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Abstract: Autonomous vision-based aerial grasping is an essential and challenging task for aerial
manipulation missions. In this paper, we propose a vision-based aerial grasping system for a
Rotorcraft Unmanned Aerial Vehicle (UAV) to grasp a target object. The UAV system is equipped with
a monocular camera, a 3-DOF robotic arm with a gripper and a Jetson TK1 computer. Efficient and
reliable visual detectors and control laws are crucial for autonomous aerial grasping using limited
onboard sensing and computational capabilities. To detect and track the target object in real time,
an efficient proposal algorithm is presented to reliably estimate the region of interest (ROI), then a
correlation filter-based classifier is developed to track the detected object. Moreover, a support
vector regression (SVR)-based grasping position detector is proposed to improve the grasp success
rate with high computational efficiency. Using the estimated grasping position and the UAV?Äôs
states, novel control laws of the UAV and the robotic arm are proposed to perform aerial grasping.
Extensive simulations and outdoor flight experiments have been implemented. The experimental
results illustrate that the proposed vision-based aerial grasping system can autonomously and reliably
grasp the target object while working entirely onboard.
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1. Introduction

There is increasing interests in unmanned aerial vehicles (UAVs) within both the industrial and
academic communities. Vertical takeoff and landing (VTOL) unmanned rotorcrafts with onboard
lightweight visual sensors have broad applications including surveillance, monitoring, rescue and
search, traffic control, etc. [1,2]. With the high 3-D mobility, UAVs act like smart flying cameras in
passive observation applications. A UAV equipped with a robotic arm can perform aerial manipulation
tasks like grasping, placing and pushing objects [3]. Integrating the high mobility of UAVs as well as
the manipulation skills of robotic arms, UAVs mounted with robotic arms will actively interact with
environments and have widely potential applications in transportation, building, bridge inspection,
rotor blade repairing, etc. [4].

Vision-based aerial manipulation for micro UAVs poses challenges due to the inherent instability
of the UAVs, limited onboard sensing and computational capabilities, and aerodynamic disturbances
in close contact. Modeling and control, motion planning, perception, and mechanism design are
crucial for aerial manipulations [5–7]. There are some challenges for UAVs to perform autonomous
vision-based aerial grasping. These challenging problems mainly come from the following aspects:
(1) the limitation imposed by the high-order underactuated control systems; (2) the limited onboard
vision-based sensing; (3) highly computational efficiency of visual detection, estimation of grasping
points of the target object, and control of the UAV equipped with a robotic arm are required for onboard
implementation using a low-cost embedded controller; (4) coupling between perception and control of
the aerial manipulation system.

Sensors 2019, 19, 3410; doi:10.3390/s19153410 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-2510-6365
https://orcid.org/0000-0003-2579-7004
https://orcid.org/0000-0002-7683-2933
http://dx.doi.org/10.3390/s19153410
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/19/15/3410?type=check_update&version=2


Sensors 2019, 19, 3410 2 of 17

Motived by the challenging problems, we systematically investigate a vision-based strategy to
perform aerial grasping by an UAV. The contributions of this paper are presented as follows:

1. A new learning module is proposed for real-time target object detection and tracking. Concretely,
the proposed scheme extends the kernelized correlation filters (KCF) algorithm [8] by integrating
the frequency-tuned (FT) salient region detection [9], the K-means and the correlation filter
algorithms, which is able to detect the target object autonomously before tracking without
human involvement.

2. To increase the success rate of grasp, a computationally efficient algorithm based on support
vector regression (SVR) is proposed to estimate appropriate grasping positions of the visually
recognized target object.

3. A control strategy is proposed to perform aerial grasping, which consists of approaching and
grasping phases. During the approaching phase, a nonlinear control law is presented for an UAV
to approach the target object stably; while during the grasping phase, simple and efficient control
schemes of the UAV and the robotic arm are presented to achieve the grasping based on the
estimated relative position between the UAV and the target object.

4. A computationally efficient framework implemented on an onboard low-cost TK1 computer is
presented for UAVs to perform aerial grasping tasks in outdoor environments. The proposed
visual perception and control strategies are systematically studied. Simulation and real-world
experimental results verify the effectiveness the proposed vision-based aerial grasping method.

The rest of the paper is organized as follows. Section 2 describes the related work. In Section 3,
the system configuration is described. In Section 4, detection and recognition of target object, as well
as an estimation of its grasping points, are proposed. The grasping strategy and control of the aerial
grasping system is presented in Section 5. Experimental results are presented in Section 6. Concluding
remarks and future work are discussed in Section 7.

2. Related Work

Aerial manipulation is a challenging task, and some of the pioneering works in this area appeared
in the literature [10–15]. Visual perception, control and motion planning of UAVs, and mechanism
design of the end-effector, are essential for an aerial manipulation system.

Real-time target object detection is vital to perform autonomous grasping of a target
object. Currently, deep learning-based algorithms [16–18] achieve excellent detection performance,
which usually require high computational complexities and power consumptions. However,
the computational capacities of an onboard computer are limited due to the payload of the micro
UAVs, and the deep learning-based approaches are not suitable for real-time aerial grasping.
Traditional manual feature detection algorithms [19] are highly computational efficiency, but it is
still not enough to run in real time on the low-cost onboard computer of an UAV.

Estimating grasping points of the target object is beneficial to improving the grasping performance.
In [20], a target pose estimation algorithm is proposed to estimate the optimal grasping points
using the manual threshold. Pose estimation helps to estimate the grasping points, but the manual
threshold brings difficulties when applying it to various target objects. In [21–23], different markers
are used to perform real-time target detection, while target objects cannot be detected in the absence
of artificial markers. To guide the UAV to autonomously perform grasping of the target object,
with the target object detection information, the relative position between the UAV and the target
object should be continuously estimated to guide the motion of the UAV and the onboard robotic arm.
In [24–27], various aerial grasping approaches are presented, where the relative position of the target
object is obtained by high performance indoor positioning systems. It hinders the aerial grasping in
environments without positioning systems.

