if Thresholdmax < AvgQ ≤maximum buffer
calculate probability pd(AvgQ) (Formula 3)
with probability pd(AvgQ): drop packet

AvgQ ← (1−wq) AvgQ + wqq (1)

pd(AvgQ) =
AvgQ− Thresholdmin

Thresholdmax − Thresholdmin
×maxp (2)

From the original exponential formula:

y = abx

where the limit of the buffer size is K and the max probability is 1 in order of the (x,y) value a and value
b is expressed as

a =
maxp

(e
ln (1/maxp)

K−Thresholdmax)
Thresholdmax

b = (e
ln (1/maxp)

K−Thresholdmax).

Therefore, for given a and b values, the actual probability of an arrived packet being dropped is
computed as

pd(AvgQ) =
maxp

(e
ln (1/maxp)

K−Thresholdmax)
Thresholdmax

·(e
ln (1/maxp)

K−Thresholdmax)
AvgQ

(3)

In this regard, the AvgQ is the average queue length, q is the current queue size, wq represents
the exponentially weighted moving average (equal to 0.002), and K denotes the limit of the buffer
size. Figure 6 shows the packet drop probability function for CoCo-RED supposing that K = 100 bytes,
maxp = 0.1, Thresholdmin = 10 bytes, and Thresholdmax = 60 bytes. Figure 7 exhibits an overview of the
RTO used to maintain and update the RTO state information for a destination endpoint in CoCo-RED.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 14

Figure 6. Packet drop probability function for CoCo-RED.

Figure 7. An overview of the RTO used to maintain and update the RTO state information for a
destination endpoint in CoCo-RED.

4. Evaluation Setup

This section provides the details of evaluating the two congestion control mechanisms of default
CoAP and CoCo-RED. This includes the simulator setup, the traffic scenarios, the network topologies
and the performance metrics used to carry out the performance evaluations.

4.1. Simulation Setup

To simulate the network and evaluate our congestion control mechanism, the algorithms were
implemented using the Cooja Simulation [27] in the Contiki Operating System (ContikiOS), an open-
source operating system for constrained devices that supports dynamic loading and the replacement
of individual programs and services [28]. The advantage of Cooja was that the program can compile
and upload into a real node.

In this study, we selected a Z1 mote which was developed by Zolertia to be the principal node
for simulations in the Cooja [29]. It was devised for a low-power wireless sensor network (WSN)
which can communicate over the 6LoWPAN protocol. The hardware specifications of the Z1 mote
are provided in Table 1, and the details of the Cooja parameter setup are in Table 2.

Figure 6. Packet drop probability function for CoCo-RED.

Sensors 2019, 19, 3433 8 of 14

Sensors 2019, 19, x FOR PEER REVIEW 8 of 14

Figure 6. Packet drop probability function for CoCo-RED.

Figure 7. An overview of the RTO used to maintain and update the RTO state information for a
destination endpoint in CoCo-RED.

4. Evaluation Setup

This section provides the details of evaluating the two congestion control mechanisms of default
CoAP and CoCo-RED. This includes the simulator setup, the traffic scenarios, the network topologies
and the performance metrics used to carry out the performance evaluations.

4.1. Simulation Setup

To simulate the network and evaluate our congestion control mechanism, the algorithms were
implemented using the Cooja Simulation [27] in the Contiki Operating System (ContikiOS), an open-
source operating system for constrained devices that supports dynamic loading and the replacement
of individual programs and services [28]. The advantage of Cooja was that the program can compile
and upload into a real node.

In this study, we selected a Z1 mote which was developed by Zolertia to be the principal node
for simulations in the Cooja [29]. It was devised for a low-power wireless sensor network (WSN)
which can communicate over the 6LoWPAN protocol. The hardware specifications of the Z1 mote
are provided in Table 1, and the details of the Cooja parameter setup are in Table 2.

Figure 7. An overview of the RTO used to maintain and update the RTO state information for a
destination endpoint in CoCo-RED.

4. Evaluation Setup

This section provides the details of evaluating the two congestion control mechanisms of default
CoAP and CoCo-RED. This includes the simulator setup, the traffic scenarios, the network topologies
and the performance metrics used to carry out the performance evaluations.

4.1. Simulation Setup

To simulate the network and evaluate our congestion control mechanism, the algorithms
were implemented using the Cooja Simulation [27] in the Contiki Operating System (ContikiOS),
an open-source operating system for constrained devices that supports dynamic loading and the
replacement of individual programs and services [28]. The advantage of Cooja was that the program
can compile and upload into a real node.

