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Abstract: This paper introduces technical solutions devised to support the Deployment Site - Regione
Emilia Romagna (DS-RER) of the ACTIVAGE project. The ACTIVAGE project aims at promoting IoT
(Internet of Things)-based solutions for Active and Healthy ageing. DS-RER focuses on improving
continuity of care for older adults (65+) suffering from aftereffects of a stroke event. A Wireless
Sensor Kit based on Wi-Fi connectivity was suitably engineered and realized to monitor behavioral
aspects, possibly relevant to health and wellbeing assessment. This includes bed/rests patterns,
toilet usage, room presence and many others. Besides hardware design and validation, cloud-based
analytics services are introduced, suitable for automatic extraction of relevant information (trends
and anomalies) from raw sensor data streams. The approach is general and applicable to a wider
range of use cases; however, for readability’s sake, two simple cases are analyzed, related to bed
and toilet usage patterns. In particular, a regression framework is introduced, suitable for detecting
trends (long and short-term) and labeling anomalies. A methodology for assessing multi-modal
daily behavioral profiles is introduced, based on unsupervised clustering techniques. The proposed
framework has been successfully deployed at several real-users’ homes, allowing for its functional
validation. Clinical effectiveness will be assessed instead through a Randomized Control Trial study,
currently being carried out.

Keywords: IoT; smart home; behavioural analysis; active assisted living (AAL); anomaly detection;
continuous monitoring

1. Introduction

The recent increase in life expectancy is a result of continuous improvements of quality of life
in modern industrialized countries. However, due to a simultaneous decrease in birthrate, a new
trend of progressive population ageing has emerged in such countries [1]. It is expected that, by 2020,
almost 25% of the EU population will be over 60 years, and, by 2060, such percentage is projected
to increase up to 30% [2]. Population ageing severely challenges social- and health-care systems,
with ICT (Information and Communication Technologies) being expected to contribute to foster
effective solutions. Active and Ambient Assisted Living (AAL, [3]) systems emerged to address these
issues, aiming at making home environments more intelligent, and promoting a sustainable model
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of independent, augmented living. In fact, AAL techniques come in many flavors, ranging from
assistive-oriented solutions up to prevention-oriented ones. In the former case, an AAL system can
help in making services more accessible, by compensating physical or sensory impairments with new
smart devices. For example, Brain–Computer Interfaces have been integrated within AAL ecosystems
to allow severely motor-impaired users to achieve communication and home control [4–6], exploiting
low-cost and easily deployable solutions [7,8]. On the other hand, AAL systems can also play an
important role in prevention and active monitoring, especially in the realm of smart homes. Indeed,
smart-home technologies are devoting progressively more effort in monitoring habits and behavioral
patterns [9,10]: many automation functions can be optimized with the use of data, such as the
activation of specific home functions, aimed at comfort or energy-management purposes. Nonetheless,
smart home data can be also used to extract information, albeit indirectly, about inhabitants’ general
wellbeing [11,12]. Very simple home sensors can be used for this purpose, posing no burden on the
end-user, allowing for unobtrusive and continuous monitoring [13]. Behavioral analysis, indeed,
may be regarded as an effective complement to more conventional health monitoring techniques,
such as telemedicine.

This paper presents methodologies and results for the ACTIVAGE project [14], funded by the
European Union Horizon 2020 programme; more specifically, the Italian Deployment Site (DS-RER) [15]
is presented, based in the Emilia-Romagna Region (RER), aiming at introducing ICT-enabled services
into the current practice of regional Health Service (AUSL, Local Health Authority). General
practitioners, formal caregivers, care and case-managers are involved in the experimentation, creating
an IoT-augmented care continuum network. The DS-RER approach is actually suitable for a wide range
of use cases; however, in the pilot at hand, the target population has been narrowed to older adults
(65+) recovering from a stroke event, and still suffering from its after-effects. Such a use-case is, indeed,
numerically relevant: in Italy, stroke is the third cause of death (approximately, 10–12% of all deaths per
year [16], after cardiovascular diseases and neoplasms); furthermore, about 7000 stroke adverse events
are recorded each year in the Emilia-Romagna region [17]. The DS-RER approach aims at empowering
care professional with additional information that is not commonly provided in current care practice,
namely their behavioral routines. Such information can not be directly mapped to conventional clinical
markers, for which telemedicine solutions already exist and are commonly used (e.g., blood pressure
monitors, pulse oximeters and weight scales, among others); nonetheless, changes in behavioral habits
may reflect changes in overall wellbeing of a person (e.g., sleep routines, toilet usage changes). Such
behavioral information can be acquired in a continuous fashion, without any explicit user involvement
(i.e., no compliance is required, in contrast to self-administered measurements). This effectively
provides contextual information which, coupled to standard care practice, may help in providing a
wider overview of subjects’ wellbeing and recovery process. The main contribution of this paper are
twofold: first, technical and architectural solutions (involving hardware design and software/cloud
services) are presented, specifically developed to enable behavioral data acquisition and safe storage.
Then, methodologies for data analysis are presented; in particular, two case studies are reported, for
conciseness’ sake: daily rests and toilet usage. Nonetheless, such methods can be straightforwardly
adapted to many different analysis on data and behaviors gathered by the home sensors. Analysis of
real-life data allowed to validate the system in both architectural and software components.

The rest of the paper is organized as follows. Section 2 presents methodologies for the project,
discussing the choice of two DS-RER services to be analyzed, providing details on the ACTIVAGE
study design and evaluation, as well as introducing the IoT sensor kit technology, the supporting
cloud environment and the data analytics components. Section 3 presents the results. In particular, the
critical issue of sensor power consumption is discussed. An example of daily rest pattern assessment
is also shown, validated against ground truth. Toilet usage data are analyzed by means of a unified
framework, to reliably detect statistically significant trends (linear and abrupt), as well as unexpected
data points. Moreover, results of pattern clustering and anomalous pattern detection are presented,
based on data coming from actual ACTIVAGE project pilots. Finally, Section 4 draws the conclusions.
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2. Materials and Methods

As mentioned, the main concept of the ACTIVAGE DS-RER project consists of enhancing current
care management practice by providing insights from user-specific “behavioral” analysis: the approach
aims at creating a multi-dimensional vision of care, allowing for a more sensible personalization. To this
purpose, a comprehensive framework has been devised and implemented, consisting of:

• a set of IoT home sensing devices, featuring low intrusiveness, high usability and low cost;
• a cloud infrastructure, connecting home devices to the behavioral analysis engine(s) run by the

care provider;
• a set of methods allowing for extracting relevant behavioral information from raw data coming

from sensors.