Real-time target tracking need to be performed during the aerial grasping process. Discriminative
correlation filter (DCF)-based approaches as well as deep learning-based methods [28] are two major
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categories of visual object tracking . The computational efficiency of the DCF-based approaches is much
higher than that of the deep learning-based algorithms. In our previous work [29], the Kernelized
Correlation Filter (KCF) tracker [8] is adopted for an UAV to track the moving target, where the
object of interested region is chosen manually at the first frame. In this paper, the KCF tracker is
applied for visual tracking of the autonomously detected target for its computational efficiency and
impressive performance.

Stable control of the UAV is important for an aerial grasping system. In [21], the traditional PID
controller is modified by adding nonlinear terms which usually require experimental or accurate
measurements. The parameters of the proposed controller are difficult to set, also it is difficult to
adapt the controller to different mechanical structures. In [24], a PID controller is employed for the
UAV to follow the planned path. However, the parameters tuning of the PID controller is difficult
for high-order underactuated UAV control systems. In this paper, a nonlinear and computationally
efficient controller is proposed to guide the UAV stably approaching the target object based on the
estimated relative position information.

In this paper, using onboard sensing and computational capabilities, we aim to investigate the
problem to autonomous grasp the target object without manually choosing the object of interested
region in advance. A visual-based aerial grasping scheme is presented, where computationally
efficient approaches are proposed for target detection, grasping points estimation and relative position
estimation. Moreover, efficient control laws are presented for the UAV and the onboard robotic arm to
perform stably aerial grasping.

3. System Configuration

Figure 1 illustrates the configuration of an autonomous vision-based aerial grasping system.
The yellow box is the hardware part of the system, and the green box is the software part of the
system. A DJI Matrice 100 is used as an experimental platform, which is equipped with a DJI Manifold
embedded Linux computer, a monocular gimbal camera and a 3-DOF robotic arm. The gimbal camera
provides the video stream for the embedded computer. The target object is detected, recognized and
tracked in real time. The grasping points of the recognized target object are then estimated to increase
the grasping success rate. To perform stably aerial grasp, using the relative position between the UAV
and the target object, the grasping process is divided into the approaching and the grasping phases.
In these two phases, different control strategies are developed for the aerial grasping system.
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Figure 1. Architecture of the autonomous vision-based aerial grasping system.
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4. Vision System

In this section, a computationally efficient visual object detection and tracking scheme is presented
to continuously locate the target position in the image. Moreover, a novel real-time algorithm is
proposed to estimate the grasping positions of the target object to improve the grasping performance.

4.1. Object Detection

To reduce the computational complexity, the visual object detection scheme is separated into two
steps, i.e., region proposal as well as classification. Firstly, all regions of interest (ROIs) are detected in
the image using the region proposal algorithm. Then the target object in all ROIs is recognized with
the designed classifier.

4.1.1. Region Proposal Algorithm

Because of high computational efficiency in the Fourier domain, the Frequency-Tuned (FT) saliency
detection [9] is adopted to obtain the saliency map, which can be used to extract ROIs. The quality
of the image captured from the onboard gimbal camera is affected by factors such as illumination,
unstable hovering of UAV and so on. It deteriorates the robustness of the method combining the
FT and the K-means in outdoor applications. In this paper, an improved region proposal algorithm
integrating by the FT and the K-means is presented.

Firstly, summing continuously n frames of the saliency map to obtain the cumulative image
IRSsum, i.e.,

IRSsum =
n

∑
i=1

IRSi , (1)

where IRSi is the output of the FT algorithm for the ith frame. Denote IRSBW the binarization of
IRSsum as IRSBW . IRSBW represent the contours and the centroids of the connected components, and are
calculated to obtain the initial model of the current scene. The model Ms is represented as

Ms = {IRSBW , Ce, Cc}, (2)

where Ce are the contours of the connected components and Cc are the centroids of the connected
components. These steps are implemented repeatedly at every n frames of the saliency map. The old
model Ms of the current scene is updated with the new models at every n frames, and the convolution
is used for the update. Specifically, K candidate contours in the new model are employed to update
the old model by convolution. The candidate contours are chosen by the nearest neighbor between the
new model and the old model. The contours and centroids are updated simultaneously according to

Ms = {MSi ⊗MSNewi ∪ {Ms − {MSi}}, i = 1, . . . , K}. (3)

Define a set B = {Ce, Cc ∈ Ms} describing contours and centroids to denote the region of all
possible target objects. Algorithm 1 describes the flow of the region proposal algorithm.

Algorithm 1: Region Proposal Algorithm
Input: image: I, frames: n.
Output: The set B which may contains the target object.
for i ∈ n do

IRSsum ← K-means(∑n
i=1 FT(Ii));

IRSBW ← Binaryzation(IRSsum);
Ms ← {IRSBW , Ce, Cc};

end
for i ∈ n do

MSNewi ← repeat the loop above;
Ms ← {MSi ⊗MSNewi ∪ {Ms − {MSi}}, i = 1 . . . K};
B← {Ce, Cc ∈ Ms}

end
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4.1.2. Classification

The computationally efficient KCF algorithm [8] is applied for tracking the target when it is
detected. It is obvious that the efficiency of combination between the target detection and the KCF
algorithm should be considered. Therefore, a KCF-based target classifier is presented in this section.
The training and classification process of the algorithm are shown in Figure 2. The framework of the
algorithm is similar to [30]. Firstly, we train a model in the same way for each class. These models
are used to classify new samples. Response values represent the evaluation of new samples by these
models. As shown in Figure 2, the depth of the font “response” color represents the strength of the
response. For example, a new sample through model A∼N. The response I is the strongest response
value, thus the new sample is classified to class I. The algorithm of classification is described as follows.
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Train
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...
...
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Figure 2. The training and classification process of the algorithm.

