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Abstract: Existing correlations between features extracted from Electroencephalography (EEG)
signals and emotional aspects have motivated the development of a diversity of EEG-based affect
detection methods. Both intra-subject and inter-subject approaches have been used in this context.
Intra-subject approaches generally suffer from the small sample problem, and require the collection of
exhaustive data for each new user before the detection system is usable. On the contrary, inter-subject
models do not account for the personality and physiological influence of how the individual is feeling
and expressing emotions. In this paper, we analyze both modeling approaches, using three public
repositories. The results show that the subject’s influence on the EEG signals is substantially higher
than that of the emotion and hence it is necessary to account for the subject’s influence on the EEG
signals. To do this, we propose a data transformation that seamlessly integrates individual traits into
an inter-subject approach, improving classification results.
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1. Introduction

Affect recognition has been an active topic of research for the last two decades, and attempts have
been made to detect emotions from many different sources of information, including text [1], facial
expressions [2], speech [3], physiological signals [4–6] or interaction data [7], among others.

Electroencephalography (EEG) signals were initially used in medicine to diagnose a diversity of
disorders and pathological conditions, such as epilepsy [8,9], alcoholism [10,11], detection of suicidal
ideation [12] or monitoring the depth of anesthesia [13]. However, the large quantity of information
that EEG signals encode about the subject has motivated their use in other application areas, such as
biometric recognition [14,15], gender identification [16] and emotion detection [17,18].

Previous neuropsychological studies [19] have shown a relation between emotions and the
electrical activity of the brain, and reported on EEG correlates of emotions [19]. This relation has
motivated a large number of attempts to detect emotions by processing EEG signals, sometimes in
combination with other sources of information (e.g., [20]). However, EEG signals are relatively complex,
and affected by physiologic and extraphysiologic artifacts such as eye movement, pulse, respiration
or measurement equipment. Therefore, there is an intrinsic difficulty associated with making this
relation explicit. This includes the use of appropriate signal processing methods to cancel undesired
artifacts [21,22]; the extraction and selection of the most informative features and channels [23,24]; and
the development of techniques that are able to detect patterns that can be linked to specific emotional
states (e.g., [25]).

Previous works in the field of psychology suggest that there are significant differences in the way
individuals feel and express emotions [26]. Many typical setups use a set of training samples to build a
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general, subject-independent (inter-subject) model, which is shared by all users (e.g., [27–30]). In this
case, a single model is built by considering all data as if it were coming from the same subject, without
taking the user’s particularities into consideration. Despite the high prediction rates obtained in some
cases, these can be significantly improved by using individual models adapted to each user [30–32].
However, subject-dependent (intra-subject) approaches suffer from two severe drawbacks. First, they
require the collection of a large amount of data to adequately model the relation between the EEG
signal and the emotion for each person. Second, they cannot be used for unseen subjects as they only
use data related to the particular individual. These two drawbacks make the approach impractical in
many cases.

In this paper, we first study the suitability of intra-subject and inter-subject modeling approaches
in an EEG-based affect recognition context, by analyzing the available data in three public
databases, namely the Database for Emotion Analysis using Physiological Signals (DEAP) [33],
MAHNOB-HCI [34] and DREAMER [35]. The analysis performed clearly indicates that the contribution
of the subject to the EEG signal is far larger than the effect of the emotion, hence limiting the
applicability of inter-subject models and suggesting a better behavior of subject-dependent models
that only use training data associated with the same subject. An in-depth analysis using the DEAP
dataset also reveals that many positive results for subject-independent models reported in some
previous works may in part be due to the use of imbalanced datasets. As a second and more important
contribution, we propose an approach that combines an inter-subject model with a subject-based
normalization of the EEG signals, making it possible to effectively generate a single model, which
is valid across the entire population. This approach integrates data related to personality traits into
the model, encoding a person’s individuality in feeling emotions without affecting data capturing
needs. The gains achieved open the door for using a single model for unseen subjects, which can be
progressively adapted as more personalized data are gathered.