Besides technical functionality, it is relevant to assess the actual benefit brought to both the
end-user and the care provider. This depends on the effective integration of the proposed solution into
the care ecosystem, which involves a large number of different stakeholders. Hence, the framework
strictly needs to be validated against real-world use cases: within the scope of the ACTIVAGE DS-RER
project, a comprehensive trial procedure has been designed. This section therefore deals with the
framework architecture and its components, as well as with the trial design. All technical design
has been completed, and the trial is currently under way. Functional validation results are available
already, based on data streams coming from pilots. Assessing evidence of clinically-relevant outcomes
(based on healthcare system feedback) is among the long-term goals of the current trial and is expected
at a later stage.

2.1. IoT Wireless Sensor Kit

The IoT wireless sensor kit is composed of several different elements, which are used to
continuously monitor and extract relevant behavioral information. In order to minimize the installation
burden, sensors exploit the standard Wi-Fi (IEEE 802.11 b/g/n) communication infrastructure. While
most diffused home sensing networks use dedicated networks (e.g., ZigBee, Bluetooth, Z-wave, etc.),
the Wi-Fi option allows for easily connected devices to the main home network (i.e., sharing common
infrastructure), with no need of a dedicated home sensor hub. This makes installation straightforward
and reliable. In addition, the resulting approach is highly flexible and expandable, with no need for
reconfiguring the network while adding or removing devices. The ACTIVAGE DS-RER sensor kit
currently includes:

• Passive InfraRed (PIR) sensors for motion detection, suitable for tracing room occupancy.
Such sensors are deployed in users home by fixing them to a wall in the environment where
motion needs to be captured

• Magnetic contact sensors, useful for monitoring open/close states of different objects.
For example, interactions with doors, drawers and medical cabinets can be easily detected
with such sensors.

• Bed occupancy sensor, useful in tracing sleeping patterns; detection of presence is achieved by a
pressure-sensitive resistive pad, usually placed under the mattress. Such signal is read by the
sensor module, attached to the bed frame.

• Chair occupancy sensor, to gather information on how much time and when a user sits on a
chair/armchair/sofa; physical sensing technology is the same as for the bed occupancy sensor.

• Toilet presence sensor, specifically developed to keep track of daily toilet use. The sensing element
is an active IR sensor with an IR illuminator and a photo-detector: this setup guarantees ranging
capability and can be much more selective for close interactions detection, with respect to a PIR.
Indeed, the sensor is fixed in close proximity to the toilet.

The whole sensor family was designed from scratch, taking care of both hardware and firmware
design. This was necessary since no commercial WiFi sensor kit was available, providing such specific
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functions. In addition, interoperability and data security constraints were taken into consideration:
since the ACTIVAGE project deals with information related to personal health, regulations require that
the full data journey is known and the information is stored in national servers, hosted by authorized
operators. The home devices kit is completed by a pill dispenser, suitable for reminding the user
at medicine-taking time and for assessing the user’s compliance to the prescribed therapy. The pill
dispenser was based on available hardware, and its software was updated to fit the project environment
(Wi-Fi networking, cloud access).

The home infrastructure thus follows a genuine IoT approach, with sensors directly connected to
the cloud, without any intermediate gateway. At any time, any element of the IoT wireless sensor kit
can join the WiFi network by means of standard Wireless Protected Setup (WPS) procedure, which
simplifies the device deployment. All devices are built around the same microcontroller and network
processor unit, namely the CC3220 SoC (System on Chip) by Texas Instruments (Dallas, TX, USA): it
is a Wi-Fi certified product, featuring IoT networking security, device identity and keys, optimized
for low power management. The certified stack implements both IPv4 and IPv6 protocols, with
industry-standard, optimized BSD sockets (both TCP and UDP), secured by SSL/TLS.

Data transmission towards the cloud is performed using the MQTT (Message Queue Telemetry
Transport) communication protocol. MQTT is a lightweight, data-agnostic protocol, particularly
suitable for IoT applications, since it it relies on a broker for exchanging data between publishers
and subscribers, and it supports various levels of Quality of Service (QoS). In this project, all messages
are sent with a QoS of 2, i.e., they are sent exactly once, with a unique reception confirmation.
The Mosquitto [18] MQTT broker was chosen to receive and handle all device communications, since it
is a mature technology, widely-adopted, and has an active, open-source community. After reaching the
MQTT broker, a Fiware IoT agent [19] parses the messages, determines the sensor-person association,
and stores the payload data into the appropriate Data Base (DB) table.

In order to guarantee data security, all traffic towards the cloud is encrypted by means of SSL/TLS
protocol: certificates signed by a public Certification Authority guarantee the identification and proper
authorization of devices.

