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Abstract: Urban Land Use/Land Cover (LULC) information is essential for urban and environmental
management. It is, however, very difficult to automatically extract detailed urban LULC information
from remote sensing imagery, especially for a large urban area. Medium resolution imagery, such as
Landsat Thematic Mapper (TM) data, cannot uncover detailed LULC information. Further, very high
resolution (VHR) satellite imagery, such as IKONOS and QuickBird data, can only be applied to a
small area, largely due to the data unavailability and high computation cost. As a result, little research
has been conducted to extract detailed urban LULC information for a large urban area. This study,
therefore, developed a three-layer classification scheme for deriving detailedurban LULC information
by integrating newly launched Chinese GF-1 (medium resolution) and GF-2 (very high resolution)
satellite imagery and synthetically incorporating geometry, texture, and spectral information through
multi-resolution image segmentation and object-based image classification (OBIA). Homogeneous
urban LULC types such as water bodies or large areas of vegetation could be derived from GF-1
imagery with 16 m and 8 m spatial resolutions, while heterogeneous urban LULC types such as
industrial buildings, residential buildings, and roads could be extracted from GF-2 imagery with
3.2 m and 0.8 m spatial resolutions. The multi-resolution segmentation method and a random forest
algorithm were employed to perform image segmentation and object-based image classification,
respectively. An analysis of the results suggests an overall accuracy of 0.89 and 0.87 were achieved for
the second and third level urban LULC classification maps, respectively. Therefore, the three-layer
classification scheme has the potential to derive high accuracy urban LULC information through
integrating medium and high-resolution remote sensing imagery.

Keywords: urban land use/land cover; three-layer classification scheme; GF-1 satellite imagery;
GF-2 satelliteimagery

1. Introduction

Land Use/Land Cover (LULC) is defined as the physical composition and characteristics (e.g., grass,
forest, and impervious surfaces) or human-related activities (e.g., residential, commercial, and
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transportation) of land elements on the Earth’s surface [1]. The Climate Research Committee of
the National Council stressed that the distribution of LULCs has a pronounced impact on Earth’s
radiation balancing, since any changes in LULC would affect evaporation, transpiration, and heat flux
on the ground surface [2]. Therefore, it is important for scientists and practitioners to understand
LULC patterns and to monitor the changing world from global to local scales [3]. Satellite remote
sensing has been demonstrated to be the most economic, efficient, and reliable data source for deriving
LULC maps [4]. Currently, national and international agencies have successfully created no less
than ten global scale LULC datasets with spatial resolutions of 1 km, 500 m, 300 m, 30 m, and 12 m.
These existing LULC datasets provide basic geographic information for studying climate, hydrology,
environment, ecology, and urban regions [5,6]. With the exception of the Global Urban Footprint,
which is mainly used for mapping human settlements, all other LULC datasets are not specifically for
urban LULC mapping. Four major urban LULC classes in the National Land Cover Database (NLCD)
are developed open space, low intensity, medium intensity, and high intensity [7]. Another urban
LULC class, artificial surfaces, is in the Globaland30 dataset [8], while the Global Land Cover 2000
(GLC-2000) product contains an urban LULC class for artificial surfaces and associated areas. There
is also an LULC type for urban/built-up areas in the International Geosphere-Biosphere Programme
(IGBP) classification scheme [9].

Complementary to the medium resolution imagery, very high resolution (VHR) optical satellite
sensors provide remote sensing imagery with a sub-meter pixel resolution and detailed earth surface
information [10]. Even with problems such as high image cost, shadowing effect, and relief displacement,
fine spatial resolution imagery has emerged as an essential source to derive detailed urban LULC
maps [11]. Many meter-level or sub-meter level spatial resolution sensors, such as IKONOS, OrbView,
QuickBird, and WorldView, allow accurate mapping of LULC classes in urban and surrounding
areas [12–15]. The applications of VHR-derived urban LULC information mainly focus on monitoring
subtle changes, detecting urban villages in mega cities, and delineating tree crowns [16,17]. Because of
the high complexity and heterogeneity, almost all urban LULC extractions from fine spatial resolution
imagery are based on object-oriented classification algorithms and cover areas of less than one hundred
square kilometers with emphasis on classification algorithm development and validation [18,19].
The urban LULC classes employed in these studies only represent several commonly used land uses or
land covers rather than detailed urban classes.

Many metropolitan scale studies, such as dynamic urban growth analysis, detection of urbanization,
and monitoring of urban heat islands, are all based on Landsat imagery [20–22]. Although integrating
VHR image and LiDAR data is another means to map urban LULC for a large area, it faces problems
of data shortage, high cost, small footprint, and large data volume [23,24]. The newly launched
high-resolution Chinese satellite GF-1, with 16 m, 8 m, and 2 m spatial resolutions, is characterized
by a wide swath and high resolution, and GF-2 is the first Chinese satellite with a spatial resolution
lower than 1 m. These two satellites provide an opportunity to derive large areas of city-scale urban
LULC information by combining multi-scale resolution images and designing multi-level classification
schemes. By designing a three-layer classification scheme specifically for urban planning, this study
expands the potential applications of satellite-derived urban LULC types to the relevant fields of urban
planning, construction, and management. This can be implemented by measuring the industrialized
production of urban sizes over recent decades to estimate the process of urbanization at a national
level, or by providing basic geometric information on urban LULC components in residential or
industrial regions. As is, these applications are limited by many factors, including coarser spatial
resolution, limited urban LULC types in existing LULC products, and the lack of urban planning
and management-specific classification schemes. Thus, it is difficult to apply the classified urban
LULC maps to urban planning or management applications. The goal of this study, therefore, is to:
(1) develop a three-layer urban specific LULC classification scheme; and (2) attempt to derive high
accuracy urban LULC maps while minimizing fieldwork investigations and post-processing procedures
to keep potential urban-related applications both cost effective and operationally practical.
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The remainder of this paper is organized as follows: Section 2 introduces the methodology
including study area, data sources, data processing, classification scheme, and methods for accuracy
assessment; Section 3 details the results; Section 4 provides discussion; and Section 5 concludes
the paper.