This paper is structured as follows. First, related previous work is described in Section 2, covering
both modeling approaches and existing public databases. Then, in Section 3, the three repositories
considered are analyzed by computing an embedding that reveals key issues related to the topological
structure of the data. After, we present our proposal to partially cancel the subject-related component
from the signal to achieve an inter-subject model with comparable performance to typical intra-subject
models. This method is evaluated in Section 5. Finally, the main conclusions from this work are
presented in Section 6.

2. Related Previous Work

2.1. Modeling Approaches

Computational methods for affect detection attempt to relate features extracted from certain
signals measured on a subject to emotional processes. These features may be captured from, e.g., facial
expressions, voice, body language and posture, physiological states, functional Magnetic Resonance
Imaging (fMRI), Magnetoencephalogram (MEG) brain signals and/or EEG. In general, machine
learning algorithms are used to identify signal patterns that are associated with the expression of
different emotions, and to build models that enable the automatic detection of a concrete set of states
(see, e.g., [36–38] for extensive reviews of the field). These machine learning approaches can be
classified as inter-subject or intra-subject. Methods in the first category aim at constructing a model
that is valid for all users. Techniques in the second one consider that the appraisal of one’s emotional
state is strongly related to personal factors, such as one’s circumstances [39]. Hence, they aim to
construct an individual model for each user, generally increasing performance at the cost of increasing
data collection needs [40,41].

The prediction of a subject’s emotion/mental state from brain signals has been widely studied,
including both EEG and MEG signals [42,43]. In the particular case of EEG, the signals from selected
channels are usually pre-processed with noise reduction algorithms and filtering methods to enhance
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the signal-to-noise power ratio. Feature extraction is then used to determine variables which correlate
well with the target emotional states, according to the specific emotional model that is used [19].
Typical feature extraction methods include wavelet transform [44], spectral power features [45],
higher order crossings [46], short-time Fourier transform [47], asymmetry index [48] and/or statistical
features [49], e.g., mean, standard deviation, variance, quadratic mean, skewness, power or entropy.
Finally, a classification method is used to discriminate a particular emotional state from the features.
Support Vector Machines (SVM) [47,48,50,51], nearest neighbour classification [45,50], Naive Bayes [50]
or Linear Discriminant Analysis (LDA) [52] are examples of an extensive list of methods that are
applied in this context.

Most EEG-based emotion recognition studies use Rusell’s two dimensional bipolar emotional
model to label and represent emotional states, which is based on valence and activation/arousal [53].
This representation relies on the fact that these two variables account for the major proportion of
variance in affect scales. In such models, each emotion is found as a combination of values for valence
and arousal, falling meaningfully around the perimeter of the space. The valence dimension represents
whether the emotion corresponds to a positive or a negative feeling; and the arousal refers to the
level of excitement. The valence/arousal representation was extended to a 3D space in [54], by also
considering whether the subject feels controlled or in control of the situation (dominance).

2.2. Public Databases

The intensive work in emotion recognition using EEG data has been supported by the existence
of a number of public datasets. A first large database is DEAP, which is presented in [33]. DEAP
contains EEG and peripheral physiological signals of 32 people who were recorded as each watched
40 one-minute long excerpts of music videos. These were stored along with the levels of arousal,
valence, like/dislike, dominance, and familiarity reported by the subjects. The dataset also contains
frontal face video for 22 of the participants. In addition, methods and results are presented for
single-trial classification of arousal, valence, and like/dislike ratings using the modalities of EEG,
peripheral physiological signals, and multimedia content analysis. EEG signals were recorded by using
a Biosemi ActiveTwo system. Despite its relatively recent publication, DEAP [33] has been extensively
used in the affect recognition field, to evaluate a number of proposals (e.g., [55–57]).

Another large database is presented in [34]. In this case, the repository contains data for 27 people,
recorded while watching 20 movie fragments and pictures in a very similar setting as in DEAP. In this
case, video data are provided for all participants, from six different cameras. The database also contains
eye gaze information, as well as other physiological signals (including EEG). Data are stored along
with the emotional state reported by the subject, both using emotional keywords and on a scale of
valence, arousal and dominance. EEG signals were recorded by using active AgCl electrodes placed
according to the international 10–20 system (32 channels).