In this study, we selected a Z1 mote which was developed by Zolertia to be the principal node
for simulations in the Cooja [29]. It was devised for a low-power wireless sensor network (WSN)
which can communicate over the 6LoWPAN protocol. The hardware specifications of the Z1 mote are
provided in Table 1, and the details of the Cooja parameter setup are in Table 2.

Table 1. Hardware specification of the Zolertia Z1 wireless sensor node.

Mote RAM ROM MCU Radio

Zolertia (Z1) 8 KB 92 KB MSP430F2167 CC2420

Table 2. Cooja parameter setup.

Settings Value

Congestion mechanisms Default CoAP, CoCo-RED
Routing protocol Routing Protocol for Low-Power and Lossy Networks (RPL)

Max retransmissions 4
Wireless channel model Unit Disk Graph model, transmission range = 15 m, interference range = 30 m

Distances between nodes 10 m
Transport and network UDP + uIPv6 + 6LoWPAN

Media access control (CSMA/CA)
Radio duty cycling (RDC) Null-RDC

Radio band 2.4 GHz
Physical IEEE 802.15.4 PHY

Simulation time 300 s
Max open transactions 8

Sensors 2019, 19, 3433 9 of 14

4.2. Traffic Scenarios

Two traffic scenarios were set to investigate the effects of the two congestion control mechanisms
on the performance of the Obs communications.

• Continuous traffic: The CoAP server delivered the CON request notifications to the CoAP
client. As the server obtained a reply from the client, it immediately transferred another CON
request. Sending messages back-to-back from a large number of servers at the same time can
create congestion. In this study, we used nine servers in order to achieve different levels of
congestion. The test was performed continuously for 300 s and was repeated 20 times for each
specific configuration.

• Burst traffic: This scenario simulated the burst traffic by increasing the congestion level in every
topology. It started with a low congestion level at the server, where four nodes generated the
continuous traffic (Obs) of back-to-back CON requests. Afterwards, a burst of traffic was generated
by another group of servers consisting of the rest of the servers in the topology. For instance,
network topology I had a group of three servers for burst traffic, i.e., three nodes, in order to
achieve different levels of congestion. The test in this scenario was done in a similar manner to
the continuous traffic scenario.

4.3. Network Topologies

In evaluating the efficiency of both of the CoAP congestion control mechanisms, the default CoAP
and CoCo-RED, five different simulation network topologies were set up to conduct experiments in
each scenario. Each topology differed in terms of the number of nodes, installation patterns, and hop
counts for delivering the CoAP request from the source node to the destination node. The topologies
used for the performance analysis were (a) a chain topology with 9 nodes, (b) a grid of 9 nodes
(3 × 3), (c) a cross of 9 nodes, (d) a dumbbell topology with 9 nodes and (e) a random topology
of 9 nodes. The number of CoAP nodes and the two-dimensional view of the node installation in
different topologies is illustrated in Figure 8. The figure portrays the positions for installing the CoAP
nodes in the five topologies. Each topology was conditioned to have a 10-m distance between nodes.
The transmission range was 15 m while the interference range was 30 m. Therefore, in the chain
topology, each node can select direct neighbors within the transmission range only, whereas in the
other topologies, a node can have more than one neighbor.Sensors 2019, 19, x FOR PEER REVIEW 10 of 14

Figure 8. The five network topologies used for performance analysis (chain, grid, cross, dumbbell and
random). The distance between the neighboring nodes is 10 m. The gray nodes are the RPL border
routers. The orange nodes are the clients and the gold nodes are the groups of servers for the Obs
messages.

Due to the limitations of the memory capacity within the Z1 platform operated in the Cooja
simulator, several problems occurred when we increased the number of nodes, the network density,
and the congestion levels. In future, we would like to test CoCo-Red using more complicated
networks.

4.4. Performance Metrics

In Obs, appropriate performance metrics were chosen to evaluate the congestion control
mechanism, concerning features of message transmission and congestion mechanisms on the CoAP.
These metrics were designed to allow the measurement of the efficiency of the mechanisms as well
as the performance in the network. They involved a simulation setup, traffic scenarios, and network
typologies which were set under varying congestion levels for the test.

In the continuous traffic scenario and burst traffic scenario, the setting time, response time and
packet loss were chosen as the important performance metrics since it was assumed that the CoAP
transactions varied as a result of the changing topologies. Consequently, this would provide the
whole picture of changes in the congestion level and the network size and help us to analyze the
behaviors of the mechanism in each scenario.