2. Methodology

2.1. Study Area

Changchun, the capital city of Jilin province, is located in the Northeast of China covering a
region of longitudes from 124◦18′ East to 127◦05′ East and latitudes from 43◦05′ North to 43◦15′ North.
It belongs to a temperate continental monsoon climate zone with an average temperature of 4.8 ◦C
and an annual precipitation of 522 mm to 615 mm. Changchun is consisted of seven districts and
three counties with a total governmental area of 20,604 km2 and population of 7.793 million including
4.509 million registered citizens in Changchun city. The area enclosed by the expressway surrounding
the urban region is selected as the study site with an area of 523.16 km2 in this research (Figure 1).
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Figure 1. The study area (standard false color composition from GF-1 satellite imagery).

2.2. Data and Data Processing

2.2.1. Satellite Data

The Chinese GF-1 is the first satellite of the China High-resolution Earth Observation System.
The GF-1 satellite was launched in April 2013 with two panchromatic/multi-spectral (P/MS) and four
wide field view (WFV) cameras. GF-1 P/MS data have a spatial resolution of 2 m/8 m and swath width
of 60 km, while WFV data have a spatial resolution of 16 m and swath width of 800 km with four
spectral channels, which are highly valuable data sources for estimating fractional vegetation cover,
building density, and monitoring suspended particulate matter on a large extension [25–27].
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The Chinese GF-2 was launched after one and half year of the successful operation of the GF-1.
The GF-2 is the first satellite with a spatial resolution lower than one meter which marks the China’s
civil satellite enterprise into an era of sub-meter spatial resolution. The GF-2 is equipped with two
fine resolution 0.8 m panchromatic, 3.2 m multi-spectral cameras, and a swath width of 45.7 km. It is
featured as finer spatial resolution, high position accuracy, and fast maneuverability [28]. The detailed
sensor characteristics for GF-1 and GF-2 are presented in Table 1.

Table 1. Data characteristics for satellites GF-1 and GF-2.

Satellite Spectral Bands Spatial Resolution (m) Spectral Range (µm) Swath Width (km)

GF-1

P 2 0.45–0.90

MS 8

0.45–0.52
0.52–0.59 60
0.63–0.69
0.77–0.89

WFV-MS 16

0.45–0.52
0.52–0.59
0.63–0.69
0.77–0.89

800

GF-2

P 0.8 0.45–0.90

MS 3.2

0.45–0.52
0.52–0.59 45.7
0.63–0.69
0.77–0.89

The GF-1 imagery on June 22, 2015 and GF-2 imagery on May 25, 2015 were collected to conduct
this study. Because of the large areas in this study area, six swaths of imagery were employed and
their characteristics are listed in Table 2.

Table 2. Data used in this study.

Satellite Image Number Image Level Acquiring
Date

Spatial
Resolution Spectral Bands

GF-1

85656 1A 20150622 8 m/16 m MS
85657 1A 20150622 8 m/16 m MS

875773 1A 20150622 8 m/16 m MS
875774 1A 20150622 8 m/16 m MS

GF-2
805806 1A 20150515 0.8 m/3.2 m P/MS
805807 1A 20150515 0.8 m/3.2 m P/MS

2.2.2. In Situ Data Collection

Based on the visual analysis and interpretation of GF-2 and GF-1 false color images (with bands
four, three, and two as RGB for display) and the prior knowledge of this region, we identified and
labelled 21 urban LULC types (Table 3), including two types of water bodies, two types of vegetation,
one type of farmland, two types of bare lands, two types of roads and squares, five types of industrial
buildings, and seven types of residential buildings, as well as shadow. The choices of these 21 LULC
types are based on the practices of the Ministry of Housing and Urban-Rural Development of China,
as well as the capability of visual interpretation from the 0.8 m resolution GF-2 imagery. Shadow is
not an urban LULC type, but it is listed here as it cannot be grouped into other types. More than
100 points for each LULC type and altogether 2,732 points were manually collected from the image
(Figure 2a). These samples were selected to ensure the coverage of all available urban land use land
covers. While most of the samples have be successfully identified using GF-1 and GF-2 images, few of
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them are, as yet, unidentified. To address this issue, a field investigation was performed in Changchun
city in June 2017 (Figure 2b) when the season coincides with that of the employed satellite imagery.
A fieldwork route with 321 points was planned out on the image and imported into two GPS receivers
whose positioning accuracy is 0.2–0.5 m. The current LULC information at each site was checked and
photos were taken at the same time. Based on the field work, the wrongly interpreted LULCs were
corrected in the laboratory and regarded as the training points. At the same time, the field work is
helpful to interpret the testing points for accuracy assessment.

Table 3. Three-level classification scheme for urban Land Use/Land Cover (LULC) extraction.

LULC Types Images Photos
Layer 1 Layer 2/Code Layer 3/Code

Pervious
surfaces

Water body/1

Clear water/11
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Table 3. Cont.

LULC Types Images Photos
Layer 1 Layer 2/Code Layer 3/Code

Impervious
surfaces

Industrial
buildings/6

Red roofs/61
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2.4. Image Segmentation and Classification 

For segmentating and classifying GF-1 and GF-2 imagery, an object-based approach was 

employed in this study. Object-based image analysis processing generally includes two main steps: 

Segmentation and classification [34]. The first step in the object-oriented image classification is to 

segment the image into different objects. Numerous image segmentation algorithms have been 

developed and applied in remote sensing image analysis [35]. Based on the multi-level classification 

scheme designed in this research, the algorithm of multi-resolution segmentation (MRS) was 
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Table 3. Cont.

LULC Types Images Photos
Layer 1 Layer 2/Code Layer 3/Code

Impervious
surfaces

Residential
buildings/7 Playground/76
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Figure 2. Land use land cover samples collection and field investigation, (a) collected training and
testing samples; (b) field work route and investigation sites.