More recently, a third dataset of similar characteristics as the previous with regard to the EEG
data provided has been published [35]. Under the name of DREAMER, this dataset contains EEG
data from 23 participants as they watched 18 music videos. The main difference with respect to the
previous two databases refers to the type of equipment that was employed. In DREAMER, 128 Hz
EEG signals were recorded using an Emotive EPOC system, a device that offers a considerably lower
precision than the Biosemi Active Two. Table 1 summarizes the characteristics of these three databases.

Major problematic issues that have hindered the development of practical applications that use
EEG signals are related to the cost, time resolution, and complexity of setting up experimental protocols
that resemble real-world activities [36]. This has motivated a track of work that focuses on mobile/low
cost devices (e.g., [55,58,59]). Although these devices may be less accurate at the signal acquisition
phase, they may offer a comparative performance at detecting emotional changes in the subject. This
has led other authors to develop their own datasets to validate their results in specific contexts that
use low cost devices [55,59]. However, these datasets have not been made public and are hence not
usable in other research works.
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Table 1. Summary of characteristics for the databases in the study.

Database Subjects Videos Stimuli Duration Device Channels Sampling FeaturesFrequency

DEAP 32 40 Music 60 s Biosemi 32 512 Hz * 230videos Active II

MAHNOB 27 20 Excerpts 34.9–117 s Biosemi 32 512 Hz * 230from movies (M = 81 s) Active II

DREAMER 23 18 Music 65–393 s Emotive 14 128 Hz 105videos (M = 199 s) EPOC

* downsampled to 256 Hz.

3. Data Analysis

3.1. Problem Formulation

Let us assume a set of subjects S = {si}, i = 1, 2 . . . m. Let us also assume that there exist a set
of ni labeled training samples for each subject ∀si : Tsi = {(tsi,j, lsi ,j)}, j = 1, 2 . . . ni, where tsi,j is
conveniently represented in a particular feature space F and corresponds to the feature vector for the
jth sample of subject si, and lsi ,j refers to the corresponding emotional label.

Current emotion recognition approaches can be classified into inter-subject and intra-subject.
In practice, both types of models are typically built by using classification approaches on training
data. In general, this training data (the sets Tsi , i = 1, 2 . . . m) consist of a number of labeled entries
that relate features to emotions. The fundamental difference between the two approaches is whether
the labeled training data refer to a single individual (intra-subject) or to a group of people who
are collectively treated as if there were no particularities that make individuals different from each
other (inter-subject). In inter-subject methods, a global model which is valid for all users is built, by
using the training data Ts1

⋃ Ts2

⋃
. . .

⋃ Tsm . This is, in fact, equivalent to treating all training data
for different individuals as if they belong to the same subject [28–30,59]. In intra-subject approaches,
an independent model is built for each subject si [27,31,32,40,41], by considering only training data
that belong to that particular subject (Tsi ). The high accuracy achieved by some subject-independent
models (e.g., [28,29,59]) suggests that some relations between features and emotions hold for most
individuals. At the same time, the usually better prediction performance achieved by intra-subject
models [40,41] suggests that the relation between the EEG features and the emotions are, in reality,
subject-dependent. Hence, relations between features and emotions can be better established when the
user’s particularities are taken into consideration. However, intra-subject models require exhaustive
data collection from the same subject to build the model. Furthermore, they cannot be used on
previously unseen individuals, unlike with inter-subject models.