5. Performance Evaluation

In this section, regarding the Obs, we compared the performance of our CoCo-RED with the
default CoAP under the same continuous traffic scenario and burst traffic scenario and then provided
a discussion of our evaluations of these mechanisms. We hypothesized that our developed CoCo-
RED could control congestion more effectively with low packet loss and response time, yielding
better network reliability and application support in group communication.

5.1. Continuous Traffic

In the continuous traffic scenario, the experiment aimed to explore the efficiency of the
congestion control mechanism under typical network conditions. The messages were exchanged
continuously by means of the Obs in the five topologies which determined different levels of

Figure 8. The five network topologies used for performance analysis (chain, grid, cross, dumbbell
and random). The distance between the neighboring nodes is 10 m. The gray nodes are the RPL
border routers. The orange nodes are the clients and the gold nodes are the groups of servers for the
Obs messages.

Sensors 2019, 19, 3433 10 of 14

Due to the limitations of the memory capacity within the Z1 platform operated in the Cooja
simulator, several problems occurred when we increased the number of nodes, the network density,
and the congestion levels. In future, we would like to test CoCo-Red using more complicated networks.

4.4. Performance Metrics

In Obs, appropriate performance metrics were chosen to evaluate the congestion control
mechanism, concerning features of message transmission and congestion mechanisms on the CoAP.
These metrics were designed to allow the measurement of the efficiency of the mechanisms as well
as the performance in the network. They involved a simulation setup, traffic scenarios, and network
typologies which were set under varying congestion levels for the test.

In the continuous traffic scenario and burst traffic scenario, the setting time, response time and
packet loss were chosen as the important performance metrics since it was assumed that the CoAP
transactions varied as a result of the changing topologies. Consequently, this would provide the whole
picture of changes in the congestion level and the network size and help us to analyze the behaviors of
the mechanism in each scenario.

5. Performance Evaluation

In this section, regarding the Obs, we compared the performance of our CoCo-RED with the
default CoAP under the same continuous traffic scenario and burst traffic scenario and then provided
a discussion of our evaluations of these mechanisms. We hypothesized that our developed CoCo-RED
could control congestion more effectively with low packet loss and response time, yielding better
network reliability and application support in group communication.

5.1. Continuous Traffic

In the continuous traffic scenario, the experiment aimed to explore the efficiency of the congestion
control mechanism under typical network conditions. The messages were exchanged continuously by
means of the Obs in the five topologies which determined different levels of congestion. The results
were recorded following the performance metrics suggested in Section 4.4. Table 3 shows the overall
performance metric values in the continuous traffic scenario for different topologies in the default CoAP,
compared to those of CoCo-RED. Two metrics, hop count and setting time, served as the indicators for
the congestion levels. The dumbbell topology resulted in the highest level of congestion, followed
by the cross, the grid, the chain, and the random (as each node only selected direct neighbors within
the transmission range in the chain topology, the messages were then exchanged in a unidirectional
manner, and the setting time was eventually low in this study).

Table 3. Overall performance metric values in a continuous traffic scenario for different topologies (the
better-performing mechanism is highlighted in bold).

Topology Congestion Control
Mechanisms

Average Setting
Time (s)

Average Response
Time (s)

Average Packet
Loss (s)

Grid
Default CoAP 17.74 0.67 2.92

CoCo-RED 14.18 0.59 1.63

Chain
Default CoAP 13.91 0.65 1.30

CoCo-RED 13.26 0.54 1.00

Cross
Default CoAP 18.09 0.74 3.31

CoCo-RED 17.78 0.70 3.07

Dumbbell
Default CoAP 18.97 0.78 4.11

CoCo-RED 18.70 0.73 3.64

Random
Default CoAP 13.26 0.55 -

CoCo-RED 12.77 0.44 -

Sensors 2019, 19, 3433 11 of 14

The response time and packet loss are also important performance metrics, especially for
applications that require immediate reactions, short notification periods, and data integrity. The results
from the two metrics in all network topologies suggest that CoCo-RED can handle congestion better
than the default CoAP for both low congestion levels (i.e., the chain and random topologies) and high
congestion levels (i.e., the grid, cross and dumbbell topologies). This was because, in CoCo-RED,
the buffer management helped to measure the congestion levels of the network with the AvgQ
controlling the packet drop rate prior to buffer overflow. Additionally, the retransmission timeout
from FPB was significantly shorter than the BEB used by the default CoAP.