2.2.3. Data Processing

All of the images were transformed into the same spatial coordinate system of UTM zone 51N
with datum of WGS 84. With the help of DEM dataset of ASTGTM (http://datamirror.csdb.cn) and
the rational polynomial coefficients (RPC) file [29], the multispectral, and panchromatic images were
ortho-rectified. The Gram-Schmidt spectral sharpening algorithm [30,31] was employed to fuse the
ortho-rectified multispectral image (as the low resolution image) and the ortho-rectified panchromatic
image (as the high resolution image), such that the fused multi-spectral imagery can be with a high
spatial resolution of 0.8 m. The Gram-Schmidt spectral sharpening algorithm is a classic technique

http://datamirror.csdb.cn


Sensors 2019, 19, 3120 8 of 24

for image fusion, and relevant studies have shown its advantages over other methods [30,31]. In this
research, the Gram-Schmidt algorithm embedded in ENVI, a commercial program, was adopted. As a
result, all four bands of the GF-2 multi-spectral imagery were merged to generate the pansharpened
imagery with four bands and 0.8 m resolution. As geometric differences exist between GF-1 and GF-2
images, GF-1 images were rectified with an RMS of 0.02 GF-1 pixel by selecting ground control points
(GCPs) from the fused GF-2 image. Finally, we obtained four levels of imagery with spatial resolutions
of 16 m, 8 m, 3.2 m, and 0.8 m, respectively. The flowchart for image pre-processing is presented in
Figure 3.Sensors. 2019, 11, x FOR PEER REVIEW  6 of 26 
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2.3. Classification Scheme

Finer resolution images can provide more detailed information, which might be helpful to
city managers and plannersfor extracting meaningful LULC types. Based on visually interpreted
spectral differences, field investigation, and possible applications to urban planning and management,
a three-layer classification scheme of urban LULC types was developed and is illustrated in Table 3.

The design of this three-layer land cover scheme is mainly based on the possible uses of land cover
in urban-related applications, like urban planning and management. For instance, a city suffering
from rapid urbanization needs urgent green space planning because the high rate of population
growth contributes to diminishing green space. Detailed land cover information about grass, trees,
and shrubs should be identified before making a reasonable plan for green space, while the land
cover information of vegetation is adequate for a project on urban landscape change analysis. In the
three-layer classification scheme designed here, water/pervious, impervious, and shadow land covers
belong to the first level of land cover types. Water pervious and impervious land covers are critical
parameters for urban hydrology, ecology, or environmental studies. With the objective of extracting
the visually recognizable land cover types from GF-1 and GF-2 imagery, the second and third levels of
urban LULC classification scheme were designed. In particular, buildings with different land uses
present different spectral, textural, or geometric features, which lead to the possibility of separating
LULC types of buildings in as much detail as possible. Considering the fact that a planning agency
official conducting a land use or land cover inventory may wish to map several different types of roofs
rather than a single building class. Building roofs are not only described as the last defining touch to
giving a building, the aesthetic impression to a whole construction process, but also as expression and
sign of a society’s level of civilization [32,33]. In addition, building roofs, especially with red or white
colors are usually used to identify industrial or logistical land use information in regions surrounding
central urban areas. Five types of industrial buildings, five types of residential buildings, as well
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as playgrounds were identified visually by geometric and spectral features.This process has been
carried out mainly by visual interpretation of images, and is then corrected by in situ investigation
and validation. Some land cover types in the third layer belong to the same land cover or land use:
For instance, the residential or industrial buildings types. Although they are nearly meaningless for
urban planning or management projects, they are helpful in extracting the second layer of the urban
LULC types with high accuracy or beneficial to detect roofing materials. In practice, particularly in
China, buildings with the same use are likely to be with the same or similar color. It is more likely to
be a planning practice in China.

2.4. Image Segmentation and Classification

For segmentating and classifying GF-1 and GF-2 imagery, an object-based approach was employed
in this study. Object-based image analysis processing generally includes two main steps: Segmentation
and classification [34]. The first step in the object-oriented image classification is to segment the image
into different objects. Numerous image segmentation algorithms have been developed and applied in
remote sensing image analysis [35]. Based on the multi-level classification scheme designed in this
research, the algorithm of multi-resolution segmentation (MRS) was selected as the segmentation
method [36]. The MRS technique is a region-merging method. Its objective is to minimize the summed
heterogeneity between adjacent pixels. Three user-defined segmentation parameters, including scale,
shape, and compactness, could have a significant effect on the classification accuracy as they control
the dimension and size of segmented objects [37,38]. Scale, the most important parameter, specifies the
size of the final segmented image object that corresponds to the maximum acceptable heterogeneity.
Higher scale parameter values produce larger image objects and vice versa. The shape parameter
varies between zero and one and determines both the level of radiometric homogeneity and object
shape, simultaneously. Higher shape values yield image objects with optimal shape homogeneity,
while lower shape values produce image objects with optimal radiometric homogeneity. Same as the
parameter of shape, the compactness parameter varies between zero and one and controls the degree
of object smoothing [39]. These three user-defined parameters are affected by different image spatial
resolutions and the sizes of the recognized ground objects [40]. Based on research from Drăgut et al.,
in 2010 and 2014 [41,42], the optimal segmentation scale parameters for images with spatial resolutions
of 16 m and 8 m were designed as 100, while for images with spatial resolutions of 3.2 m and 0.8 m
were 50 and 25, respectively. The detailed segmentation parameters could be found in Table 4.

Table 4. Minimum mapping unit (MMU) and segmentation parameters for GF-1 and GF-2 satellites.

LULC Types Satellite Imagery Segmentation Parameters
Scale/Shape/Compactness

Minimum Mapping Unit
(MMU,pixel)

Water body A GF-1(16 m) 100/0.4/0.5 3 × 3

Water body B
GF-1(8 m) 100/0.4/0.5

3 × 3

Vegetation A 10 × 10

Bare lands 6 × 6

Farm lands
GF-2(3.2 m) 50/0.4/0.5

6 × 6

Roads and squares 8 × 8

Industrial buildings 8 × 8

Vegetation B
GF-2(0.8 m) 25/0.6/0.5

100 × 100

Shadow 8 × 8

Residential buildings 8 × 8
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Classifiers like decision tree (DT), random forest (RF), and support vector machine (SVM) have
attracted great attention among many object-oriented classification algorithms owing to their excellent
classification performance [43,44]. For medium spatial resolution images, the performances of these
three algorithms are similar [45]. For classifying object-based imagery with finer spatial resolution,
inconsistent conclusions have been drawn due to the effect of various factors such as segmentation
parameters [46–48]. By systematically analyzing the performance of various commonly-used supervised
classifiers under different conditions, Li et al. (2016) concluded that RF was most suitable supervised
classification method for object-based image analysis [49].