3.2. Topological Structure of the Data

For the purpose of this work, we replicated feature extraction as described in the original
publications describing each database. First, we calculated the Power Spectral Density (PSD) using
Welch’s method with a Hamming window of 128 samples and 50% overlapping. The spectral power
was averaged over the θ (4–8 Hz), slow α (8–10 Hz), α (8–12 Hz), β (12–30 Hz), and γ (>30 Hz) bands
from all electrodes. In addition, we computed the difference between the spectral power of all the
symmetrical pairs of electrodes on the right and left hemisphere in the same bands, to measure the
possible asymmetry in the brain activities due to emotional stimuli. This yielded 230 features for DEAP
and MAHNOB-HCI (32 electrodes × 5 bands + 14 pairs × 5 bands), and 105 features in DREAMER
(14 electrodes × 5 bands + 7 pairs × 5 bands), as reported in Table 1.

The resulting features were used to plot a 2-D (two dimensional) map after a space
transformation using t-Distributed Stochastic Neighbor Embedding (t-SNE) [60]. t-SNE is an
unsupervised dimensionality reduction method that is particularly well suited for the visualization
of high-dimensional datasets. t-SNE is capable of capturing and preserving much of the topological
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structure of the high-dimensional data, while also revealing global structure such as the presence of
clusters at several scales [60]. We reduced the data to two dimensions, so that we could easily display
and analyze it using a scatterplot.

Figure 1 shows the result produced by t-SNE method on the three databases used in this work.
We plotted samples from each subject using a different colored marker, to easily observe that EEG data
samples from the same subject are topologically located close to each other in the 2-D space. These
plots reveal that the contribution of the subject to the EEG signal is clearly higher than the effect of the
emotion, a fact which has been extensively exploited in biometrics (e.g., [61–63]).

Although it seems clear that the topological structure of the maps presented in Figure 1 is not the
best for the construction of inter-subject models, other previous works have obtained positive results
when applying subject-independent models using a typical classification setting. For example, the
affect recognition results reported in [35] refer to accuracies of 0.62 in valence and arousal, using a
SVM with a Radial Basis Function (RBF) kernel. However, they used an imbalanced dataset, with a
proportion of 56–44% in arousal and 61–39% in valence. Considering Figure 1c, it is possible that the
positive accuracy reported is in part due to this fact, rather than to the existence of emotion-evoked
specific EEG patterns that are shared by multiple subjects.
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Figure 1. Dimensionality reduction by t-SNE on original data: (a) DEAP; (b) MAHNOB-HCI; and
(c) DREAMER. Each subject has been represented with a different colored marker.

4. Proposed Approach

4.1. Typical Data Transformations

The construction of inter-subject models is a harder problem due to the high EEG variability
between individuals [64]. The three plots in Figure 1 clearly indicate that classification approaches
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that use these data would benefit from the removal of the subject’s contribution to the EEG signal.
Instead of producing an intra-subject model with personalized data coming from a single individual,
the subject’s particularities can be incorporated into an inter-subject global model by normalizing the
data from each subject according to a subject-dependent baseline that summarizes the contribution of
the individual to the EEG signal. Other previous works have implicitly attempted this by applying a
subject-based normalization of the data. For example, in [33,65], the features were normalized for each
participant by scaling them between 0 and 1 to reduce inter-participant variability. The effect of this
normalization is shown in Figure 2, for the three databases considered in this work. The effect of such
a linear normalization on the subject related component is somehow limited and the latent clustered
structure of the original data remains, but the lower distance between the clusters suggests that the
subject component in the EEG signals has at least been reduced. This fact outlines the potential of
subject-dependent normalizations, and suggests that other more elaborated data transformations may
be applied to further reduce or eliminate the subject-related component from the EEG signals.
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Figure 2. Dimensionality reduction by t-SNE, after normalizing the data by scaling each feature
between the maximum and minimum values for the particular subject: (a) DEAP; (b) MAHNOB-HCI;
and (c) DREAMER.