Overall, according to the performance metric values for the two mechanisms, CoCo-RED achieved
a better performance than the default CoAP. Moreover, CoCo-RED can, in particular, effectively deal
with high congestion levels in a network. This aligned with the aforementioned experiment on
the packet loss and the response time. To summarize, CoCo-RED seems to be a smart choice for a
congestion control mechanism in the Obs or in message exchanges in CoAP Group Communication
which require quick responses under continuous traffic in a network.

5.2. Burst Traffic

In the burst traffic scenario, an experiment was conducted to investigate the efficiency of the
default CoAP and CoCo-RED in five network topologies. The CoAP Observe Group Communication
for the network with the burst traffic condition caused some difficulties in terms of data burst, according
to this experiment. At the initial stage, we had set a typical communication environment with a small
amount of message exchanges. Subsequently, the data input for message exchanges was so high in the
network that it caused data burst and packet losses. The results in this section are in Table 4.

Table 4. Overall performance metric values in burst traffic scenario for different topologies (the
better-performing mechanism is highlighted in bold).

Topology Congestion Control
Mechanisms

Average Setting
Time (s)

Average Response
Time (s)

Average Packet
Loss (s)

Grid
Default CoAP 49.75 0.78 7.24

CoCo-RED 48.56 0.73 6.63

Chain
Default CoAP 47.60 0.71 6.12

CoCo-RED 46.76 0.66 5.87

Cross
Default CoAP 50.93 0.84 9.41

CoCo-RED 49.97 0.76 7.12

Dumbbell
Default CoAP 51.48 0.92 10.64

CoCo-RED 50.81 0.84 7.58

Random
Default CoAP 46.57 0.69 4.05

CoCo-RED 45.40 0.64 2.41

The results show that, in every network typology, the default CoAP was greatly affected by the
simulated network communication, which can be supported by the evidence from such parameters
as setting time, response time, and packet loss. When compared to the continuous traffic scenario
in the previous section, these parameters turned out to be higher since the default CoAP congestion
mechanism was only limited to the BEB algorithm and the RTO for each retransmission. This resulted
in a higher response time and packet losses due to high congestion levels, as opposed to CoCo-RED,
which was not significantly affected. This was because employing CoCo-RED can help to adjust the
packet drop probability rate to be higher depending on the queue size in the buffer. It was able,
therefore, to reduce the chances of buffer overflow during the burst traffic in the experiment. Likewise,
the FPB algorithm was implemented to help determine the waiting time for the ACK messages from
the group of servers. As regards the retransmission process, CoCo-RED did not have to wait for the

Sensors 2019, 19, 3433 12 of 14

messages to be resent, which led to shorter response times and fewer packet losses compared to the
default CoAP.

The evaluation results of CoCo-RED compared to the default CoAP in the two traffic scenarios
and the five topologies showed that CoCo-RED can effectively deal with congestion. With regard to
this, CoCo-RED can, however, predict and reduce congestion by means of the packet drop and the
FPB waiting time for the retransmission. We concluded that CoCo-RED can maintain the quality of
within-network communication effectively.

6. Conclusions

In this article, we proposed a new congestion control mechanism for CoAP Observe Group
Communication, namely CoCo-RED (Congestion Control Random Early Detection), based on buffer
management and backoff algorithms in order to reduce the congestion of transmitted packets. Adapted
from the TCP protocol, this congestion control mechanism can replace the previous CoAP. It can detect
and predict congestion before packet loss occurs, especially when high network traffic density causes
buffer overflow. Three major issues were also raised in this study: (1) RTO timer calculation, (2) average
queue (AvgQ) and packet drop calculation, and (3) the use of the backoff algorithm for retransmission.
The evaluation of the efficiency of CoCo-RED and the existing mechanism was performed using the
Cooja simulator using two scenarios: the continuous traffic scenario and the burst traffic scenario.
The experiment demonstrates that the CoCo-RED mechanism can help to predict and reduce the
congestion from consecutive dropped packets in the case of buffer overflow. The efficiency of buffer
management was higher when dealing with certain congestion levels. It can also help to reduce data
traffic in the network to mitigate congestion, employing a wait for the backoff time until the timeout
so that the retransmission occurs later. This, finally, reduces the packet loss and response time of
network communication.

