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Abstract: A predictive guidance obstacle avoidance algorithm (PGOA) in unknown environments is
proposed for autonomous underwater vehicle (AUV) that must adapt to multiple complex obstacle
environments. Using the environmental information collected by the Forward-looking Sonar (FLS),
the obstacle boundary is simplified by the convex algorithm and Bessel interpolation. Combining
the predictive control secondary optimization function and the obstacle avoidance weight function,
the predicting obstacle avoidance trajectory parameters are obtained. According to different types of
obstacle environments, the corresponding obstacle avoidance rules are formulated. Lastly, combining
with the obstacle avoidance parameters and rules, the AUV’s predicting obstacle avoidance trajectory
point is obtained. Then AUV can successfully achieve obstacle avoidance using the guidance
algorithm. The simulation results show that the PGOA algorithm can better predict the trajectory
point of the obstacle avoidance path of AUV, and the secondary optimization function can successfully
achieve collision avoidance for different complex obstacle environments. Lastly, comparing the
execution efficiency and cost of different algorithms, which deal with various complex obstacle
environments, simulation experiment results indicate the high efficiency and great adaptability of the
proposed algorithm.

Keywords: autonomous underwater vehicle; forward-looking sonar; predictive control; line-of-sight
guidance; obstacle avoidance algorithm

1. Introduction

Autonomous underwater vehicle (AUV) [1] is an important tool for marine resource exploitation
and marine scientific research [2–4]. As more research interests turn to the cooperative target search,
many factors should be considered, such as the environment information, target states, etc. In reality,
the working environment for AUV is often unknown. In different types of obstacles, static or dynamic
environments are encountered. Therefore, an effective obstacle avoidance algorithm is needed.

In recent years, significant contributions have been made by many researchers in developing
obstacle avoidance methods and applying them to various obstacle avoidance environments for AUV.
These problems can be classified into the global obstacle avoidance path planning problems and
local obstacle avoidance methods. When the global environmental information including various
obstacles are known, the global obstacle avoidance path planning problem becomes a nonlinear optimal
programming problem to find global optimal solutions on the pre-requisite that global variables
are known. For example, two missile guidance algorithms are proposed for the intercept and for
the rendezvous of a maneuvering target while avoiding a static obstacle by a specified avoidance
distance [5]. However, the method simply solves the secondary optimization solution for static obstacles
without considering the obstacle type and the impact of dynamic obstacles on the obstacle avoidance
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process [6,7]. According to the grid-based artificial potential field method, to solve the multi-mobile
vehicle cooperative obstacle avoidance problem, it requires an effective method for managing general
convex obstacles. However, it is easy to fall into local minimum value points when dealing with concave
obstacles and failing to escape from concave obstacles. At the same time, the obstacle avoidance
problem of the path planning is different from the calculation of obstacle avoidance trajectory points
based on the real-time detection of obstacles. Control optimization problems for obstacle avoidance
include non-linear programming [8,9], heuristic algorithm [10,11], and the graph search method
including the A* algorithm [12–14] and D* algorithm [15]. In addition, if an AUV works in a locally
known but globally unknown environment with various types of obstacles, nonlinear methods are
needed to plan out the AUV trajectory points to ensure the safety of AUV in missions. To solve this
problem, there is an artificial potential field method (APF) [16–18], as well as evolutionary algorithms
such as the genetic algorithm (GA) [19–21] and the particle swarm optimization algorithm (PSO) [22,23].
Compared with traditional optimization methods, these algorithms usually lead to global optimal
solutions, or approaches that are close to global optimal solutions. However, these evolutionary
algorithms may cause poor numerical precision and difficult execution, when they solve the nonlinear
optimal problem. At the same time, the iterative period of these algorithms is long. If not optimized,
they will easily fall into the local minimum value.

Some significant achievements have been obtained in the obstacle avoidance problem. Masoud,
Dadgar, et al. proposed an A-RPSO (Adaptive Robot PSO) algorithm [24], which considered the obstacle
avoidance problem of the robot performing tasks, and, in the obstacle avoidance, there was also a control
mechanism that escapes from the local optimum. In Reference [25], research studies are conducted
on analyzing different trajectories presented by dynamic obstacles in the environment to predict
their future positions and to realize obstacle avoidance. By estimating future areas where collisions
between robots and obstacles may occur, mobile robots can take corrective actions before collisions.
The Montegrey, Calif. AUV Research Naval Postgraduate Institute conducted an experimental study
on underwater reactive obstacle avoidance (OA) for AUVs, by mainly focusing on using the ARIES
AUV and Blueview Blazed Array FLS for obstacle detection and avoidance [26]. In References [27,28],
an improved line-of-sight (LOS) guidance algorithm is used for obstacle avoidance. At the same time,
in the process of underwater obstacle avoidance, to achieve the optimal path obstacle avoidance [29,30],
the path planning method was used. For example, to achieve path smoothness, Joono, Sur. et al. [31]
used a streamline-based autonomous underwater vehicle obstacle avoidance path planning method.
Yufei, Zhuang, et al. [32] combined the particle swarm optimization (PSO) algorithm with the Legendre
pseudo-spectral method (LPM), which achieved real-time collision avoidance of static obstacles and
moving obstacles with different levels of positional uncertainty. Zheping, Y. et al. only classified the
obstacles in the obstacle-avoiding environment, and did not consider the influence of the unevenness
of the obstacles on obstacle avoidance. At the same time, the real-time obstacle avoidance method
mentioned for the obstacle with uneven surface needs to calculate the turning radius when a large
number of obstacle avoidance positions are calculated. In the case of multi-obstacle distribution,
the obstacle data of the overlapping portion is not processed, but it is unreasonable to directly propose
an obstacle avoidance gap for the overlapping obstacles as the direction of the obstacle avoidance. There
is no comprehensive consideration of multiple factors affecting AUV obstacle avoidance. However,
the previously mentioned methods are developed either for specific cases where different numbers of
obstacles are distributed in the environment, or aimed at the obstacle and the AUV relative model
to obtain the optimal solution in order to achieve AUV obstacle avoidance. No solution regarding
complex irregular obstacles or obstacles of different types is proposed, and no optimization obstacle
avoidance strategy is suggested for completely unknown environments.