The KCF tracker learns a kernelized least squares classifier of a target. A classifier is trained using
the RGB iamge patch x of size M× N that is centred around the target. The tracker considers all cyclic
shifts xm,n, (m, n) ∈ {0, ..., M− 1} × {0, ..., N − 1} as one training examples for the classifier. These are
labelled with a Gaussian function y, so that y(m, n) is the label for xm,n. The goal of training is to find
a function f (xm,n) = ωTxm,n to minimize the squared error over samples xm,n and their regression
targets ym,n,

min
ω

∑
m,n

( f (xm,n)− ym,n)
2 + λ‖ω‖2, (4)

where λ is a regularization parameter that controls overfitting, as in the Support Vector Machines
(SVM) method [31].

Mapping the inputs of a linear problem to a non-linear feature-space φ(x) with the kernel trick,
the ω can be calculated [32] by

ω = ∑
m,n

α(m, n)φ(xm,n), (5)

where φ is the mapping to the a non-linear feature-space induced by the kernel κ, defining the inner
product as 〈φ( f ), φ(g)〉 = κ( f , g). In the meanwhile, f (z) = ωTz = ∑n

i=1 αiκ(z, xi). Thus, the variables
under optimization are α, instead of ω. The coefficients α in Equation (5) can be calculated by

A = F {α} = Y
Ux + λ

, (6)

where F is the DFT (Discrete Fourier Transform) operator, Y is the DFT of y, Ux is the DFT of ux and
ux = κ( f (xm,n), f (x)) is the output of the kernel function κ.

For the off-line training, the model is trained according to Equation (6) for each sample. All models
of one class are stitched into a vector:
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F =
[

f1, · · · , fi, · · · , fnp

]T
, (7)

where F is a filter vector whose element fi is a filter which obtained by training the ith sample, and np

is the number of samples.
Each filter fi is applied for evaluating the other positive sample by correlation operation beside

the sample which is trained for itself. The evaluation matrix is shown below

Vresponse =


f1(x2) f1(x3) · · · f1(xnp)

f2(x1) f2(x3) · · · f2(xnp)
...

...
. . .

...
fnp(x1) fnp(x2) · · · fnp(xnp−1)

 , (8)

where fi(xj) is the correlation evaluation of the ith sample and the jth sample.
There are np − 1 evaluation values for each filter, and they can be written as a vector. All the

elements of the vector are summed as the evaluation value for the filter. Thus, there are n filters so
that the number of the evaluation values is n. Finally, all the evaluation values of each filter can be
written as a normalized vector and all the elements of this vector are called the weight coefficient of
the corresponding filter. Its vector form is

C f =


1

np−1 (∑
np
i 6=1,i=2 f1(xi))→ (0, 1]

1
np−1 (∑

np
i 6=2,i=1 f1(xi))→ (0, 1]

...
1

np−1 (∑
np
i 6=np ,i=1 f1(xi))→ (0, 1]

 , (9)

Then the final model of target is written as:

fclsn = CT
f ∗ F, n = 1, 2, . . . , nc, (10)

Algorithm 2 describes the training flow of the correlation filter based on ridge regression.

Algorithm 2: The training algorithm of the KCF-based target classifier
Input: Training set, the size of the training set np

Output: The model of correlation filter fcls
for i ∈ np, do do

fi(xi)← α(xi)

F ←
[

f1, · · · , fi, · · · , fnp

]T

end
for i, j ∈ np, i 6= j do

Vresponse ← Fi(xj)

end
for i, j ∈ np, i 6= j do

C f ← 1
np−1 ∑n

i,j=1 fi(xj), fi ∈ Vresponse

end
fcls ← CT

f ∗ F

4.2. Grasp Position Estimation

In this section, a real-time estimation algorithm of the grasping position is presented based on
support vector regression (SVR). A grasping position estimate is beneficial to improve the grasping
performance because of the significant shape feature of the target object.
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Lenz et al. show that the feature of grasping position can be easily described by the depth
image provide by the RGB-D camera [33]. However, the performance will degenerate greatly in
outdoor environments as the RGB-D camera is accessible to the lighting interference. In this paper,
RGB images are used for grasping position estimation because (1) the HOG features [19] can represent
the magnitude and direction of the gradient at the same time, (2) the feature of symmetry is apparent
in the HOG features, and (3) the consumption of computation in the HOG features can be ignored,
the HOG features are extracted for grasping position estimation from RGB images. Figure 3 shows the
flow of the grasping position detection algorithm.
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Figure 3. The flow of the grasping position detection algorithm.

According to the symmetry of gradient value and direction of the grasping point of the target,
the model training can be divided into two parts, one part is to learn a root model from the whole
points of the grasping position, while another part is to train a side model from the edge feature of the
target object. The same training method is used for the root model and the side model.

The root and size models are denoted as S and R, respectively. They can be trained to optimize
Equation (11) with SVR:

min
1
2
‖ω‖2 + C

l

∑
i=1

(ξi + ξ∗i ),

s.t.


yi − (ωT + b) < ε + ξi,

(ωT + b)− yi < ε + ξ∗i ,

ξi, ξ∗i > 0,

(11)

where C is the penalty factor, ξi and ξ∗i are used to construct soft margin, and l is the number of
the samples.

The HOG feature map of the input image, which is part of the whole image, is denoted as G.
The edges information and the response map T about the shape information of the target object can be
obtained as follows: 

T = η(x, y) = ∑x′ ,y′ S(x′, y′) ·G(x + x′, y + y′),

F(x, y) =

{
1, −ε ≤ T ≤ ε

0, other,

(12)

where ε is the size of the soft margin of SVR and F is edge response map.
Then the response map T is split into two components which are represented as {zp1} and {zp2},

according to the character of symmetry. Every component is also split into n parts and written as a set
zpi, i = 1, 2. The combinations between the elements {zp1} and {zp2} are evaluated as follows:
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Sside(zi
p1, zj

p2) = Scoreside(zi
p1, zj

p2)

= Fsum(zi
p1) + Fsum(z

j
p2)

−
√
(xi − xj)2 + (yi − yj)2,

(13)

where zi
p1 is the ith part in the set zp1; zj

p2 is the jth part in the set zp2; Fsum(zi
p1) is the sum of the zi

p1 in
the respone map.