To keep the installation in users’ homes less intrusive as possible, all devices are battery-powered:
besides being safer in terms of electrical hazard, the absence of power cords allows unconstrained
placement of sensors in the home environment. Nonetheless, battery operation comes with its own
disadvantages, mainly related to the limited energy budget, the reduced capability in terms of surge
current sourcing and the rate of self discharge. All these factors have a great impact on the device
operating time and pose constraints on devices’ WiFi communications, which are, by far, the most
power-intensive activities. In order to compensate for reduced battery current sourcing capability,
the IoT wireless sensor kit relies on super-capacitors in the power section, which makes it possible to
use primary alkaline cells, this reducing maintenance costs. Alkaline batteries, in fact, tend to exhibit
higher ESR (Equivalent Series Resistance) and generally feature a more rapid performance degradation,
compared to Lithium-based ones. At the very end of their discharge curve, the alkaline battery’s ESR
is so high that it prevents high output current sourcing: this can seriously hinder device operation
and reliability (faulty connections). The adoption of super-capacitors is common in this field and
allows for offloading batteries from supplying high peaks; during normal operation, batteries will
approximately supply the average current that the sensor draws, due to the higher source impedance
with respect to super-capacitors: such current is relatively low, given that the sensor duty-cycle is
minimal. Batteries are required to supply high currents just at the very beginning of their operation (i.e.,
to charge the super-capacitor up to rated voltage), when the ESR is at its minimum. This architectural
pattern effectively exploits the full battery discharge curve (even in the final, high-ESR region). In the
present design, two 470 mF, 4.2 V rated super-capacitor units are stacked in series, to accommodate a
4xAA alkaline battery input. This provides a low-impedance path to supply the buck regulator high
amounts of transient current, required during the transmission phase. Finally, power saving capability
is achieved mainly through two factors:
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• Careful selection of low-power and low-quiescent current devices. For instance, FRAM
(Ferroelectric Random Access Memory) memory is leveraged for non-volatile storage, due to their
lower power consumption (compared to flash memories); low quiescent current switching
regulator and analog signal conditioning ICs are selected as well, to keep sleep-mode currents as
low as possible.

• Efficient scheduling of messages: instead of streaming data (e.g., movement detected by a PIR)
as soon as an event occur, such information is temporarily committed to on-board non-volatile
storage and sent at regular intervals (e.g., hourly). This prevents multiple WiFi connection and
disconnections, effectively lowering average radio usage.

By means of such design strategy, battery lifetime well in the practical range can be achieved, in
the order of several months, as detailed in Section 3.1 below.

2.2. System Architecture

The overall system architecture is shown in Figure 1: it is built around the regional Electronic
Health Records platform (progetto SOLE [20]), which is commonly used by general practitioners
to manage patients’ records. Home-sensors data are sent to the platform via secure and encrypted
channels, where they are stored in an anonymized fashion. To protect data privacy, the following
constraints are imposed on all devices connecting to the cloud:

• sensors are only allowed to publish data and cannot retrieve any of it;
• a REST-API interface is exposed to subscribers interested in retrieving data, preventing direct

interaction with the DB. In addition, such API is only exposed to clients within the project’s
VPN (Virtual Private Network), thus providing encrypted and secure communication only to
authorized subjects;

• user-generated data are pseudo-anonymized, by identifying the patterns with an alphanumeric
ID and by only saving user-pilot association in a secure table, accessible only to designated and
authorized parties.

Figure 1. Diagram of the ACTIVAGE DS-RER system architecture, interacting with the FSE (Fascicolo
Sanitario Elettronico, the patients’ interface to regional Electronics Health Record system) and the
SOLE network (the interface for clinicians).

Several analytics services can be defined (some of them being described in Section 2.3 below) that
query anonymized data and deliver results to the same platform, where reports are securely linked to
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the proper subject. In particular, the analytics results are uploaded to a specific section of Electronic
Health Record (EHR), managed by Local Health Authority’s, implementing the security measures
listed above. Such integration allows the GP to seamlessly access the analytics insights within his usual
patient management system. In addition, relevant outcomes are reported in the end-user interface as
well (named “Fascicolo Sanitario Elettronico”, FSE [electronic health booklet]). In order to guarantee
optimal scalability and availability, all analytics services are implemented in cloud technology, relying
on the IBM cloud platform.

2.3. Data Analysis

Although suitable for unobtrusive and continuous acquisition, behavioral data produced by
home sensors lacks a straightforward and absolute interpretation, especially in terms of correlation
with health and wellness status: human behaviors are inherently variable, from person to person
and from time to time. Hence, it is not possible to define an absolute reference to detect behavioral
anomalies and features: a personalized interpretation scheme is needed. Apart from gross anomalies,
relevant trends and patterns have to be evaluated in a relative fashion, i.e., by checking behavioral
changes with respect to individually personalized profiles. This calls for learning capabilities in the
data analytics section.

Recently, artificial intelligence techniques have been applied to smart home data, aiming at
predicting user’s behavior or activity [12]. For example, the CASAS system [21] was specifically
designed to perform activity of daily living (ADL) recognition from a network of home sensors: good
results were achieved with Support Vector Machine (SVM) classifiers. Recognized ADLs can also
represent the input to higher-level models that aim at assessing the regularity of a user’s pattern.
For example, in [22], a sensor data clustering approach is adopted to obtain insights into patterns
and, at the same time, to detect deviant ones. Moreover, the authors in [23] demonstrate that the
extracted daily living patterns and their relative changes can be good predictors of cognitive and
mobility tests performed by clinicians. In the literature, ADL discovery and classification typically rely
on two factors: (i) a large number of sensors (especially PIR motion detectors), (ii) a significant corpus
of user-annotated data. Both such conditions, however, are hardly compatible with real-life scenarios,
due to obtrusiveness constraints.

A less demanding approach could be to use very specific sensors [24], more expressive from
a semantic point of view. For example, electric appliance monitors, pressure pads, etc. can be
more straightforwardly linked to specific behavioral features. Although having a narrower scope,
they allow a more precise and fine-grained targeting of specific actions. Within the ACTIVAGE
project environment, most IoT sensors (introduced in Section 2.1) provide action- and subject-specific
information indeed. Such approach is particularly suited for persons living alone (for which continuous
monitoring is especially attractive). When multiple persons populate the monitoring scene, some
sensors (PIR and toilet presence sensors, most notably) cannot distinguish between different persons.
Trends and anomalies can be considered anyway, but care in the interpretation is needed, since
anomalies may be triggered by other users. Nonetheless, detecting such conditions in aggregated
sense is still important, triggering further investigations by involved care managers. Moreover, it is
worth remarking that the analyses which can be practically carried out are necessarily unsupervised:
any user feedback or annotation is unfeasible or unpractical. Therefore, all analysis methodologies are
focused on data interpretation (in the long term), rather than future data prediction: this is, indeed,
particularly useful for care managers, who need to analyze current behaviors and detect meaningful
deviations within them.