RF is an ensemble classification technique and is a further development of DTs [50]. RF has
advantages over DT due to its characteristics of little training time, easy parameterization, and
parameter stability. Therefore, RF has attracted more attentions around the scientific community.
Unlike DT classifiers, RF runs iteratively with a random sample of the training points,and because
of the law of large numbers, RF reduces the likelihood of over-fitting [51]. In addition, compared
with other commonly used non-parametric classifiers such as SVM, RF is less sensitive to noise and
is more efficient [52]. Due to its advantages, RF was employed in this research with urban LULC
types as the dependent variable, and spectral features, i.e., mean values of each individual band, band
composition of normalized difference vegetation index (NDVI), geometric information of shape index,
texture measures, i.e., homogeneity, angular second moment, contrast, and entropy from the grayscale
co-occurrence matrix (GLCM) which were calculated in a sliding window of 11 by 11 pixels, as the
main input features [53,54]. The processes of image segmentation, classification and the following
section of accuracy assessment were carried out through eCognition developer 9.0.

2.5. Urban LULC Type Extraction

A three-layer classification scheme was designed for this studyto identify different urban LULC
types from GF-1 and GF-2 imagery with different spatial resolutions. This multi-level classification
can provide city planners with an approach for selecting appropriate LULC types by combining or
separating these extracted land use/land covers. In contrast to LULC classes like buildings, squares,
and gardens within residential regions, LULCs like water bodies, bare lands, and urban green lands
have a large area of existence such that they could be identified by GF-1 data with a 16 m spatial
resolution. After masking out those extracted LULCs, those with small areas could be classified using
finer resolution images. During each step of LULC classification, the minimum mapping unit (MMU),
which is based on the MMU values from Globeland30 products, is employed to extract the LULC types
(Table 4) [8]. Because of spatial resolution differences among images employed in this research, there
are some inconsistencies in the boundaries of each type of LULC. In order to avoid slivers caused by
the inconsistencies, we generated polygon vector files for regions whose LULC information has been
extracted from GF-1 images, those regions were not processed any further. Only regions outside these
vector files are classified from GF-2 images. These vector files along with raster files were regarded
as the input data for the next step urban LULC extraction. In addition, shadow does not belong
to any type of LULC, but it is widely present in VHR images, especially for these covering urban
areas or mountainous regions, so shadow is presented as an individual type. The combination of the
information from GF-1 and GF-2 satellite images with different spatial resolutions for extracting each
urban LULC type is illustrated in Figure 4.
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2.5.1. Water Body

There are two types of water bodies identifiable from the visual image interpretation: One is
clean water while the other is turbid water. They are classified individually and then merged together
and termed the water body class. Because of the relatively large areas of water bodies, the LULC
information for water bodies were classified from the GF-1 data with 16 m and 8 m spatial resolutions.
Because the effect of shadows on the identification of water bodies was much heavier in images with
an 8 m spatial resolution than in images with a 16 m spatial resolution, an overlay spatial analysis
was employed to perform topology intersect operations between water bodies extracted from images
at each spatial resolution. The intersect operation is an “AND” logical operation, and the resultant
polygon is classified as water bodies if both inputs are classified as water bodies. The overlying results
are considered to be the main part of water bodies. The detailed workflow for extracting water bodies
is shown in Figure 5.Sensors. 2019, 11, x FOR PEER REVIEW  11 of 26 
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2.5.2. Vegetation

Vegetation is mainly composed of trees, shrubs, and grass. The spectral information from grass is
different from that of trees and shrubs, so they can be separately extracted and then merged together
as vegetation. Large areas of vegetation such as urban gardens and parks can be extracted from GF-1
images with an 8 m spatial resolution, while small areas of vegetation in residential regions can be
identified from GF-2 images with a 0.8 m spatial resolution.

2.5.3. Bare Lands

Most of the bare lands are located in regions surrounding urban areas. They are mainly construction
sites. Additionally, there are places with piles of coal ash, and we classified them as bare lands as
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well. This type of land cover is very difficult to be identified from visual interpretation of the images.
Therefore, they have been further investigated through field work and shown in Figure 6. Because
bare lands are relatively large and are unlikely to be misclassified as other land covers, they were
extracted from low resolution images (e.g., GF-1 imagery with 8 m spatial resolution). The flow chart
for extracting vegetation and bare lands is shown in Figure 7.

Sensors. 2019, 11, x FOR PEER REVIEW  11 of 26 

 

GF-1 data with 

16m spatial 

resolution

GF-1 data with 

8m spatial 

resolution

Water 

Bodies

Water bodies 

layer A

Water bodies 

layer B

Topology Intersect

 

Figure 5. Flowchart for extracting water bodies. 

2.5.2. Vegetation 

Vegetation is mainly composed of trees, shrubs, and grass. The spectral information from grass 

is different from that of trees and shrubs, so they can be separately extracted and then merged 

together as vegetation. Large areas of vegetation such as urban gardens and parks can be extracted 

from GF-1 images with an 8 m spatial resolution, while small areas of vegetation in residential 

regions can be identified from GF-2 images with a 0.8 m spatial resolution. 

2.5.3. Bare Lands 

Most of the bare lands are located in regions surrounding urban areas. They are mainly 

construction sites. Additionally, there are places with piles of coal ash, and we classified them as 

bare lands as well. This type of land cover is very difficult to be identified from visual interpretation 

of the images. Therefore, they have been further investigated through field work and shown in 

Figure 6. Because bare lands are relatively large and are unlikely to be misclassified as other land 

covers, they were extracted from low resolution images (e.g., GF-1 imagery with 8 m spatial 

resolution). The flow chart for extracting vegetation and bare lands is shown in Figure 7. 

 

(a)                           (b) 

Figure 6. (a) a coal ash site and (b) its appearance in the image. Figure 6. (a) a coal ash site and (b) its appearance in the image.Sensors. 2019, 11, x FOR PEER REVIEW  12 of 26 

 

GF-1 data with 

8m spatial 

resolution

GF-2 data with 

0.8m spatial 

resolution

Vegetation

Vegetation 

layer B
Vegetation 

layer A

Bare Lands

merge

 

Figure 7. Flowchart for extracting vegetation and barren lands. 

2.5.4. Farm Lands, Roads and Squares, and Buildings 

For this research, GF-1 images were collected in summer, while GF-2 images were acquired in 

late spring. During the late spring, many farm lands only contain bare soil with scattered crops, 

while trees, shrubs, and grass are with green leaves. Therefore, it is feasible to distinguish farmlands 

from vegetation (e.g., trees, shrubs, and grass) using GF-2 data. Because most farm lands are with 

regular geometric patterns and occupy large geographic areas, GF-2 data with a 3.2 m spatial 

resolution were employed to classify farm lands. 