Author Contributions: Both the authors, C.S. and C.K., equally contributed to this research. The detailed research
implementation is as follows: conceptualization, C.S. and C.K.; methodology, C.S. and C.K.; software, C.S. and
C.K.; investigation, C.S. and C.K.; writing—original draft preparation, C.S.; writing—review and editing, C.K.;
visualization, C.S.; supervision, C.K.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the anonymous reviewers for their contribution to this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shi, X.; An, X.; Zhao, Q.; Liu, H.; Xia, L.; Sun, X.; Guo, Y. State-of-the-art internet of things in protected
agriculture. Sensors 2019, 19, 1833. [CrossRef] [PubMed]

2. Kovatsch, M.; Duquennoy, S.; Dunkels, A. A low-power coap for contiki. In Proceedings of the 2011 IEEE
Eighth International Conference on Mobile Ad-Hoc and Sensor Systems, Valencia, Spain, 17–22 October
2011; pp. 855–860.

3. Rahman, A.; Dijk, E. RFC 7390—Group Communication for CoAP; Internet Engineering Task Force (IETF):
Fremont, CA, USA, 2014.

4. Bhoopathy, V.M.; Frej, M.B.H.; Amalorpavaraj, S.R.E.; Shaik, I. Localization and mobility of underwater
acoustic sensor nodes. In Proceedings of the 2016 Annual Connecticut Conference on Industrial Electronics,
Technology & Automation (CT-IETA), Bridgeport, CT, USA, 14–15 October 2016; pp. 1–5.

5. Nimbargi, S.R.; Hadawale, S.; Ghodke, G. Tsunami alert & detection system using IoT: A survey.
In Proceedings of the 2017 International Conference on Big Data, IoT and Data Science (BID), Pune,
India, 20–22 December 2017; pp. 182–184.

6. Virmani, D.; Jain, N. Intelligent information retrieval for Tsunami detection using wireless sensor nodes.
In Proceedings of the 2016 International Conference on Advances in Computing, Communications and
Informatics (ICACCI), Jaipur, India, 21–24 September 2016; pp. 1103–1109.

http://dx.doi.org/10.3390/s19081833
http://www.ncbi.nlm.nih.gov/pubmed/30999637

Sensors 2019, 19, 3433 13 of 14

7. Yuan, Y.; Wang, D.; Ni, Y.Q. Minimum cost deployment in earthquake early warning system for high-speed
railways. In Proceedings of the 2013 IEEE International Conference on Intelligent Rail Transportation
Proceedings, Beijing, China, 30 August–1 September 2013; pp. 227–232.

8. Terzis, A.; Anandarajah, A.; Moore, K.; Wang, I.J. Slip surface localization in wireless sensor networks for
landslide prediction. In Proceedings of the 2006 5th International Conference on Information Processing in
Sensor Networks, Nashville, TN, USA, 19–21 April 2006; pp. 109–116.

9. Martín, C.; Hoebeke, J.; Rossey, J.; Díaz, M.; Rubio, B.; Van den Abeele, F. Appdaptivity: An internet of things
device-decoupled system for portable applications in changing contexts. Sensors 2018, 18, 1345. [CrossRef]
[PubMed]

10. Ishaq, I.; Hoebeke, J.; Van den Abeele, F.; Rossey, J.; Moerman, I.; Demeester, P. Flexible unicast-based group
communication for CoAP-enabled devices. Sensors 2014, 14, 9833–9877. [CrossRef] [PubMed]

11. Ishaq, I.; Hoebeke, J.; Moerman, I.; Demeester, P. Experimental evaluation of unicast and multicast CoAP
group communication. Sensors 2016, 16, 1137. [CrossRef] [PubMed]

12. Tiloca, M.; Nikitin, K.; Raza, S. Axiom: DTLS-based secure IoT group communication. ACM Trans. Embed.
Comput. Syst. 2017, 16, 66. [CrossRef]

13. Ouakasse, F.; Rakrak, S. An adaptive solution for congestion control in CoAP-based group communications.
Int. J. Adv. Comput. Sci. Appl. 2017, 8, 234–239. [CrossRef]

14. Betzler, A.; Gomez, C.; Demirkol, I.; Paradells, J. Congestion control in reliable CoAP communication.
In Proceedings of the 16th ACM International Conference on Modeling, Analysis & Simulation of Wireless
and Mobile Systems, Barcelona, Spain, 3–8 November 2013; pp. 365–372.

15. Betzler, A.; Gomez, C.; Demirkol, I.; Paradells, J. CoAP congestion control for the internet of things.
IEEE Commun. Mag. 2016, 54, 154–160. [CrossRef]

16. Bhalerao, R.; Subramanian, S.S.; Pasquale, J. An analysis and improvement of congestion control in the
CoAP Internet-of-Things protocol. In Proceedings of the 13th IEEE Annual Consumer Communications &
Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2016; pp. 889–894.