As mentioned, the DS-RER approach is applicable to many different target behaviors; however,
for clearer presentation purposes, the following subsections focus on two aspects: toilet usage and
bed/rest routines, which were suggested by stakeholders interviewed in co-creation sessions as
important factors to be quantitatively and qualitatively monitored in post-stroke treatment.
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Monitoring sleep habits of individuals after the stroke event is relevant indeed: sleep disorders,
such as hypersomnia, excessive daytime sleepiness and insomnia are observed in up to 40% of
individuals with chronic stroke (defined as more than six months following stroke) and 70% of those
with acute stroke [25]. Proper resting is key to physical and mental health indeed [26–28]: sleep
disturbances can lead to short-term and long-term negative patient outcomes [29], may reduce the
ability to learn new motor skills [30] and increase the risk of a stroke relapse [31].

Detailed studies on sleep quality analysis are available in the literature, based on complex
polysomnography setups [32,33] radio-frequency imaging [34] or video analysis [35]. Such approaches,
however, do not fit well in the DS-RER approach, which focuses on low-cost, low-intrusive and
self-manageable solutions instead. Similarly, monitoring of toilet usage patterns is relevant for the
population at hand. Many studies in literature [36] confirm that up to 25% of acute post-stroke patients
experience urinary incontinence problems even one year after the adverse event. This condition was
also found positively linked with of increased morbidity, disability, and institutionalization rates in the
post-stroke patient [37].

It is worth underlining that such indicators do not automatically trigger any action or therapy
adjustment, but they just provide the GP or the care-manager with deeper insights about changes
and anomalies in patient’s lifestyle, drawing their attention towards details which might remain
unnoticed otherwise. Evaluating such information into the general framework of patient’s health is
the responsibility of skilled professionals, who can assess their relevance in a personalized picture.

The DS-RER approach is general, and the methodologies detailed in the next sections can be easily
adapted to many different use cases behavior; however, for conciseness’ sake, the rest of the paper will
focus on bed/rest routines and toilet usage, which will serve as application examples for analytics
methods explanation

2.3.1. Regression Framework and Applications

It was considered that the number of daily and, possibly, nightly toilet visits should be counted
and monitored, looking for meaningful behavioral changes, possibly correlated to health issues. Given
the nature of the problem at hand, the natural framework for carrying out such explanatory analysis is
Generalized Linear Models (GLM). In particular, the special case of Poisson regression is used, since it
accounts for discrete-valued observations. Poisson Regression assume that the count data Yi can be
modeled as independently Poisson distributed random variables, under the effect of k covariates xi:

P(Yi = yi|xi; β) =

(
xT

i β
)yi

yi!
e−xT

i β, (1)

where β is a vector of k + 1 parameters (for the k covariates, plus a bias term) fitted on observed data.
In particular, it is known that the conditional mean count, given the vector of covariates xi is:

E[Yi|xi; β] , µi = exT
i β. (2)

It is also known that the marginal effect of a single factor is multiplicative, i.e., a unit increment
of a given covariate j results in a multiplication of the expected counts by a factor equal to the given
parameter β j. In the case at hand, at each point in time ti, the last 30 daily counts are modeled using
the Poisson regression framework, under the effect of a bias term (baseline) and three covariates:

• an abrupt trend, focusing on the most recent days (e.g., the last 5).
• an intermediate period, before the abrupt trend that allows for accounting for a past abrupt trend,

without raising the baseline too much.
• a linear trend, to model long-term trends over the whole window.

This model is useful to reliably detect the presence of statistically significant factors, such as recent,
abrupt behavior changes. For the analysis, only statistically significant factors are retained (i.e., with
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a p-value < 0.05) and used for model fitting, ensuring proper explanatory power. If, for example, a
significant abrupt or linear trend is detected by the model, an alert can be triggered to automatically
notify care professionals. At the same time, data points that fall too far from the predicted mean counts
(e.g., outside the region that contains 95% of the distribution at that time point) can be labeled and
reported as unexplained, possibly worthy of further analysis.

Of course, such regression frameworks can be easily adapted to real-valued values. For example,
the Rests Analysis Service (RAS) aims at providing personalized periodic reports on bed usage, in
order to identify significant individual changes in the short and long term. The service analyzes data
collected by bed occupancy sensors and, if available, it combines them with information from other
sensors, in order to confirm user movements or absence from bed, therefore reducing errors. Short bed
presences, unrelated to sleep activity (as it frequently happens in real-life data), are filtered out. On the
other hand, data fusion from other sensors is leveraged to confirm the end of a rest period.

Furthermore, the extracted information about factor strengths and intercepts may act as
descriptive statistics in higher-level models. For example, it is possible to cluster different subjects into
groups based on their features extracted with the help of such models: this can deliver further insights
to care managers, which may detect similarities between care cases. Comparison between time series
of different periods or different subjects is also supported by means of cosine similarity scores.

2.3.2. Sensor Profiles and Applications

Another important aspect in the analysis of users’ behavior is the monitoring of temporal patterns,
i.e., habits or routines. Actually, users may exhibit different habits, variable from person to person
and, for the same person, from time to time. Even though explained in the following by means of the
rest analysis example, this is a general topic, applicable to all data streams from the IoT sensor kit.
With reference to resting habits, the necessity of modeling day-long patterns arises from the following
considerations: for instance, in some cases, people rest in bed only overnight, whereas in some others
daytime naps may be taken. Such routines might also shift temporally or dilate/shrink in duration.
Thus, it is not possible to account for all these variabilities with just a single indicator (e.g., amount of
time in bed). In order to process such information within a unified framework, Sensor Profiles (SP) are
introduced. By breaking up a day into a suitable number of time bins (e.g., 15, 30 or 60 min intervals),
SP model the expected probability of having a sensor active within each bin. It is worth remarking that
the main purpose of SP analysis is to capture temporal habits rather than computing precise events’
duration. Indeed, each time bin carries the information whether the given sensor was seen sufficiently
active in that time frame (either a minimum number of activations or minimum continuous active
time): this allows for discarding short or non-meaningful interactions. The choice of the SP bin size
plays an important role: setting bins that are too long may lead to a suppression of relevant behavioral
information, whereas bins that are too short may yield noisy estimates. A bin width of 30 min was
selected as good trade-off for sleep-pattern analysis. SP are then constructed as follows: for each bin,
for each day, if the bed sensor is seen active for at least tmin min, it is marked as a positive realization
for that day (i.e., a value of 1 is associated with the bin); otherwise, it is marked as a negative realization
(i.e., a value of 0). Thus, each time bin can be represented as a random variable Xj, whose realizations
are drawn according to the following rule:

X(i)
j =

{
0, if tactive < tmin,

1, if tactive ≥ tmin,
(3)

where X(i)
j is the i-th realization, corresponding to day i, of the j-th time bin, tactive is the time the bed

sensor was active (i.e., person laying in bed) on day i in time bin j. It is then straightforward to model
the time bin Xj as a Bernoulli(p) random variable: the probability parameter p can then be interpreted
as the expected probability of finding the subject in bed during the considered time bin. Applying
the principle of Maximum Likelihood Estimation (MLE), it is well known that p̂ = nPOS/N, where p̂
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is the estimated probability parameter, nPOS are the number of positive realizations (i.e., days with
the sensor seen active, during the considered time bin), and N is the total number of realizations
(i.e., days). Of course, the underlying simplifying assumption is that each day is independent of the
others. Confidence intervals can also be estimated, in order to quantify the p̂ parameter uncertainty.
The procedure can be repeated for each time bin Xj, with j = (1, ..., 24 h/bin width), therefore modeling
the probability of bed presence throughout the day.

The SP framework also lends itself well to detect behavioral pattern changes. In fact, two periods
may be compared to detect statistically significant deviations in time bin estimated probabilities.
For each couple of time bins (Xj, Xk), with associated probabilities ( p̂j, p̂k), it is possible to compare
them by applying the binomial proportion statistical hypothesis testing framework. This can take
the form of analytic tests, such as chi-square, or other Bayesian methods using MCMC (Markov Chain
Monte Carlo) simulations, which can be more robust (i.e., less extreme) in reduced sample size problems.
The resulting p-values can adjusted using the Holm–Bonferroni procedure, in order to account for
multiple comparisons of all time bins.

The SP framework also allows for performing daily pattern clustering. As previously mentioned,
considering a feature vector composed of daily time bins’ realizations x(i) = [x(i)1 , ..., x(i)Nbins]

T (where
superscript i is referred to a single day), it is possible to perform pattern clustering by means, for
example, of Agglomerative Clustering. This procedure allows for relaxing the assumption about the
existence of a unique, average behavior: a person may exhibit more than one pattern. For example,
a user may spend more time in bed during weekends, or may want to take a short rest in bed after
lunch. This analysis may provide further insights on subjects’ habits.

Finally, within the SP framework, it is also possible to derive a Novelty Score (NS), to detect changes
of a single day with respect to a reference period. In particular, let us suppose to have extracted a
prototype pattern from said reference period, represented by a vector θ = {θ1, ..., θNbins} (each θj is the
MLE estimate p̂j of the time bin’s probability parameter). As mentioned above, for a given day i, let us

then consider its vector of realizations x(i) = [x(i)1 , ..., x(i)Nbins]
T ; by assuming conditional independence

between time bins j, it is possible to compute the log-likelihood of a day x(i), with respect to the
model θ, as the sum of the log-likelihoods of each time bin realization x(i)j . The negative log-likelihood
can then be taken as the NS indicator:

NS = −
Nbins

∑
j=1

log p(x(i)j ; θj). (4)

The greater the difference of the day-vector x(i) with respect to the reference prototype θ, the higher
the NS score is. This allows for flagging deviant days as those with a sufficiently high NS score.

2.4. Trial Design

As previously mentioned, the ACTIVAGE DS-RER project was designed to eventually evaluate
IoT-based behavioral monitoring as a mean for improving care continuity of persons undergoing
stroke recovery.

Besides technological innovation, chances of practical success of the approach strictly depend
on the effective integration into current care practices. This involves acceptance from care
professionals and seamless cooperation with existing care-supporting tools (e.g., Electronic Health
Record management): a user-centric service design methodology was strictly followed in devising
service features, directly involving General Practitioners (GP), neurologists, formal caregivers,
physiotherapists and actual patients. Actual impact of ACTIVAGE service in improving care
effectiveness, instead, needs to be verified through a posteriori rigorous evaluation of trial outcomes.
Thus, the proposed approach was formally designed as a clinical study, adopting a strict Randomized
Controlled Trial (RCT) protocol. All methodologies and evaluation procedures were submitted to the
Local Health Authority’s (LHA) Ethical Committee, receiving full approval (Resolution nr. 0002775,
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dated 16/01/2018). Up to 200 stroke-recovery patients are being recruited, consisting of over-65 years
old persons with an assessed vulnerability index from vulnerable up to moderately frail (levels 4–6
over a full range of 9). As of RCT protocol, recruited subjects are split into active and control groups,
following a blind randomization process (to eliminate any selection bias). Both populations will
undergo the standard protocols for stroke recovery; in addition, for the active group, such standard
care practices are integrated with behavioral analysis components.

Data management is compliant with EU regulations, with details about organizational and
legal issues going beyond the scope of this paper. In order to assess the impact of the ACTIVAGE
solution, several performance indexes are compared among two groups, including, for instance, the
re-hospitalization rate, days spent at the hospital, and complications related to co-morbidities. In
addition, periodic assessment of the patient condition are carried out by means of clinically-validated
questionnaires, including: Barthel index [38] for Activities of Daily Living (ADL) performance
scoring, the Lawton Instrumental Activities of Daily Living Scale (IADL) [39] for assessing ability
to perform task using common appliances, the Kane scale for social interaction assessment [40] and
the UCLA Loneliness Scale [41]. A detailed discussion of such indicators falls beyond the scope of
this technical paper: they are mentioned here to highlight that the outcome evaluation is carried out
on a multi-dimensional perspective, including evaluation tools commonly used in the application
context. Conforming to familiar work environment and tools should foster acceptance by the care
professional indeed.