The response strength of the side model Fsum and the Euclidean distance between two elements are
considered to be the evaluation metric. It is obvious that the grasping position algorithm is more likely
to locate in two elements which provide a high response through the side model and shorter distance.

According to their evaluation scores in Sside(zi
p1, zj

p2), the largest m(m ≤ n) combination is
obtained. All these combinations apply the operation of dot product with the root model R to obtain
the combination with the maximum score as the grasping positions:

Sroot = Scoreroot(zk) = max{R(x, y) · F(zk)}. (14)

5. Grasping Strategy and Control

In this section, an autonomous grasping strategy and control laws of the grasping system are
proposed to perform the aerial grasping task. The center of mass of the UAV with the manipulator
changes when the robotic arm moves, it makes the UAV unstable. To achieve stable grasping
performance of the aerial grasping system, the grasping process is divided into the approaching
phase and the grasping phase. The main task of the approaching phase is to control the UAV quickly
and stably reach above the target object. In the grasping phase, the UAV equipped with the 3-DOF
robotic arm perform autonomous target grasping.

5.1. Approaching Phase

The approaching phase aims to guide the UAV to move the target object quickly. In this
phase, the 3-DOF robotic arm remains stationary. The gimbal is controlled by the PD controller [29].
The controller of the UAV is designed according to the Lyapunovs second theory.

The position relationship between the UAV and the target on the two-dimensional plane is
shown in Figure 4, where four circles denote the UAV, whose position can be written as Pt = [x̂, ŷ]T .
The position Pt of UAV can be estimated by Equation (27). Let d̂ be the estimation of the distance
between the target object and the UAV, it can be calculated by

d̂ =
√

x̂2 + ŷ2. (15)

Figure 4. The position relationship between the aircraft and the target object on the
two-dimensional plane.
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Let ψd be the desired rotation angle of the yaw, it can be calculated by

ψd = arctan
ŷ
x̂

. (16)

Then the estimation of velocity ˙̂d and the angular velocity ψ̇d can be written as:{ ˙̂d = 1
d
(
x̂ ˙̂x + ŷ ˙̂y

)
= vx cos ψd + vy sin ψd,

ψ̇d = ωd.
(17)

In real-world applications, there exists an error between the actual velocity and the desired
velocity of the UAV. The error consists of two parts, one is the error between the desired linear velocity
and the actual linear velocity in the horizontal direction εv, while another is the angle error between
the desired yaw angle and the actual yaw angle εψ. In addition, let εd denote the error between the
actual distance and the desired distance. According to Figure 4, it can be obtained by:

εd = d̂− l,

εv = vd − vv =
√

v2
x + v2

y −
√

v2
rx + v2

ry,

εψ = ψd − ψr,

(18)

where vrx and vry are the actual velocities of the UAV in the X and Y directions, respectively.
The time derivative of Equation (18) is

ε̇d = ˙̂d = vx cos ψd + vy sin ψd,

ε̇v = v̇d − v̇r = v̇x cos ψd + v̇y sin ψd,

ε̇ψ = ψ̇d − ψ̇r = ωd,

(19)

where ψr is yaw rotation angle and ωd is the yaw angular velocity of the UAV.
In the approaching phase, the velocity vx, vy and angular velocity ωd of UAV are controlled to

ensure that the distance error εd, velocity error εv and angular error εψ converge to zero. The control
law of the UAV is designed as: 

vx = k1(εd + εv) cos ψd +
vcrxεv
εd+εv

,

vy = k1(εd + εv) sin ψd +
vcryεv
εd+εv

,

ωd = k2εψ,

(20)

where k1 and k2 are coefficient less than zero, vcrx and vcry are the actual velocities of the current
moment of the UAV in the X and Y directions, respectively.

The stability of the system can be proved using Lyapunovs second theory. The Lyapunov function
candidate can be formulated as:

V(x) =
1
2
(ε2

d + ε2
v + ε2

ψ). (21)

Please note that V(x) ≥ 0 and V(x) = 0 if and only if
[
εd εv εψ

]T
= [0 0 0]T . The time derivative

of V(x) is
V̇(x) = εd ε̇d + εv ε̇v + εψ ε̇ψ

= (vxεd + v̇xεv) cos ψd

+ (vyεd + v̇yεv) sin ψd

+ ωdεψ.

(22)

The acceleration of X and Y directions can be calculated by:
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{
v̇x = vx − vcrx,

v̇y = vy − vcry.
(23)

Using Equations (20), (22) and (23), we simplify the time derivative of V(x) as{
V̇(x) = k1(εd + εv)2 + k2ε2

ψ,

k1, k2 ≤ 0.
(24)

Equation (24) ensures that V̇(x) ≤ 0, while k1, k2 ≥ 0. Thus, the control system is Lyapunov stable
with the designed control law.

5.2. Grasping Phase

When the pitch angle of the gimbal is 90◦, it means that the UAV is just above the target.
The grasping phase works. At this phase, we control the height of the UAV and the robotic arm
to grasp the target object vertically.

Figure 5 shows the relationship among the UAV, the camera and the target, where Fb denotes the
body frame of UAV with axes Xb, Yb and Zb, and Fc denotes the camera’s reference frame with axis Xc,
Yc and Zc. The rotation matrix Rbc from Fc to Fb can be calculated by:

Rbc = RwbRT
wc, (25)

where Rwb is a transformation matrix from the world frame to the body frame; Rwc is a transformation
matrix from the world frame to the camera’s reference frame.

(a) (b)

(c) (d)

Fig. 4. A moving object detector based on the Frame-Difference method.
(a) the original frame; (b) the difference frame with noise; (c) the noise
is removed and the foreground is retained using the Gaussian blur; (d) the
bounding boxes constructed by the moving object detector.

target may be lost. The redetection works when fmax(z) is
less than a threshold. According to flight experiments, the
values of fmax(z) vary in the range of (0, 0.5) in outdoor
environments. The threshold is experimentally set as 0.17.