In addition to farm lands, roads were extracted from GF-2 images with a 3.2 m spatial 

resolution. Roads were characterized as linear features and squares were characterized by very 

bright tones. Because it is difficult to differentiate between roads and buildings from the classified 

images, GPS trace data of the main roads were employed to identify roads by topological 

intersection with the classified LULC map. All roads intersecting with GPS trace data were selected 

and regarded as the final data for the main roads, while others were categorized as buildings. 

Changchun is a typical automobile city with many relatively large industrial buildings 

compared to residential buildings. GF-2 imagery with a 3.2 m spatial resolution was used to extract 

industrialbuildings, while imagery with a 0.8 m spatial resolution was employed to extract 

residential buildings and small sized shadows (Table 4). The flowchart for extracting farm lands, 

roads and squares, and buildings is shown in Figure 8. 

GF-2 data with 

3.2m spatial 

resolution

Roads
Farm 

Lands

Industrial 

Buildings

GPS Trace 

Data

Topology 

Intersect

Roads

Y

NTopology 

Adjacent

 

Figure 8. Flowchart for extracting farm lands, roads and squares, and buildings. 

2.6. Accuracy Assessment 

Because of the advantages in making sure samples will be included in each class, we employed 

the stratified random sampling protocol to collect the testing points. Pixels were used as the spatial 

unit in this work. All of the testing points were visually interpreted by overlying on GF-2 false color 

composition image or on GF-1 image for areas without the coverage of GF-2 image. Pixel based error 

Figure 7. Flowchart for extracting vegetation and barren lands.

2.5.4. Farm Lands, Roads and Squares, and Buildings

For this research, GF-1 images were collected in summer, while GF-2 images were acquired in late
spring. During the late spring, many farm lands only contain bare soil with scattered crops, while
trees, shrubs, and grass are with green leaves. Therefore, it is feasible to distinguish farmlands from
vegetation (e.g., trees, shrubs, and grass) using GF-2 data. Because most farm lands are with regular
geometric patterns and occupy large geographic areas, GF-2 data with a 3.2 m spatial resolution were
employed to classify farm lands.

In addition to farm lands, roads were extracted from GF-2 images with a 3.2 m spatial resolution.
Roads were characterized as linear features and squares were characterized by very bright tones.
Because it is difficult to differentiate between roads and buildings from the classified images, GPS trace
data of the main roads were employed to identify roads by topological intersection with the classified
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LULC map. All roads intersecting with GPS trace data were selected and regarded as the final data for
the main roads, while others were categorized as buildings.

Changchun is a typical automobile city with many relatively large industrial buildings compared
to residential buildings. GF-2 imagery with a 3.2 m spatial resolution was used to extract
industrialbuildings, while imagery with a 0.8 m spatial resolution was employed to extract residential
buildings and small sized shadows (Table 4). The flowchart for extracting farm lands, roads and
squares, and buildings is shown in Figure 8.
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2.6. Accuracy Assessment

Because of the advantages in making sure samples will be included in each class, we employed
the stratified random sampling protocol to collect the testing points. Pixels were used as the spatial
unit in this work. All of the testing points were visually interpreted by overlying on GF-2 false color
composition image or on GF-1 image for areas without the coverage of GF-2 image. Pixel based
error matrix was employed to compute the overall accuracy (O), user’s accuracy (U), and producer’s
accuracy (P), and to quantitatively assess the accuracy of the urban LULC map [55,56]. In the error
matrix, pij represents the proportion of area for the population that has map class I and reference class j.
Overall accuracy derived from an error matrix of q classes can be expressed as [57]:

O =

q∑
j=1

pi j (1)

User’s accuracy of class i is:
U = pii/pi· (2)

And producer’s accuracy of class j is:

P = p j j/p· j (3)

The cell entries of the population error matrix and the parameters derived from it must be
estimated from a sample. The sample based estimator of pij is denoted as p̂i j, and correspondingly,
the error matrix should be reported in terms of these estimated area proportions p̂i j instead of sample
counts, nij. p̂i j can be expressed as:

p̂i j = Wi
ni j

ni·
(4)

where Wi is the proportion of area mapped as class i. replacing pij by p̂i j, we can calculate the overall,
user’s and producer’s accuracies.
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Aside from accuracy parameters, standard errors should be reported to indicate the sampling
variability. For user’s accuracy of map class i, the estimated variance is:

V̂
(
Ûi

)
= Ûi

(
1− Ûi

)
/(ni· − 1)) (5)

For producer’s accuracy of reference class j = k, the estimated variance is:

V̂
(
P̂ j

)
=

1
N̂2
· j

N2
j·

(
1− P̂ j

)2
Û j

(
1− Û j

)
n j· − 1

+ P̂2
j

q∑
i, j

N2
i·

ni j

ni·

(
1−

ni j

ni·

)
/(ni· − 1)

 (6)

where N· j =
∑q

i=1
Ni·
ni·

ni j is the estimated marginal total number of pixels of reference class j, N j· is the
marginal total of map class j and n j· is the total number of sample units in map class j.

In addition, error matrix provides the basis for estimating the areas of classes. If the sampling
design is simple random, systematic or stratified random, an estimator of the proportion of areas of
class k is:

p̂·k =
q∑

i=1

Wi
nik
ni·

(7)

For the stratified estimator of proportion of area (Equation (7)), the standard error is estimated by:

S(p̂·k) =

√√∑
i

Wip̂ik − p̂2
ik

ni· − 1
(8)

where nik is the sample count at cell (i,k) in the error matrix, Wi is the area proportion of map class
i, p̂·k = Wi

nik
ni·

and the summation is over the q classes. The estimated area of class k is Âk = A × p̂·k,
where A is the total map area.

The standard error of the estimated area is given by:

S
(
Âk

)
= A× S(p̂·k) (9)

An approximate 95% confident interval is obtained as Âk ± 1.96× S
(
Âk

)
.

3. Results

3.1. Urban LULC Mapping

Based on the above mentioned method, urban LULC maps of classification scheme layers two
and three were obtained through applying the object-based RF classifiers and are presented in Figure 9.
As can be discerned from Figure 9, the third layer of the urban LULC map (Figure 9a) presents more
detailed urban land cover information when compared with the second layer with eight urban LULC
types (Figure 9b). Compared with the third layer, the second layer of the urban LULC map looks
more consistent with the general impression. That is, the central urban area is covered by residential
buildings, green lands, and water bodies, while the surrounding regions are covered by industrial
buildings, farm lands, and construction lands. For a better visualization, a portion of third layer of the
urban LULC map was zoomed in, and visualized compared with the GF-2 image (Figure 10). Similarly,
it indicates a good consistency exists between the classified urban LULC types and the GF-2 image.
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Figure 10. Part of the zoomed view of the LULC layer 3 map (left) and the corresponding GF-2 standard
false color composition image (right) in the central urban region of Changchun City.