3. Results and Discussion

In this section, selected results are discussed, related to both the hardware and software
components of the ACTIVAGE framework. In particular, power performance of IoT sensors is
illustrated, as a key issue for practical and effective deployment at the actual users’ homes. Then,
some analytics examples are shown (among many possible) to demonstrate how different techniques
are used to provide caregivers and care professional with expressive and meaningful information,
breaking down the complexity of directly dealing with raw sensor data.

3.1. IoT Sensor Power Profiling

Wi-Fi sensors are becoming increasingly popular, as an effective mainstreaming option for many
application fields (home automation, most notably). However, the high bandwidth supported by
such protocol usually comes at the cost of relatively high power consumption. Hence, in order to
implement battery-powered devices in a usable fashion, special care needs to be devoted in energy
budget administration. As mentioned in Section 2.1, low-power design solutions were exploited: their
impact is briefly analyzed in the following.

Current consumption of IoT sensors was measured under different conditions: in fact, depending
on the task being performed (such as radio communication, event logging, sleep), or on the type
of sensing element (i.e., contact or IR) different power demands are needed. Table 1 summarizes
such measures.

Table 1. Device current consumption under different conditions

Condition Current Consumption

WiFi Receive and network scan 80 mA

WiFi Transmit 290 mA (peak)

Wakeup and event logging:
- bed, chair, contact 2 mA
- PIR, toilet 14 mA

Sleep (power save) 12 µA
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As expected, data transmission is, by far, the most power demanding activity, with up to 290 mA
being sourced. To limit transmission phases, data are grouped in bursts to be transmitted at periodic
intervals, as introduced in Section 2.1. Burst-based transmission greatly reduces transmission overhead,
with respect to a single-event asynchronous approach: for the example, at hand, a signaling interval of
1 hour was chosen as a good trade-off between power saving issues and prompt information update.
It is indeed worth remarking that no information is lost: sensor data are just temporarily stored, along
with its timestamp, until the next transmission burst. From the Table 1, it is also evident that power
consumption depends on the kind of sensor: as expected, more current is required to operate infrared
sensors (toilet, PIR) , with respect to contact-based ones, also because of the need (in the former case)
of continuous polling. Therefore, choice of the polling interval impacts the overall power consumption:
an period of 30 s was found to be reasonable for assessing toilet presence while allowing to enter
power-saving (sleep) mode during "off" time, in which supply currents are reduced by a couple of
orders of magnitude.

In Section 2.1, the adoption of supercapacitors is introduced to deal with momentarily current
surges, not supported by aged batteries. We tested such condition by faking the higher ESR of
a nearly-exhausted battery by inserting a 3.7 Ω series resistor between battery terminals and the
super-capacitors. Then, we powered up the device, and left intentionally the device in the Wi-Fi
network scan phase (to account for high current draw). Figure 2 shows such device power-up transient,
with the system correctly turning on even though the battery performance is severely degraded. A large
current peak is initially observed, followed by an exponential decay, corresponding to super-capacitors
charging. Current settles around 80 mA, namely the average current drawn by the Wi-Fi network scan
state (in which the device was intentionally left).

Figure 2. IoT sensor power-up. A large current peak is observed (blue line, left y-axis), corresponding
to the super-capacitors charge current; meanwhile the bus voltage (red line, right y-axis), which is
connected to the super-capacitors, ramps-up to the nominal value. After charging, the current then
settles around an average of 80 mA, while the sensor scans WiFi networks for joining.

To predict actual battery lifetime, accelerated tests were conducted, by accounting for more
activity (i.e., higher on/sleep duty-cycles) and more frequent data transmission: based on such test,
it is estimated that, in a typical scenario, all sensors should feature a battery lifetime well over six
months; the toilet sensor (which is the more power-hungry device) should run for over seven months,
whereas remaining ones should approach a one-year lifetime. Of course, even better performance
can be obtained by dedicated sensor-network protocols: nevertheless, the measured figures fall in the
practical range, indeed; furthermore, such a relative drawback is largely compensated by advantages
in terms of ease of installation and maintenance, as well as interoperability and expandability.

The recruitment of end-users and deployment of sensors at their homes is under way: at the time
of writing, 18 different pilots have been installed and started to produce meaningful data (an initial
latency time is needed to allow for learning). Each pilot involves (at least) three users: the elderly
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person, his caregiver and a care manager (or GP). Hence, about 50 users have been involved in the
described pilot subset. Each pilot is equipped with the complete sensor kit described above. Apart
from pill dispenser (which carry specific information, not exploited for behavioral analysis) 80 sensors
are considered here, summing up to a total of 8970 sensor usage days. Within such figure, 8231 days
(i.e., 91.7%) exhibited “ideal” behavior, with all scheduled transmissions properly completed. It is
worth remarking that a missed transmission does not necessarily imply a data loss: data are stored
in local memory and retransmitted at the following period end. The buffering capacity of the local
sensor memory depends on the density of sensor data: if, for the sake of simplicity, we assume such
capacity being in the order of one day of sensor data (which is a quite conservative figure indeed, with
most of sensors being able to properly operate over longer network blackouts) and consider as “severe”
transmission issues those exceeding such buffer capacity, we find just 17 such events (i.e., 0.19%).
The cause of transmission fails does not necessarily come from sensors themselves: the whole chain
needs to be accounted for. Therefore, such figure depends on a number of factors, including the home
WiFi coverage, proper maintenance of devices and quality of Internet Services provision. Overall, the
proposed approach (when deployed in a real-world context) exhibits a satisfactory reliability, more
than sufficient for enabling the aimed continuous monitoring features. It is worth highlighting that,
in order to assess the impact on clinical practice, much more factors come into play, which are not
covered here: organizational issues, as well as caregiver subjective perception, will be assessed through
questionnaires and focus groups at a later stage of the project.