The UAV hovers and starts to search the target when
the target loss is detected. Some classical algorithms [14]
scan all pixels in the new frame to search the target, and
the computational complexity is high. In general, the target
is moving when it re-appears in the view of the camera.
Hence, the target can be estimated by detecting the moving
foreground, instead of searching all pixels in the new frame.

In the paper, a moving object detector based on the Frame-
Difference (FD) method [20] is applied, as shown in Fig.
4. In specific, the detector subtracts the last frame from
the current frame to obtain the difference image. Although
the FD method is computationally efficient, it is sensitive
to noise, as shown in Fig. 4(b). The Gaussian blur is
hence applied to remove the noise in the difference image.
Consequently, the detector constructs the bounding boxes
based on the center of the foreground, as shown in Fig. 4(d).
It is noted that the size of these boxes is the same as the initial
OOI region. Finally, the regions contained by these bounding
boxes are evaluated by the regression function. The region,
which has the maximum value of fmax(z) and is greater than
the threshold, is selected as the position of the target in the
new frame.

IV. GROUND MANEUVERING TARGET STATE
ESTIMATION

The states of the ground maneuvering target are estimated
based on the extended Kalman Filtering.

A. Distance Estimation Method

As shown in Fig. 5, the relative distance between the UAV
and the target is estimated.

The distance between the camera and the UAV center is
assumed to be neglectable. Let FB denote the body frame of
UAV with axes Xb, Yb and Zb, and FC denotes the camera’s

T0

T

h

d

Xb

Yb Zb

Zc

Xc

Yc

Fb(Fc)

Fig. 5. The relationships between the UAV, the camera and the target.

reference frame with axis Xc, Yc and Zc. The relationships
between the ground target T and the UAV can be shown in
Fig. 5. Thus, the transformation of a vector from FC to FB
can be represented by a rotation matrix RBC. The target is
considered as a point T on the ground and is represented
by a position vector pB = (xt ,yt ,zt)

T in body frame FB of
UAV. According to standard pinhole imaging model, pB can
be written as:

pB ∼ RBCK−1(u,v,1)T (1)

where the homogenous coordinate (u,v,1)T indicates the
position of the target on the image plane, and K is the
intrinsic matrix of the camera. Hence, the relative distance
between the target and UAV can be calculated by

d =
h
zt

√
x2

t + y2
t (2)

where h is the altitude of the UAV.

B. Extended Kalman Filtering

The estimated relative position between UAV and target
given by Eq. 2 is generally inaccurate due to observation
noise. To track the maneuvering target stably and precisely,
the velocity and acceleration of the target need to be es-
timated using appropriate motion models. A single motion
model is difficult to accurately describe random movements
of the maneuvering target, the IMM-EKF [21] algorithm is
presented to estimate its states by fusing the constant velocity
model and the current statistical model. In particular, the
constant velocity model can be written in a discrete form:

X(k+1) =
[

1 t
0 1

]
X(k)+

[
t2
/

2
t

]
w(k) , (3)

where t is the sampling interval, X is state vector, and w is
a discrete white process noise.

The current statistical model in discrete form is given as:

X(k+1) =Φ(k)X(k)+U(k) ā(k)+w(k) , (4)

where Φ(k) is the state matrix, U(k) is the control matrix,
ā(k) is the mean of current maneuvering acceleration, and
w(k) is a discrete white process noise. It is noted that the
employed model is a Singer model with an adaptive mean
[22], which does not require any prior model and can handle
targets with rapidly changing speeds.

Figure 5. The relationship among the UAV, the camera and the target.

The position of target object in Fb can be calculated by:

T = RT
bcPK−1 AT , (26)

where T = [xb, yb, zb] is the position of target object in Fb; K is the intrinsic matrix of the camera; P is
the permutation matrix; A = [u, v, 1] indicates the position of the target on the image plane.

According to standard pinhole imaging model, the position of target object P = [x, y, z] can be
estimated by: 

x̂ = h
zb

xb,

ŷ = h
zb

yb,

ẑ = 0,

(27)

where h is the height of the UAV. It can be detected by the ultrasonic sensor.
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PID controller is used to control the position and height of the UAV. The position error can be
calculated by: {

ex = xb − 0,

ey = yb − 0,
(28)

where ex and ey are error in X and Y directions respectively, xb and yb are position of target in Fb
respectively. The desired height of the UAV can be calculated by:

hd = h− l, (29)

where hd is the desired height of the UAV, l is the maximum distance of the robotic arm, and h is the
height of the UAV. It can be detected by the ultrasonic sensor.

The joints of the arm are controlled to keep the robotic arm vertical. The gripper at the end of the
robotic arm grasp the target object when the UAV hovers at the desired height.

6. Experimental Results

To verify the autonomous vision-based aerial grasping system, extensive flight experiments
are performed in outdoor environments. First, the performance of the target object detection and
recognition scheme is verified and analyzed. Second, the elapse time and performance of the grasping
position detection algorithm is examined. The designed control laws are then verified by the simulation
and real-world flight experiments. Finally, experimental results of the autonomous vision-based aerial
grasping in real-world are presented.

6.1. Experimental Setup

A DJI Matrice 100 UAV is used as an experiment platform, as shown in Figure 6.
Airborne equipment includes a DJI Manifold embedded Linux computer (NVIDIA Tegra TK1 processor,
an NVIDIA 4-Plus-1 quad-core A15 CPU of 1.5 GHz), a GPS receiver, a 3-DOF robotic arm, a monocular
Zenmuse X3 gimbal camera, a barometer, an Inertial Measurement Unit (IMU) and a DJI Guidance
visual sensing system.

Onboard Computer

Camera 

with 

Gimbal

3-DOF Robotic 

Arm with Gripper

Figure 6. The UAV experiment platform with 3-DOF robotic arm.