3.2. Quantitative Accuracy Assessment

Accuracy assessment determines the quality of a classified map from satellite images. In this
paper, we performed the process of accuracy assessment according to the good practices for estimating
accuracy recommended by Olofsson et al. (2014) [57].
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3.2.1. Estimating Accuracy

The estimation of map accuracy is conducted by a plugin named “AcATaMa” version 18.11.21 and
installed in QGIS 3.4.4. Stratified random sampling approach was used, sample sizes were calculated
and allocated according to the mapped proportion of area of each class. Because of the uneven of
the mapped area of classes, some classes with small areas were allocated with only five or even less
samples. For being more representative of the samples in each class, we manually adjusted samples
with a minimum number of 10. All of the testing points were labeled by two different analysts together.
Finally, the urban LULC maps layer two and layer three error matrices resulting from the sample and
response design are presented in terms of the sample counts displaced in Tables 5 and A1. In which,
user’s accuracy, producer’s accuracy, and overall accuracy for each class are presented. Table 5 shows
that the overall accuracy of the second layer of the urban LULC map reaches 0.89, which means that
the second layer of the urban LULC map is more accurate than the third layer of the urban LULC map
whose overall accuracy is 0.87. Based on Equations (4)–(6), we can compute the estimated user’s and
producer’s accuracy and variances by using an error matrices with cell values ofthe estimated area
proportions (Tables 6 and A2). The estimated user’s and producer’s accuracy with a 95% confident
interval for urban LULC maps layer two and layer three are presented in Table 7. Although good
overall accuracies are achieved for both layer two and layer three map classification scheme, there
are some map classes, especially in map class layer three, with lower accuracies either in user’s or
producer’s accuracy, for instance, map classes of bare lands T2, residential bd2–bd4, their accuracies
are less than 0.80.

Table 5. Assessment of the second layer of the urban LULC map.

User Class
Sample

Wb Vg Fl Bl R&S Ib Rb Sd Tt Ta (km2) Wi

Wb 32 0 0 0 0 0 0 1 33 14.10 0.03
Vg 0 63 1 2 0 0 1 1 68 109.29 0.21
Fl 0 0 62 8 0 0 2 0 72 53.07 0.10
Bl 0 0 0 42 0 0 0 0 42 18.09 0.03

R&S 0 0 0 1 41 3 1 0 46 20.04 0.04
Ib 0 0 0 0 0 31 0 0 31 13.57 0.03
Rb 0 4 1 6 3 4 55 2 75 288.19 0.55
Sd 0 0 0 0 0 1 2 27 30 6.81 0.01
Tt 32 67 64 59 44 39 61 31 397 523.16 0.03

Producer 1.00 0.94 0.97 0.71 0.93 0.79 0.90 0.87 1.00
User 0.97 0.93 0.86 1.00 0.89 1.00 0.73 0.90 0.97

Totals Overall Accuracy 0.89

Notes: Wb: Water bodies; Vg: Vegetation; Fl: Farm lands; Bl: Bare lands; R&S: roads and squares; Ib: Industrial
buildings; Rb: Residential buildings. Sd: Shadow; Tt: Total; Ta: Total class area.

Table 6. The error matrix populated by estimated proportion of area for ULULC layer two.

Uc
Sp

Wb Vg Fl Bl R&S Ib Rb Sd Wi

Wb 0.03 - - - - - - 0.00 0.03
Vg - 0.19 0.00 0.01 - - 0.00 0.00 0.21
Fl - - 0.09 0.01 - - 0.00 - 0.10
Bl - - - 0.03 - - - - 0.03

R&S - - - 0.00 0.03 0.00 0.00 - 0.04
Ib - - - - - 0.03 - - 0.03
Rb - 0.03 0.01 0.04 0.02 0.03 0.40 0.01 0.55
Sd - - - - - 0.00 0.00 0.01 0.01
Tt 0.03 0.22 0.10 0.10 0.06 0.06 0.41 0.03
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Table 7. The estimated user’s accuracy with a 95% confident.

Layer 2 Layer 3

Urban LULC Estimated Users’/
Producers’ Accuracy Urban LULC Estimated Users’/

Producers’ Accuracy

Water bodies 0.97 ± 0.06/1.00 ± 0.00 Clear water 0.90 ± 0.13/0.86 ± 0.17

Turbid water 0.60 ± 0.26/1.00 ± 0.00

Vegetation 0.93 ± 0.06/0.94 ± 0.07 Trees and shrubs 1.00 ± 0.00/1.00 ± 0.00

Grass 0.87 ± 0.14/0.83 ± 0.19

Farm land 0.86 ± 0.08/0.97 ± 0.09 Farm land 0.94 ± 0.12/0.84 ± 0.16

Bare lands 1.00 ± 0.00/0.71 ± 0.06 Bare lands T1 0.96 ± 0.88/0.92 ± 0.15

Bare lands T2 1.00 ± 0.00/0.65 ± 0.11

Roads and squares 0.89 ± 0.09/0.93 ± 0.12
Roads 0.92 ± 0.11/0.82 ± 0.18

Squares 0.93 ± 0.13/0.93 ± 0.15

Industrial buildings 1.00 ± 0.00/0.79 ± 0.06

Industrial Bd1 1.00 ± 0.00/0.88 ± 0.14

Industrial Bd2 1.00 ± 0.00/0.88 ± 0.14

Industrial Bd3 0.93 ± 0.13/0.93 ± 0.15

Industrial Bd4 0.80 ± 0.21/1.00 ± 0.00

Industrial Bd5 0.87 ± 0.18/0.87 ± 0.16

Residential Buildings 0.73 ± 0.10/0.90 ± 0.23

Residential Bd1 0.95 ± 0.07/0.93 ± 0.16

Residential Bd2 0.73 ± 0.23/0.85 ± 0.17

Residential Bd3 0.70 ± 0.18/0.95 ± 0.16

Residential Bd4 0.73 ± 0.23/0.85 ± 0.17

Residential Bd5 0.77 ± 0.13/0.76 ± 0.35

Playground 0.80 ± 0.21/0.92 ± 0.15

Shadow 0.90 ± 0.11/0.87 ± 0.17 Shadow 0.80 ± 0.21/0.80 ± 0.19

3.2.2. Estimating Area and Uncertainty

Based on the estimated area proportions we can estimate the area of each class according to the
reference data. For instance, the error matrix in Table 6 can be used to indicate how to estimate the
area and uncertainty. The estimated area of water body (Wb) is Â1 = p̂·1 ×Atot = 0.02613× 523.1622 =