17. Betzler, A.; Gomez, C.; Demirkol, I.; Paradells, J. CoCoA+: An advanced congestion control mechanism for
CoAP. Ad Hoc Netw. 2015, 33, 126–139. [CrossRef]

18. Bolettieri, S.; Tanganelli, G.; Vallati, C.; Mingozzi, E. pCoCoA: A precise congestion control algorithm for
CoAP. Ad Hoc Netw. 2018, 80, 116–129. [CrossRef]

19. Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP); RFC 7252; Internet Engineering
Task Force (IETF): Fremont, CA, USA, 2014.

20. Teklemariam, G.K.; Van Den Abeele, F.; Moerman, I.; Demeester, P.; Hoebeke, J. Bindings and RESTlets: A
novel set of CoAP-based application enablers to build IoT applications. Sensors 2016, 16, 1217. [CrossRef]
[PubMed]

21. Hartke, K. Observing Resources in the Constrained Application Protocol (CoAP); No. RFC 7641; Internet
Engineering Task Force (IETF): Fremont, CA, USA, 2015.

22. Bormann, C.; Lemay, S.; Tschofenig, H.; Hartke, K.; Silverajan, B.; Raymor, B. CoAP (Constrained Application
Protocol) over TCP, TLS, and WebSockets; No. RFC 8323; Internet Engineering Task Force (IETF): Fremont, CA,
USA, 2018.

23. De Caro, N.; Colitti, W.; Steenhaut, K.; Mangino, G.; Reali, G. Comparison of two lightweight protocols for
smartphone-based sensing. In Proceedings of the 20th IEEE Symposium on Communications and Vehicular
Technology in the Benelux (SCVT), Namur, Belgium, 21 November 2013; pp. 1–6.

24. Floyd, S.; Jacobson, V. Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw.
1993, 1, 397–413. [CrossRef]

25. Prabhavat, S.; Varakulsiripunth, R. Performance improvement on RED based gateway in TCP communication
network. In Proceedings of the International Conference on Control, Automation and Systems (ICCAS 2004),
Bangkok, Thailand, 25–27 August 2004; pp. 782–787.

26. Discussions of Setting Parameters. Available online: https://www.icir.org/floyd/red.html (accessed on 19
February 2019).

27. Using the Contiki Cooja Simulator. Available online: http://cnds.eecs.jacobs-university.de/courses/iotlab-
2013/cooja.pdf (accessed on 23 February 2019).

http://dx.doi.org/10.3390/s18051345
http://www.ncbi.nlm.nih.gov/pubmed/29701698
http://dx.doi.org/10.3390/s140609833
http://www.ncbi.nlm.nih.gov/pubmed/24901978
http://dx.doi.org/10.3390/s16071137
http://www.ncbi.nlm.nih.gov/pubmed/27455262
http://dx.doi.org/10.1145/3047413
http://dx.doi.org/10.14569/IJACSA.2017.080629
http://dx.doi.org/10.1109/MCOM.2016.7509394
http://dx.doi.org/10.1016/j.adhoc.2015.04.007
http://dx.doi.org/10.1016/j.adhoc.2018.06.015
http://dx.doi.org/10.3390/s16081217
http://www.ncbi.nlm.nih.gov/pubmed/27490554
http://dx.doi.org/10.1109/90.251892
https://www.icir.org/floyd/red.html
http://cnds.eecs.jacobs-university.de/courses/iotlab-2013/cooja.pdf
http://cnds.eecs.jacobs-university.de/courses/iotlab-2013/cooja.pdf

Sensors 2019, 19, 3433 14 of 14

28. Dunkels, A.; Gronvall, B.; Voigt, T. Contiki-A lightweight and flexible operating system for tiny networked
sensors. In Proceedings of the 9th Annual IEEE International Conference on Local Computer Networks,
Washington, DC, USA, 16–18 November 2004; pp. 455–462.

29. Z1 Datasheet. Available online: http://zolertia.sourceforge.net/wiki/images/e/e8/Z1_RevC_Datasheet.pdf
(accessed on 25 February 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://zolertia.sourceforge.net/wiki/images/e/e8/Z1_RevC_Datasheet.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	CoAP Congestion Control
	CoCo-RED: Congestion Control Random Early Detection
	Evaluation Setup
	Simulation Setup
	Traffic Scenarios
	Network Topologies
	Performance Metrics

	Performance Evaluation
	Continuous Traffic
	Burst Traffic

	Conclusions
	References