6.2. Object Detection and Recognition Experiment

The purpose of this experiment is to test the performance of the computationally efficient object
classification correlation filter based on ridge regression. The dataset used in this experiment is the
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extended ETHZ dataset [34] that is extended from five classes to six classes. The new dataset includes
six classes, of which the classes toy cars is entirely and newly collected by ourselves. The sample
number of each category is shown in Table 1.

The reason for adopting the small dataset is that the KCF algorithm learning module has the
feature of increasing samples through circular displacement. The evaluation criteria of the experiment
is the average correlation value of the model to the positive and negative samples after performing
10 times a 5-fold cross validation for each category model. Figure 7 shows the experiment results.

Table 1. The category and sample size of extended ETHZ dataset.

Category Apple Logos Bottles Toy Cars Giraffes Mugs Swans

Quantity 44 55 42 91 66 33

As shown in Figure 7, each class model obtained by training has a higher response value to the
positive samples in the test set, and the response value is basically much larger than the response
value to other categories. It shows that this type of classifier has better classification performance for
simple objects. At the same time, correlation detection is performed in the frequency domain. Thus, its
detection operation time is also fast with the help of fast Fourier transform (FFT). In the experiment,
the average detection time of each sample is 0.02s.

Apple Logos Bottles Toy Cars Giraffes Mugs Swans
0

0.2

0.4

0.6

0.8

1 Apple Logos
Bottles
Toy Cars
Giraffes
Mugs
Swans

response value

Figure 7. Performance Comparison of Correlation Filter Target Classifier Based on Ridge Regression.

6.3. Grasping Position Detection Experiment

The purpose of this experiment is to verify the accuracy and elapse time of the grasping position
detection algorithm. The dataset is from the research of [35]. The resolution of the root model is set to
80× 80× 31. Furthermore, separating the resized image into two components for training the side
model. Therefore, the resolution of the side model is set to 80× 40× 31. The results of the grasping
position detection experiment is shown in Tables 2 and 3. As shown in Table 2, the accuracy of the
grasping position model, which is the combination of side model and root model, is acceptable.

Table 2. The results of the grasping position detection algorithm.

Set Number of Samples Within Soft Margin

Training Set 1125 1006 (89.4%)
Positive (Test) 864 640 (74.1%)

Negative (Test) 719 267 (37.2%)

As shown in Table 3, the algorithm of grasping position detection is real-time within the range
of 0.3 million. The largest computational cost is to use the side model to detect the shape of
object. Therefore, it is necessary to restrict the resolutions of input image for real-time grasping
position detection.
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Table 3. The elapse time of the grasping position detection algorithm.

Resolution S R T

140× 60 0.001 s 0.001 s 0.002 s
265× 120 0.021 s 0.005 s 0.026 s
493× 240 0.134 s 0.006 s 0.14 s

Note: S means the elapse time of the side model. R means the elapse time of the root model. T means the total
of the elapse time.

6.4. UAV Control Experiments

6.4.1. Simulation Experiments

The DJI Assistant 2 aircraft simulation platform is used in this simulation experiment.
The experiment design is as follows: control law (20) is verified where the adjustable parameters are
set as k1 and k2. In this experiments, three groups of value are set for simulation and real-world flight
experiment. According to the symmetry property of quadrotor aircraft, the test of the parameters just
needs to test one direction. The test direction of this experiment is X direction. In the experiment
setting, we set k1 = −0.1, k1 = −0.2, k1 = −0.3 and the flight distance is 10 m. The simulation results
are shown in Figure 8a–c.

According to Figure 8a,b, we can see that the adjustment trend of the control law become
more obvious when we set higher parameter value. The velocity of the UAV gradually converges
to the desired value, and the errors between the desired values and the simulated values also
gradually converges.
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Figure 8. (a) Simulation results in the x direction; (b) The error between the desired velocity and the
simulation velocity in the X direction simulation; (c) The error between the desired yaw angle and
the simulation angular velocity; (d) Experimental results in the x direction in the real-world flight
tests; (e) Experimental results in the y direction in the real-world flight tests; (f) The error between the
desired angular velocity and the yaw angular velocity in the real-world flight tests.

The parameter k2 is adjusted in simulation by the same method. We set k2 = −0.1, k2 = −0.3 and
the desired of UAV yaw angle is 90◦. The error of the simulation angular velocity is shown in Figure 8c.

Similar to the error of the velocity control, when the parameter value is larger, the initial desired
angular velocity of the UAV controller is larger as well. As the rotation angle reaches the target angle,
it gradually converges. The greater the parameter is, the faster the convergence velocity is.

6.4.2. Experiments of Flight Tests

In the flight experiments, we select two parameters k1 = −0.2 and k2 = −0.3. The maximum
speed of the aircraft is restricted to 1m/s, and the attitude data of the UAV are measured by the
onboard IMU module. The flight experimental results are shown in Figure 8d–f.

The experimental results show that the actual velocity values converge to the desired velocity in
0.5s and follows the desired velocity very well. The error curve of the yaw angular velocity in actual
flight test is shown in Figure 8f. The yaw angle errors decrease gradually from a relatively large value
to the desired zero value.

6.5. Autonomous Aerial Grasping Experiments

The proposed algorithms and the developed aerial grasping system are systematically investigated
in flight experiments. In the experiments, as shown in Figure 9, the target object, a toy car, will be
detected among some other objects within the visual view of the gimbal camera. The parameters
of PID controller is shown in Table 4. Snapshots of the grasping process are illustrated in Figure 9,
where Figure 9a is the approaching phase, Figure 9b,c are the grasping phase, and Figure 9d is the
UAV to complete the grasping task and ascent to the specified height. A demo video of the proposed
aerial grasping system in outdoor environments can be seen in the supplementary video.