13.66806 km2, the mapped area of water body of 14.09400 km2 was thus underestimated by 0.42594 km2.
The confident interval for the area of each class can be estimated based on the method mentioned
in Section 2.6. From Equation (8), S(p̂·i) = 0.00082 and the standard error for the estimated area of
water body is S

(
Â1

)
= S(p̂·i) ×Atot = 0.00082 × 523.1622 = 0.42900 km2. The margin of error of the

confidence interval is 1.96× 0.429 = 0.84084 km2. Such that we estimated the area of water body with
a 95% confident interval is 13.66806± 0.84084 km2, i.e., the lower and upper limit is 12.82722 km2 and
14.5089 km2, respectively. The area of each map class in layer two and layer three can be estimated in
the same way. Table 8 presents the estimated areas of each class with the second digit after the decimal
place in urban LULC layers two and three with a confident interval of 95%. These can provide useful
information for urban planners to examine the uncertainties of each map class, such that they can
make some decisions in protection of some land uses.
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Table 8. The estimated area (km2) of each class with a 95% confident.

Urban
LULC Area Error Lower

Limit
Upper
Limit Urban LULC Area Error Lower

Limit
Upper
Limit

Water
bodies

13.67 0.43 12.83 14.51
Clear water 12.67 1.17 10.38 14.95

Turbid water 0.59 0.13 0.34 0.84

Vegetation 116.63 8.30 100.37 132.88
Trees and shrubs 29.56 0.00 29.56 29.56

Grass 84.88 10.21 64.87 104.89

Farm land 51.15 4.70 41.94 60.36 Farm land 58.46 6.83 45.08 71.85

Bare lands 50.69 9.58 31.92 69.47
Bare lands T1 20.98 5.03 11.13 30.84

Bare lands T2 6.15 3.20 -0.12 12.42

Roads and
Squares 29.39 6.63 16.39 42.39

Roads 31.61 8.52 14.92 48.30

Squares 3.37 0.71 1.97 4.77

Industrial
buildings 30.47 7.57 15.64 45.30

Industrial Bd1 8.04 0.81 6.45 9.64

Industrial Bd2 2.88 0.39 2.11 3.65

Industrial Bd3 2.10 0.24 1.64 2.56

Industrial Bd4 1.61 0.21 1.19 2.03

Industrial Bd5 5.83 5.02 −4.01 15.67

Residential
Buildings 215.31 14.95 186.02 244.61

Residential Bd1 34.01 1.69 30.70 37.32

Residential Bd2 4.87 0.99 2.94 6.80

Residential Bd3 14.60 1.90 10.87 18.32

Residential Bd4 6.60 1.06 4.52 8.67

Residential Bd5 181.24 14.92 152.00 210.48

Playground 1.36 0.47 0.44 2.28

Shadow 15.85 5.66 4.76 26.95 Shadow 11.75 5.12 1.72 21.78

4. Discussion

Medium resolution satellite imagery lacks of the ability of providing detailed urban LULC
information. On the contrary, sub-meter and meter-scale satellite imagery provide essential data sources
to extract detailed land cover information, especially for urban regions with highly heterogeneous
manmade materials. These VHR imagery, however, cannot cover an entire city and generally
computationally expensive. In this study, medium resolution imagery (GF-1) and very high resolution
imagery (GF-2) were integrated to map metropolitan-scale urban LULC types by taking advantage of
the multi-level resolution imagery from these two satellites. The acquisition of multi-level resolution
imagery provides a unique opportunity to classify urban LULC types in a large urban area at different
spatial scales. Considering the fact that urban LULC types with a relatively large areas, such as
water bodies, green lands, and bare lands can be classified by GF-1 images while small sized urban
LULC types, like industrial and residential buildings, can be extracted by GF-2 data, this work
proposed a three-layer classification scheme. This scheme is very flexible, allowing for urban planners
and policy makers to select which level of urban LULC type might be more appropriate for their
specific applications, including spatio-temporal dynamics of urbanization, suburbanization, dynamic
land cover or land use change, urban landscape change analysis, and ecology conservation [58–60].
Although with many issues, including the unavailability of two or more satellite images, relatively
complex image processing techniques, and the difficulty of selecting appropriate urban LULC types,
this scheme provides a practical approach to extract metropolitan-scale urban LULC types at different
level of details.
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The design of the three-layer land cover scheme is mainly based on the visually separability
among each urban LULC type aiming to achieve a better accuracy. The accuracy assessment shows that
many urban LULC types have achieved high accuracies using the designed three-layer classification
scheme. Although there is not a definite threshold of accuracy for relative applications of urban
LULC mapping from satellites, one goal of this study is to achieve the highest possible accuracy while
minimizing fieldwork and post-processing procedures to keep potential applications both cost-effective
and operationally practical. All of the urban LULC types in the second and third layer of the urban
LULC map are appropriate for use by urban planners or managers to perform dynamic urban expansion
analysis, to estimate urban population density and other urban landscapes and to conduct urban
environment-related projects [61–63]. This scheme is specially designed for GF-1 and GF-2 satellite
images. It may not perform well for other satellite images with different dimensions, but it can provide
an approach to derive LULC types with different level of details. Most of the urban LULC types in
this scheme are helpful for urban planners or local managers to understand the current conditions of
urban LULCs.

5. Conclusions

More and more satellites with finer spatial resolutions have been successfully launched around
the world in the last two decades. While finer scale imagery allows for differentiating more subtle
geometric differencesin land cover types than coarse or medium spatial resolution images, problems
such as the large volume of datasets and the length of time necessary for processing segmentation and
classification still persist, especially for a large region like a whole urban area. By integrating GF-1
imagery with meter-resolution and GF-2 imagery with sub-meter-resolution, this study designed a
three-level classification scheme and mapped detailed urban LULC at different spatial resolutions.
Conclusions from a case study in Changchun, the capital city of Jilin Province, can be drawn as follows:

First, the proposed multi-level classification scheme is feasiblein extracting urban LULCs by
combining medium resolution and VHR remote sensing imagery. Homogeneous urban LULC types
such as water bodies, bare lands, or large areas of vegetation could be derived from GF-1 imagery
with 16 m and 8 m spatial resolutions, while heterogeneous urban LULC types such as farm lands,
industrial buildings, and roads and squares could be extracted from GF-2 imagery with 3.2 m spatial
resolution, and residential buildings, small patches of vegetation, and shodows could be generated
from GF-2 with 0.8 m spatial resolutions.