4.2. Nonlinear Data Transformation

In particular, and to explore the potential of subject-dependent methods other than a linear scaling,
we tested a simple nonlinear transformation of the original data. First, we independently considered
each subject, and computed the median value for each feature. Then, the original feature vector was
codified as a binary vector of the same size, where components take values 0 or 1 depending on
whether the feature value is lower or higher than the median, respectively. More specifically, for any
subject si, we considered all feature vectors tsi,j, j = 1, 2 . . . ni in the set of training samples Tsi and
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computed the median vector t̃si across each feature. Then, all feature vectors u for the same user si
were transformed according to Equation (1)

û[k] =

{
1 u[k] > t̃si [k],

0 u[k] ≤ t̃si [k],
(1)

where [k] denotes the kth element (feature) of the corresponding vector.
Figure 3 contains the t-SNE representation for the data when this transformation is applied to the

entire set. As can be observed, and despite the information loss that is inherent to this operation, the
data samples from a same group now appear more sparse, and these plots suggest a more effective
reduction of the subject-related component of the signals. A further analysis of the data topology with
regard to the labels also revealed a certain level of grouping, more suitable for classification purposes.
As an example, Figure 4 shows the positive and negative samples in the MAHNOB dataset in the
t-SNE space, according to self-reported arousal levels. An inspection of this plot in relation to the one
in Figure 3b suggests that the samples for certain groups of subjects may have been split according to
their label.
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Figure 3. Dimensionality reduction by t-SNE, after transforming the data by binarizing values according
to whether they are lower or greater than the median: (a) DEAP; (b) MAHNOB-HCI; and (c) DREAMER.

The proposed transformation allowed us to train the classifier using data from all available
subjects, avoiding the small sample case and the need for the personalized training that is typically
required when using intra-subject approaches. The only data required by the proposed transformation
are the median for each feature, and these can easily be computed and progressively refined from
unlabeled data as soon as the EEG capturing device is connected.
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Figure 4. Positive (green plus markers) and negative (red dots) arousal samples in the MAHNOB
database, on the representation space produced by t-SNE.

5. Experimental Results

5.1. Improvement on Classification Accuracy

To exhaustively assess the effect of the proposed data transformation, we ran a number of
experiments aimed at testing the prediction performance on previously unseen subjects. Results
obtained with the proposed data transformation were compared using z-score standardization, a typical
data normalization commonly used in machine learning contexts. To this end, we computed the mean
and standard deviation vectors µ and σ from the samples in the training set, and normalized each
feature vector x according to Equation (2).

x̂[k] =
x[k]− µ[k]

σ[k]
(2)

For a comprehensive evaluation, we applied several classification methods, namely SVM with
polynomial and Gaussian kernels and Naive Bayes, to be consistent with the previous literature in
the field [18,33–35]. All experiments were run in a Matlab R2017a environment, using Matlab’s own
implementation of the classification algorithms.

All datasets were pre-processed as in [66] to appropriately compare the methods and avoid
misleading results caused by different degrees of imbalance in the intra-subject and inter-subject
cases. In each database and for each of the labels analyzed (arousal and valence), we randomly
selected the same number of samples per class for each user. The number of samples was decided
to simultaneously achieve sufficiently populated training sets and minimize the number of subjects
that had to be discarded because they did not have sufficient samples in the minority class. Table 2
summarizes the resulting number of users and the samples per user after processing the datasets in
this way.

Table 2. Number of subjects and samples per subject in each dataset, after pre-processing.

Database

Valence Arousal

Number of Samples per Number of Samples
Subjects Subject Subjects per Subject

DEAP 24 32 16 32
MAHNOB 5 18 10 18
DREAMER 9 16 7 14
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In each dataset, and for every combination of normalization and classification method, we ran
20 experiments per subject. In each experiment, all data for one subject Tk were used as the test set,
and 90% of the data from the rest of the individuals, i.e., (T1

⋃ T2
⋃

. . .
⋃ Tm)− Tk, were employed for

training. As the classes in the three datasets were balanced and had equal importance, the performance
was assessed using classification accuracy. This was computed as the proportion of instances that were
correctly categorized according to the self-reported binary labels for arousal and valence provided as a
ground-truth in each database.