Limitation and discussion: to examine the grasping performance, 10 successive grasping
experiments are conducted in outdoor environments. The achieved success rate of the aerial grasping
of the toy car is 50%. Vision-based autonomous aerial grasping is a systematically work, and the
performance of each part of the visual perception as well as control of the UAV and the robotic arm
will affect the grasping performance. For the visual perception part, according to Figure 7, the trained
classifier has good performance; however, the accuracy of the grasping point estimate algorithm is
74.1%. It is noted that in the grasping phase, there is a lag in the position control of the UAV. Moreover,
mechanical instability and low response of the robotic arm and the end gripper also deteriorate the
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grasping performance. In future work, the grasping points estimate will be further studied, and the
mechanical design of the robotic arm will also be considered to improve the grasping performance.

Table 4. The parameters of the PID controller.

Parameters P I D

Yaw 0.13 0 0.05
Pitch 0.08 0 0.03
UAV 2.3 0.1 1.28

Note: Yaw and Pitch imply the yaw and pitch angle control of the gimbal, respectively. UAV implies the
position control of the UAV.

（a） （b）

（c） （d）

Figure 9. UAV autonomous grasping system test. (a) The approaching phase; (b,c) the grasping phase;
(d) the UAV to complete the grasping task and ascent to the specified height.

7. Conclusions

In this paper, an autonomous vision-based aerial grasping system for a rotorcraft UAV is presented,
where the target object is fully autonomously detected and grasped. The proposed visual perception
and control strategies are systematically studied. An efficient object detection and tracking method
is addressed to improve the KCF algorithm. A grasping positions estimate of the target object is
proposed based on the edge and root model thereof, to increase the grasping success rate. Based
on the estimated relative position between the target object and the UAV as well as the grasping
points of the target object, control laws of the UAV and the robotic arm are proposed to guide the
UAV to approach to and grasp the target. The visual perception and control are implemented on an
onboard low-cost computer. Experiment results illustrate that the proposed autonomous vision-based
aerial grasping system achieves stable grasping performance. In future work, the grasping points
estimate will be further studied to improve the estimate accuracy. Mechanical design of a stable and
light weight robotic arm will be considered. Autonomous grasping of a moving target object is also
worth investigation.

Author Contributions: L.L. and H.C. conceived the methodology. L.L. and Y.Y. designed the experiments; Y.Y.
performed the experiments and analyzed the data. X.C. provided valuable advice and guidance. Y.Y. and H.C.
wrote the paper.

Funding: This work was supported by Major Program of Science and Technology Planning Project of Guangdong
Province (2017B010116003), NSFC-Shenzhen Robotics Projects (U1613211) and Guangdong Natural Science
Foundation (1614050001452, 2017A030310050).



Sensors 2019, 19, 3410 16 of 17

Conflicts of Interest: The authors declare no conflict of interest.

References

1. He, R.; Bachrach, A.; Achtelik, M.; Geramifard, A.; Gurdan, D.; Prentice, S.; Stumpf, J.; Roy, N. On the design
and use of a micro air vehicle to track and avoid adversaries. Int. J. Robot. Res. 2010, 29, 529–546.

2. Gómez-de Gabriel, J.M.; Gandarias, J.M.; Pérez-Maldonado, F.J.; García-Núñcz, F.J.; Fernández-García,
E.J.; García-Cerezo, A.J. Methods for Autonomous Wristband Placement with a Search-and-Rescue Aerial
Manipulator. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 7838–7844.

3. Khamseh, H.B.; Janabi-Sharifi, F.; Abdessameud, A. Aerial manipulation—A literature survey.
Robot. Auton. Syst. 2018, 107, 221–235. [CrossRef]

4. Ruggiero, F.; Lippiello, V.; Ollero, A. Aerial manipulation: A literature review. IEEE Robot. Autom. Lett. 2018,
3, 1957–1964. [CrossRef]

5. Orsag, M.; Korpela, C.; Oh, P. Modeling and control of MM-UAV: Mobile manipulating unmanned
aerial vehicle. J. Intell. Robot. Syst. 2013, 69, 227–240. [CrossRef]

6. Thomas, J.; Polin, J.; Sreenath, K.; Kumar, V. Avian-inspired grasping for quadrotor micro UAVs.
In Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, Portland, OR, USA, 4–7 August 2013.

7. Bellicoso, C.D.; Buonocore, L.R.; Lippiello, V.; Siciliano, B. Design, modeling and control of a 5-DoF
light-weight robot arm for aerial manipulation. In Proceedings of the 2015 23rd Mediterranean Conference
on Control and Automation (MED), Torremolinos, Spain, 16–19 June 2015; pp. 853–858.

8. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters.
IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 583–596. [CrossRef] [PubMed]

9. Achanta, R.; Hemami, S.; Estrada, F.; Susstrunk, S. Frequency-tuned salient region detection. In Proceedings
of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2009),
Miami, FL, USA, 20–25 June 2009; pp. 1597–1604.

10. Michael, N.; Fink, J.; Kumar, V. Cooperative manipulation and transportation with aerial robots. Auton. Robot.
2011, 30, 73–86. [CrossRef]

11. Mellinger, D.; Lindsey, Q.; Shomin, M.; Kumar, V. Design, modeling, estimation and control for aerial
grasping and manipulation. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 2668–2673.

12. Pounds, P.E.; Bersak, D.R.; Dollar, A.M. Grasping from the air: Hovering capture and load stability.
In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China,
9–13 May 2011; pp. 2491–2498.

13. Lindsey, Q.; Mellinger, D.; Kumar, V. Construction of cubic structures with quadrotor teams. In Proceedings
of the Robotics: Science and Systems VII, University of Southern California, Los Angeles, CA, USA,
27–30 June 2011

14. Fink, J.; Michael, N.; Kim, S.; Kumar, V. Planning and control for cooperative manipulation and transportation
with aerial robots. Int. J. Robot. Res. 2011, 30, 324–334. [CrossRef]

15. Thomas, J.; Loianno, G.; Sreenath, K.; Kumar, V. Toward image based visual servoing for aerial grasping
and perching. In Proceedings of the Robotics and Automation (ICRA), 2014 IEEE International Conference,
Hong Kong, China, 31 May–7 June 2014; pp. 2113–2118.

16. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal
networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada,
7–12 December 2015; pp. 91–99.

17. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 779–788.

18. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
19. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the Computer

Vision and Pattern Recognition, CVPR 2005, San Diego, CA, USA, 20–26 June 2005; Volume 1, pp. 886–893.

http://dx.doi.org/10.1016/j.robot.2018.06.012
http://dx.doi.org/10.1109/LRA.2018.2808541
http://dx.doi.org/10.1007/s10846-012-9723-4
http://dx.doi.org/10.1109/TPAMI.2014.2345390
http://www.ncbi.nlm.nih.gov/pubmed/26353263
http://dx.doi.org/10.1007/s10514-010-9205-0
http://dx.doi.org/10.1177/0278364910382803


Sensors 2019, 19, 3410 17 of 17

20. Ramon Soria, P.; Arrue, B.; Ollero, A. Detection, location and grasping objects using a stereo sensor on uav
in outdoor environments. Sensors 2017, 17, 103. [CrossRef] [PubMed]

21. Heredia, G.; Jimenez-Cano, A.; Sanchez, I.; Llorente, D.; Vega, V.; Braga, J.; Acosta, J.; Ollero, A. Control of a
multirotor outdoor aerial manipulator. In Proceedings of the 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Daejeon, Korea, 9–14 October 2014; pp. 3417–3422.

22. Lai, Z.; Yang, R.; Cheng, H.; Deng, W.; Wu, K.; Xiao, J. Dance of the Dragonfly: A Vision-Based Agile Aerial
Touch Solution for IARC Mission 7. In Proceedings of the 2018 IEEE International Conference on Real-time
Computing and Robotics (RCAR), Kandima, Maldives, 1–5 August 2018; pp. 37–43.

23. Hui, C.; Yousheng, C.; Xiaokun, L.; Shing, W.W. Autonomous takeoff, tracking and landing of a UAV on a
moving UGV using onboard monocular vision. In Proceedings of the 32nd Chinese Control Conference,
Xi’an, China, 26–28 July 2013; pp. 5895–5901.

24. Qi, J.; Kang, J.; Lu, X. Design and research of UAV autonomous grasping system. In Proceedings of
the Unmanned Systems (ICUS), 2017 IEEE International Conference, Beijing, China, 27–29 October 2017;
pp. 126–131.

25. Zhang, G.; He, Y.; Dai, B.; Gu, F.; Yang, L.; Han, J.; Liu, G.; Qi, J. Grasp a Moving Target from the Air: System
& Control of an Aerial Manipulator. In Proceedings of the 2018 IEEE International Conference on Robotics
and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 1681–1687.

26. Fang, L.; Chen, H.; Lou, Y.; Li, Y.; Liu, Y. Visual Grasping for a Lightweight Aerial Manipulator Based
on NSGA-II and Kinematic Compensation. In Proceedings of the 2018 IEEE International Conference on
Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 1–6.

27. Staub, N.; Bicego, D.; Sable, Q.; Arellano, V.; Franchi, A. Towards a Flying Assistant Paradigm:
The OTHex. In Proceedings of the IEEE 2018 International Conference on Robotics and Automation (ICRA),
Brisbane, Australia, 21–25 May 2018.

28. Wang, Q.; Zhang, L.; Bertinetto, L.; Hu, W.; Torr, P.H. Fast online object tracking and segmentation: A unifying
approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach,
CA, USA, 15–20 June 2019; pp. 1328–1338.

29. Cheng, H.; Lin, L.; Zheng, Z.; Guan, Y.; Liu, Z. An autonomous vision-based target tracking system for
rotorcraft unmanned aerial vehicles. In Proceedings of the Intelligent Robots and Systems (IROS), 2017
IEEE/RSJ International Conference, Vancouver, BC, Canada, 24–28 September 2017; pp. 1732–1738.

30. Dutta, A.; Dasgupta, P. Ensemble learning with weak classifiers for fast and reliable unknown terrain
classification using mobile robots. IEEE Trans. Syst. Man Cybern. Syst. 2016, 47, 2933–2944. [CrossRef]

31. Rifkin, R.; Yeo, G.; Poggio, T. Regularized least-squares classification. Nato Sci. Ser. Sub Ser. III Comput.
Syst. Sci. 2003, 190, 131–154.

32. Schölkopf, B.; Smola, A.J.; Bach, F. Learning with Kernels: Support Vector Machines, Regularization, Optimization,
and Beyond; MIT Press: Cambridge, MA, USA, 2002.

33. Lenz, I.; Lee, H.; Saxena, A. Deep learning for detecting robotic grasps. Int. J. Robot. Res. 2015, 34, 705–724.
[CrossRef]

34. Ferrari, V.; Fevrier, L.; Jurie, F.; Schmid, C. Groups of adjacent contour segments for object detection.
IEEE Trans. Pattern Anal. Mach. Intell. 2007, 30, 36–51. [CrossRef] [PubMed]

35. Pinto, L.; Gupta, A. Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot
hours. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA),
Stockholm, Sweeden, 16–21 May 2016; pp. 3406–3413.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s17010103
http://www.ncbi.nlm.nih.gov/pubmed/28067851
http://dx.doi.org/10.1109/TSMC.2016.2531700
http://dx.doi.org/10.1177/0278364914549607
http://dx.doi.org/10.1109/TPAMI.2007.1144
http://www.ncbi.nlm.nih.gov/pubmed/18000323
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	System Configuration
	Vision System
	Object Detection
	Region Proposal Algorithm
	Classification

	Grasp Position Estimation

	Grasping Strategy and Control
	Approaching Phase
	Grasping Phase

	Experimental Results
	Experimental Setup
	Object Detection and Recognition Experiment
	Grasping Position Detection Experiment
	UAV Control Experiments
	Simulation Experiments
	Experiments of Flight Tests

	Autonomous Aerial Grasping Experiments

	Conclusions
	References