3.2. Regression Framework Results

Raw sensor data require thorough processing in order to extract meaningful insights: relevant
behavioral anomalies and trends need to be automatically recognized and brought to the user’s or
caregiver’s attention. In addition, their relevance needs to be assessed on a relative basis, by comparing
current data with learned habits. In this section, a few results are shown, for illustrative purposes: a
much wider range of information is inherently available though. As stated, toilet habits are potentially
relevant to health assessment: daily count data from toilet usage of real patients were analyzed by
means of the Poisson regression framework introduced above. The analysis is carried out in a rolling
fashion, i.e., at each day, the last 30 days of count data are used to build and fit the explanatory model:
results of trend detection and anomalies are referenced to the last day and saved each time the analysis
advances by one step.

Figure 3 shows the outcomes of such daily-rolling regression analyses, applied to a real patient
monitoring data. A meaningful time frame has been selected, highlighting occurrence of an actual
behavioral anomaly and showing how the system accounts for it. The blue, dotted line represents
the predicted mean counts, explained by the statistically significant factors, relative to the last day
(day 1 in the graph accounts for the previous 30 days, not shown). For each daily step, the last day
likelihood is computed, given the fitted model: if it is such that the point is outside the interval of the
95% most probable values, the point (marked in red in the graph) is labeled as unexplained and signaled
for further potential analysis. The “outlyingness” threshold can be adjusted to make the system
more reactive, if needed. To better evaluate anomalies, however, it is convenient to check for more
expressive trend indicators: both “long-term” and “abrupt” trend could indicate clinically-relevant
changes and are shown in figure. In the case at hand, the long-term, linear trend does not suggest
any slow behavioral change, whereas some unexpected events happen at around day 30: initially,
the system recognizes some abnormal days, and then evaluates them as an abrupt behavioral change
(i.e., different from singularities), shown by the black dashed line. The trend is expressed as a relative
increase/decrease, with respect to the baseline: statistically significant changes are highlighted by
the shaded area. Such information can be exploited to properly and promptly warn the caregiver
and, at the same time, to suitably update the model. Subsequent days prediction are thus accordingly
adjusted, avoiding the anomaly to result in multiple detections.
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Figure 3. Analysis of toilet count data by a rolling Poisson regression model: blue dotted line represents
the predicted mean counts. A significant abrupt trend is detected in the last days (the region is
highlighted by the orange area, whereas the effect of the abrupt trend is shown by the black dashed
line, along with the linear one, in solid gray). Data points not properly explained by the model are
highlighted in red.

3.3. Sensor Profiles’ Results

Similarly, the regression framework can also be successfully applied to the analysis of rests;
however, for conciseness’ sake, we do not report here further examples and focus on the application of
the Sensor Profile (SP) methodology introduced in Section 2.3.2. SP may provide a more comprehensive
insight about user’s habits and related changes; such methodology was applied to data coming from
real ACTIVAGE project monitored environments. In order to validate the approach, bed presence
SP was constructed, with a time resolution of 30 min. i.e., each SP trace represents the probability of
finding the subject in bed at a given time of the day.

Agglomerative Clustering was applied to the extracted sensor traces, in order to mine recurrent
and characteristic patterns. A cosine similarity metric is used to compare daily traces, and the optimal
number of clusters nCLUS is automatically selected according to two criteria:

1. in order to be considered, a cluster should have at least nSAM samples (in this example, nSAM = 5);
2. the parameter nCLUS that maximizes the average silhouette score of valid clusters (according to

criterion 1) is selected.

Figure 4 shows the results of clustering operation, where a nCLUS = 2 parameter was determined
from data, indicating the existence of two main clusters, corresponding to frequent behavioral patterns.
Each cluster represents an SP trace as a function of time: solid lines represent the MLE estimate p̂
(i.e., probability of bed utilization at that specific time), whereas shaded areas quantify the uncertainty
of those estimates (95% confidence intervals). It is worth remarking that time, on the x-axis, refers to
the UTC timezone: actual local time of the subject under analysis is UTC+1.

From the analysis of aggregated SP traces, two different sleep routines emerge: in both clusters,
the user wakes up at about 7:00 a.m., and returns to bed at about 9:30 p.m. Just after lunchtime, instead,
cluster 1 and cluster 2 differ, with cluster 2 exhibiting bed presence during the 1:30 p.m.–3:00 p.m.
interval, not shown in cluster 1.

Once extracted, it is possible to compare the clusters, to check whether the visualized differences
correspond to actually significant deviations, from a statistical point of view: this also helps to interpret
possible behavioral shifts. Analysis is performed by adopting the binomial proportion hypothesis
testing framework, allowing for comparing differences between two SP populations (i.e., clusters) in
terms of expected activation probabilities of each time-of-day point. In particular, statistical significance
is achieved, comparing the 1:30 p.m.–3:00 p.m. interval (p < 0.01). This result is also visually confirmed
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in Figure 4, where confidence intervals of both clusters’ SP do not intersect and are widely spaced.
Even more interesting is the fact that those deviating patterns were found in temporally close days:
this shows the potential of the SP framework to detect new and significant changes in usual patterns.

Figure 4. SP visualizations, resulting from data-driven pattern clustering. Average SP are plotted as
solid lines, representing the probability of having the person resting in bed at each point in time for the
day. Shaded area, instead, represent the uncertainty, in the form of 95% confidence intervals, in such
point-wise probability estimate. The time in x-axis is referred to UTC, whereas the pilot timezone is
UTC+1. The deviations between the two pattern clusters, from 12:30 p.m. to 2:00 p.m. (UTC) are found
to be statistically significant (p < 0.01).

The interpretation in this case is again almost trivial: the same user may have a short nap after
lunch or not, depending on many circumstances. Despite such obvious meaning, this well illustrates
potential of the SP modeling: since we are looking for behavioral changes (to be correlated to health or
wellbeing shifts), it is quite important to recognize individual “normal” behavior to be assumed as a
reference. In real life, however, a unique reference behavior does not necessarily exist, and multiple
behavioral “modes” may occur, all of them to be considered “normal”. For example, the after-lunch
nap option (or its absence) should not trigger any anomaly warning. The clustering technique allows
for describing reference behavioral patterns in a multi-modal fashion, with multiple reference profiles
automatically extracted in a completely data-driven approach. Once different behavioral modes are
extracted, current behavior can be compared with all of them, and anomalies can be inferred when a
profile does not match any of the identified daily prototypes.