Table 3 compares the classification accuracy when using a typical z-score normalization and
when the proposed subject-based normalization was applied. To effectively rank the two algorithms
according to their general performance, and measure the statistical significance of the results,
their classification accuracy was evaluated separately for each test and training pair. With these
measurements, a multiple comparison Friedman test [67] was conducted, considering the null
hypothesis that the two methods obtained similar results with non-significant differences. This
non-parametric test requires computing the average ranks of all methods, which are shown in Table 4,
along with the p-values and the number of pairwise comparisons that allowed their computation. The
p-values were calculated using software available from http://sci2s.ugr.es/sicidm [67].

Table 3. Results obtained with a typical z-score normalization and with the proposed data transformation.

Valence Arousal

SVM SVM Naive SVM SVM Naive
Cubic Radial Bayes Cubic Radial Bayes

DEAP z-score 0.51 0.50 0.51 0.52 0.50 0.50
proposed 0.54 0.58 0.57 0.54 0.56 0.55

MAHNOB z-score 0.50 0.56 0.56 0.55 0.52 0.57
proposed 0.51 0.65 0.65 0.59 0.61 0.62

DREAMER z-score 0.50 0.52 0.51 0.55 0.53 0.50
proposed 0.54 0.59 0.59 0.58 0.57 0.57

Table 4. Results of Friedman test on data reported in Table 3.

Valence Arousal

SVM SVM Naive SVM SVM Naive
Cubic Radial Bayes Cubic Radial Bayes

DEAP

pairwise comparisons 480 480 480 320 320 320
average rank z-score 1.65 1.73 1.71 1.57 1.78 1.78
average rank proposed 1.35 1.27 1.29 1.43 1.22 1.22
p-value <10−10 <10−22 <10−18 0.01 <10−23 <10−23

MAHNOB

pairwise comparisons 100 100 100 200 200 200
average rank z-score 1.61 1.82 1.84 1.58 1.84 1.70
average rank proposed 1.39 1.18 1.16 1.42 1.16 1.30
p-value 0.02 <10−10 <10−11 0.02 <10−21 <10−8

DREAMER

pairwise comparisons 180 180 180 140 140 140
average rank z-score 1.66 1.81 1.82 1.54 1.66 1.73
average rank proposed 1.34 1.19 1.18 1.46 1.34 1.27
p-value <10−4 <10−15 <10−17 0.31 <10−3 <10−7

When using a radial SVM or the Naive Bayes classifier, the improvement achieved by the proposed
subject-based normalization was always statistically significant with p-values below 10−3 in all cases,
which allowed us to reject the null hypothesis. When using a cubic SVM, p-values were generally
higher, and above 0.05 in one case. Nevertheless, all entries in the table support the performance
increase achieved by the proposed data transformation.

http://sci2s.ugr.es/sicidm


Sensors 2019, 19, 2999 10 of 15

As a reference, we also provide in Table 5 the classification accuracy achieved when using an
intra-subject model, which was obtained using a different setting. To compute these values, we
averaged the results of 100 experiments for each user. In each of these experiments, we selected
one positive and one negative sample from the concrete user as the test set, and used the remaining
samples for training. This yielded a total of 2×m× 100 judgments, with m the number of subjects in
the pre-processed dataset.

Table 5. Results when using an intra-subject model, in the three databases.

Valence Arousal

SVM SVM Naive SVM SVM Naive
Cubic Radial Bayes Cubic Radial Bayes

DEAP 0.62 0.64 0.61 0.55 0.54 0.59
MAHNOB 0.59 0.59 0.58 0.56 0.66 0.62
DREAMER 0.50 0.52 0.46 0.49 0.51 0.51

When using a standard z-score normalization, it can be observed that the accuracy for intra-subject
models was generally better, except in the DREAMER database, which showed very poor results in all
cases. This was despite using considerably fewer training data. In general, the accuracy of inter-subject
models that use z-score standardization remained close to 50% in most cases, a result that is consistent
with the data topology shown in Figure 1, in which samples are grouped by subject rather than their
emotional label. On the contrary, the intra-subject models showed reasonable accuracies that are
consistent with results reported in previous works [18,33,34], ranging from 0.54 to 0.66 in the DEAP
and MAHNOB databases.