Second, through implementing the image segmentation and object-based image classification,
detailed urban LULC maps at the second and third levels illustrate an overall accuracy of 0.89 and
0.87, suggesting the three-layer classification scheme has the potential to derive high accuracy urban
LULC information.
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Appendix A

Table A1. Assessment of the land cover map in the third layer of the classification scheme.

S Cw Tw Ts Gs Fl Bl1 Bl2 Rd Sq Ib1 Ib2 Ib3 Ib4 Ib5 Rb1 Rb2 Rb3 Rb4 Rb5 Pg Sd Tt TA (km2) Wi

Cw 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 13.11 0.03
Tw 2 9 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0.98 0.00
Ts 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 29.56 0.06
Gs 0 0 0 20 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 23 79.73 0.15
Fl 0 0 0 0 16 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 53.07 0.10

Bl1 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 25 16.59 0.03
Bl2 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 1.51 0.00
Rd 0 0 0 0 0 0 0 23 1 0 0 0 0 0 0 0 1 0 0 0 0 25 17.16 0.03
Sq 0 0 0 0 0 0 0 0 14 0 0 1 0 0 0 0 0 0 0 0 0 15 2.88 0.01
Ib1 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 15 6.85 0.01
Ib2 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 15 2.37 0.00
Ib3 0 0 0 0 0 0 0 0 0 0 1 14 0 0 0 0 0 0 0 0 0 15 2.05 0.00
Ib4 0 0 0 0 0 0 1 1 0 0 0 0 12 0 0 0 0 0 1 0 0 15 2.01 0.00
Ib5 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 2 0 0 0 15 0.29 0.00
Rb1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38 0 0 0 2 0 0 40 33.49 0.06
Rb2 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 11 0 0 1 0 0 15 5.54 0.01
Rb3 1 0 0 0 0 0 0 1 0 0 0 0 0 0 3 1 19 0 2 0 0 27 19.77 0.04
Rb4 0 0 0 1 0 0 0 0 0 2 0 0 0 1 0 0 0 11 0 0 0 15 8.94 0.02
Rb5 0 0 0 3 1 1 0 3 0 0 0 0 0 1 0 0 0 0 34 0 1 44 219.32 0.42
Pg 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 12 0 15 1.14 0.00
Sd 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 12 15 6.81 0.01
Tt 21 9 15 24 19 26 23 28 15 17 17 15 12 15 41 13 20 13 45 13 15 416 523.16

P 0.86 1.00 1.00 0.83 0.84 0.92 0.65 0.82 0.93 0.88 0.88 0.93 1.00 0.87 0.93 0.85 0.95 0.85 0.76 0.92 0.80 0.86
U 0.90 0.60 1.00 0.87 0.94 0.96 1.00 0.92 0.93 1.00 1.00 0.93 0.80 0.87 0.95 0.73 0.70 0.73 0.77 0.80 0.80 0.90
T Overall Accuracy 0.87

Notes: Cw: Clear water; Tw: Turbid water; Ts: Trees and shrubs; Gs: Grass;Fl: Farm lands; Bl: Bare lands; Rd: roads; Sq: squares;Ib: Industrial buildings; Rb: Residential buildings; Pg:
Playgrounds;Sd: Shadow; Tt: Totals; TA: Total class area.
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Table A2. Error matrix populated by estimated proportion of area for ULULC layer 3.

S Cw Tw Ts Gs Fl Bl1 Bl2 Rd Sq Ib1 Ib2 Ib3 Ib4 Ib5 Rb1 Rb2 Rb3 Rb4 Rb5 Pg Sd Wi

Cw 0.02 - - - - - - - - - - - - - - - - - - - 0.00 0.03
Tw 0.00 0.00 - - 0.00 - 0.00 - - - - - - - - - - - - - - 0.00
Ts - - 0.06 - - - - - - - - - - - - - - - - - - 0.06
Gs - - - 0.13 0.01 - - - - - - - - - - - - - 0.01 - - 0.15
Fl - - - - 0.10 - 0.01 - - - - - - - - - - - - - - 0.10

Bl1 - - - - - 0.03 - - - - - - - - - - - - 0.00 - - 0.03
Bl2 - - - - - - 0.00 - - - - - - - - - - - - - - 0.00
Rd - - - - - - - 0.03 0.00 - - - - - - - 0.00 - - - - 0.03
Sq - - - - - - - - 0.01 - - 0.00 - - - - - - - - - 0.01
Ib1 - - - - - - - - - 0.01 - - - - - - - - - - - 0.01
Ib2 - - - - - - - - - - 0.00 - - - - - - - - - - 0.00
Ib3 - - - - - - - - - - 0.00 0.00 - - - - - - - - - 0.00
Ib4 - - - - - - 0.00 0.00 - - - - 0.00 - - - - - 0.00 - - 0.00
Ib5 - - - - - - - - - - - - - 0.00 - - - 0.00 - - - 0.00
Rb1 - - - - - - - - - - - - - - 0.06 - - - 0.00 - - 0.06
Rb2 - - - - - - 0.00 - - - 0.00 - - - - 0.01 - - 0.00 - - 0.01
Rb3 0.00 - - - - - - 0.00 - - - - - - 0.00 0.00 0.03 - 0.00 - - 0.04
Rb4 - - - 0.00 - - - - - 0.00 - - - 0.00 - - - 0.01 - - - 0.02
Rb5 - - - 0.03 0.01 0.01 - 0.03 - - - - - 0.01 - - - - 0.32 - 0.01 0.42
Pg - - - - - 0.00 - - - - - - - - - 0.00 - - 0.00 0.00 - 0.00
Sd - - - - - - 0.00 - - - - - - - - - - - 0.00 0.00 0.01 0.01
Tt 0.02 0.00 0.06 0.16 0.11 0.04 0.01 0.06 0.01 0.02 0.01 0.00 0.00 0.01 0.07 0.01 0.03 0.01 0.35 0.00 0.02
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