The notion of Novelty Score (NS) helps in evaluating such matching. The NS metric can be used
to highlight deviant patterns, with respect to a given SP assumed as reference. In order to simplify
the discussion, without any loss in generality, let us take the centroid of cluster 1 (p̂CL1) in Figure 4
as reference pattern; the NS metric is then computed on all SP traces, with respect to such prototype.
Deviant patterns can be highlighted by visualizing NS scores’ distribution and setting an appropriate
threshold: this can be either chosen arbitrarily or automatically computed from data, by means of
simple Inter-Quartile Range filter or more sophisticated solutions, including Isolation Forests or Local
Outlier Factor. In this example, a simple IQR rule is sufficient:

Daily trace =

{
inlier, if NS < IQRThresh,

outlier, otherwise,
(5)

where IQRThresh is set to 75th
percentile + 1.5 ∗ IQR. For the data being considered, an IQRThresh ≈ 10.1

is derived. Figure 5a describes such an example procedure: the reference pattern is shown as a blue
dashed line; in the same figure, all patterns that yield an NS score higher than IQRThresh are plotted
as well (red solid lines). As can be noticed, all patterns with a high NS score largely differ from the
reference one. Actually, the identified deviant patterns are those from cluster 2, together with a couple
too far from both clusters (part of a cluster which was under-represented according to Criterion 1
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above). This outlyingness is more evident in Figure 5b, which shows a histogram representation of the
computed NS scores, along with the determined IQRThresh. It is clear that the NS score neatly allows
separation of deviant patterns from those very similar to the reference one of Figure 5a. Thus, the
presented methodology can be effectively used to detect anomalous, unusual behavioral patterns in
user data, possibly reflecting some change in user’s wellbeing. It is worth stressing that, in this case
too, the user or his caregiver just receive synthesis information, with the system automatically selecting
potentially relevant details and thus relieving the user/caregiver himself from continuous evaluation
of sensor data streams.

Figure 5. (a) graphical representation of “deviant” patterns, discovered with the NS score. A blue,
dashed line represents the pattern taken as reference, whereas solid red lines show profiles with a high
NS score, i.e., deviating from the reference; (b) histogram approximation of NS distribution obtained
from SP traces shown in (a). Deviating patterns are identified by means of a simple filtering based on
Inter-Quartile Range.

4. Conclusions

The ACTIVAGE project, framed in the Horizon 2020 initiative, focuses on IoT-enabled Active and
Healthy ageing. Within ACTIVAGE, the RER deployment site aims at improving continuity of care for
older persons, suffering from stroke aftereffects. The DS-RER interdisciplinary approach combines
clinical practice (general practitioners and the Local Health Authority are involved as project partners)
and ICT technology, aiming at creating new services and paradigms for complementing traditional
(telemedicine) practice. A complete IoT architecture has been implemented, from distributed sensing
based on Wi-Fi home sensors to cloud-enabled analytics. Design and engineering of the IoT wireless
kit was described, with emphasis on low-power design techniques. Advanced methodologies were
introduced to recognize anomalies and meaningful trends from the analysis of raw data collected from
such sensors: this provides caregivers and care professionals with concise and expressive information,
suitable for supporting the patient’s care flow in a straightforward fashion.

In particular, an IoT sensor kit is installed in the pilot houses, aiming at assessing main habits
and routines in their own daily living setting. Each sensor is battery operated and uses a standard,
home Wi-Fi connection for securely logging data in a protected cloud environment. The approach is
less intrusive and demanding than “dedicated” wireless sensor network technologies, at the same
time fully complying with most recent regulations in terms of data protection and privacy. Much
effort was spent in reducing the need for home system maintenance, to make the technology fully
manageable by the end user himself or by his caregivers. Careful hardware design procedures have
been adopted, aiming at maximizing battery lifetime. Message scheduling and careful design of
the data communication protocol allow for effective exploitation of low power modes, whereas the
adoption of super-capacitors in the power supply allows for using the full battery discharge curve,
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regardless of degraded current sourcing capability. With an average stand-by current as low as 12 µA,
battery lifetimes in the 6–12 months range are to be expected, as suggested by accelerated lab tests.

The cloud analytics architecture supporting behavioral analysis is described. From such analysis,
anomalies and meaningful trends are automatically assessed in an unsupervised fashion. Validation
has been carried out both in a lab environment (with healthy subjects) and in real pilot settings. Results
can be straightforwardly fed to the regional Electronic Health Records system, and submitted to
general practitioners’ attention by means of the regional record information system. The whole data
journey fully complies with most recent privacy and security regulations.

Several methods for analyzing different user data were introduced, taking toilet usage and rest
behaviors as meaningful examples. In particular, in the former case, a regression framework was
introduced to mine and detect statistically significant trends (both long-term and abrupt ones), while
at the same time labeling unusual, deviant observation. The Sensor Profile framework was then
introduced, which allows for unifying analysis methodologies of arbitrary sensor traces. SP framework
was applied on rest patterns measured by a Wi-Fi bed occupancy sensor in a real-life setting: applying
Agglomerative Clustering, multi-modal habits assessment was carried out. This allows for detecting
anomalies with respect to a set of personalized usual behaviors, instead of just a unique, averaged one.
The capability of the SP framework to detect new patterns, effectively discriminating between actual
emerging trends and simple statistical fluctuations, has been discussed. Based on the SP framework, a
Novelty Score metric was introduced and demonstrated to provide reliable anomaly detection for bed
pattern data.

The system is currently being deployed and tested over several tens of users’ homes, with the
aim of both technical validation and assessment of its impact on care practices: to this purpose,
a Randomized Control Trial experiment is being carried out (referring to the use case of stroke
recovery) within the framework of the ACTIVAGE H2020 project. By conjugating technical architecture
design and service conception in a truly interdisciplinary approach, the DS-RER solution, beyond
the necessarily limited scope of the actual pilot tests, will allow for highlighting potentials of IoT
technologies on the improvement and sustainability of healthcare services.
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