When using the proposed data transformation, a significant performance improvement was
achieved with regard to the z-score normalization. The results are clearly outperformed in all
cases. On many occasions, the inter-subject model on the normalized data performed better than the
corresponding intra-subject model. Even in DREAMER, the data transformation led to a reasonable
classification accuracy, close to that obtained in other repositories. Rather than a clear performance
advantage, the results reported in Table 3 show a comparable performance between using an
intra-subject model and the suggested data transformation. However, the proposed approach can
be used for previously unseen subjects despite not having additional data available for that specific
individual, and offers a performance which is significantly better than that obtained by using a typical
z-score normalization.

The behavior reported is consistent with the plots in Figures 1 and 3. When the subject-based data
transformation was not applied, the intrinsic subject-dependent component in the signal dominated
the data topology, leading to a highly inefficient model for previously unseen subjects. However, the
intra-subject model performed reasonably well, as this component equally affected all samples and
inherently canceled out. The proposed subject-dependent data normalization removed a significant
part of the subject-related component, but it did not cancel it completely. The remnant component
can easily be observed in Figure 3, in the form of small clusters of samples that belong to the same
individual.

5.2. Scalability

To further test the scalability and generalization capacity of the proposed method, we designed a
second experiment that aimed to test how predictions improve as more subjects are incorporated into
the training. As an example, Figure 5 shows the results obtained in the three repositories for different
approaches, when using a Naive Bayes classifier to predict valence. The methods compared were
the z-score normalization, the proposed data transformation and the subject-based scaling proposed
in [33,65], in which features were scaled to the range [0, 1]. The latter method is labeled as max-min in
the figure.
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In this plot, the classification accuracy reported for a number of training subjects p is the average
of as many trials as subjects there are in the dataset. In each trial, a different subject was considered,
and all his/her samples were included in the test set. The training set was composed of all samples
from p subjects other than the test subject, chosen at random but maintained across the different
algorithms to allow for a fair comparison.

Both the proposed normalization and the subject-based max-min scaling used in [33,65] showed
better results when more subjects were used for learning. On the contrary, the z-score normalization
did not seem to benefit from learning when the number of training subjects increased. The higher
performance of the proposed data transformation can easily be observed in all databases. This shows
up as a positive trend that implies a reliability increase as more users are incorporated into the model,
and further supports the validity of inter-subject models when they are combined with a suitable
transformation function that takes individual traits into consideration.
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Figure 5. Classification accuracy as the number of training users is increased: (a) DEAP;
(b) MAHNOB-HCI; and (c) DREAMER.

6. Conclusions

Subject-independent models fail to consider that the appraisal of one’s emotional state is strongly
related to personal factors, such as one’s circumstances [39]. Subject-dependent models aim to tackle
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this weakness, but they do so at the cost of significantly increasing data collection needs [40,41].
This implies that they have to be individually trained for each user and hence cannot be used with
previously unseen subjects.

In this paper, a mixed framework to support automatic emotion recognition is proposed. Unlike
most typical subject-dependent modeling approaches, the method uses data from all users to build the
model, and can be used to make predictions for previously unseen users in an adaptive way, increasing
performance as more training data become available. We first show that the existence of an inherent
subject-related component in the EEG signals is a major obstacle when attempting to build a user
independent model that is simultaneously valid for all subjects. Then, we propose a subject-based
normalization procedure that is able to reduce the magnitude of this component when using PSD
features. This straightforward normalization procedure is not intended to be a solution to remove
this component, but rather a demonstration of the potential benefits of reducing its magnitude. The
removal of the subject-dependent component in the signal is indeed feature and problem dependent,
and an optimum approach cannot be generalized at this stage. This implies that there is still room for
improvement by designing other normalization methods that are more efficient at this task.

The impact of the proposed method goes beyond the construction of inter-subject models for
emotion detection from EEG signals. First, the same principles can be exported to other sources
of information other than EEG, e.g., physiological, audio, and video. Second, these principles are
not limited to the particular problem of emotion recognition. On the contrary, the subject-related
component is intrinsic to the signal, and it is present regardless of the problem context.
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