Based on the previously mentioned obstacle avoidance problems, and combining target search
and tracking in unknown underwater environments with complex irregular obstacles, an obstacle
avoidance method for AUV based on PGOA is proposed. The main idea of this algorithm is: The FLS
(Forward-looking sonar) is equipped in the AUV front to obtain the obstacle information. Obstacles
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are classified according to the detected character information. Then, the contour convex algorithm and
Bezier interpolation are used to change the irregular contour into a convex polygon, which simplifies
the boundaries of the irregular complex obstacle, so that the AUV can respond quickly to various
obstacle environments. In the second stage, by using the maximum turning radius calculation method
based on the obstacle type and boundary data, different turning radii are obtained. Then, by using
obstacle avoidance parameters and obstacle avoidance rules, the obstacle avoidance weight function
is established. Lastly, the prediction parameters are obtained based on the predictive control second
optimization function. In the final stage, the corresponding predictive guidance track points are
calculated for the parameters, which are obtained by the obstacle avoidance rules and weight functions
of different obstacle environment types. Combining with the guidance [33,34] method, the AUV
successfully avoids obstacles and gets to the position of an intended target by traveling over the
predictive track. By using the obstacle avoidance method proposed, the AUV obstacle avoidance in an
unknown underwater environment is successfully achieved. Experiments compared the work efficiency
and task completion of AUV using APF and PSO algorithms, respectively. Lastly, it is proven via
experimental data that, compared with the traditional search methods and conventional optimization
algorithms mentioned above, the PGOA proposed has the clear advantage. Moreover, the simulation
experiment fully demonstrates the adaptive characteristics of AUV in different environments with
complex obstacles.

The rest of this paper is organized as follows. Section 2 introduces problem description and
mathematical modeling. Section 3 presents environments where obstacles distribute differently.
Section 4 develops AUV PGOA design. Section 5 gives a discussion of the results of experimental data
in various situations. Lastly, conclusions are given in Section 6.

2. Problem Statement and Model Description

2.1. Problem Description

In unknown underwater environments, AUV may encounter complex terrain such as reefs, islands,
trenches, and valleys, and the obstacles they meet are different in shape, complexity, and quantity. While
ensuring the completion of underwater missions such as target search and intelligence reconnaissance,
guaranteeing its own safety, it is necessary that AUV has the ability to avoid these complex obstacles in
each situation. Therefore, it is important to analyze the factors that may affect cooperative searching
for multi-AUVs.

1. Visual noise and threshold: Through the AUV-configured forward-looking sonar, the observation
data is affected by Gaussian noise during the measurement of the observation target. In addition, AUV
observation of the unknown environment through the forward-looking sonar is also limited by the
sensor’s detection distance. As such, the sonar cannot observe and extract environmental features that
are outside the view.

2. Movement limitation: The AUV’s own motion state will be affected by equipment such as
thrusters and rudders. In an unknown underwater environment, the AUV will also be affected by
unknown factors such as ocean currents and submarine topography. Therefore, the influence of the
AUV motion restriction features on the track planning during the AUV navigation process need to
be considered.

3. Obstacle types: When AUV performs tasks in an unknown underwater environment,
it encounters a variety of obstacle types, such as simple convex obstacles, complex convex obstacles,
and complex vortex obstacles. Therefore, a single obstacle avoidance algorithm cannot solve sudden
problems. Therefore, different obstacle avoidance strategies and algorithms are developed in this paper
for different obstacle types appearing in the AUV field of view, so as to achieve the optimal obstacle
avoidance effect.

4. Obstacle avoidance: AUVs may operate in an unknown underwater environment, and it is
inevitable for AUVs to encounter obstacles, which may threaten the AUV’s normal trajectory in the
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process of performing target searching tasks. Therefore, the AUV is expected to have the ability to avoid
obstacles in a timely manner, to ensure that AUV can travel safely and reliably. Ultimately, the economic
cost caused by equipment damage can be avoided and the searching task can be reliably completed.

2.2. AUV Movement Model

The AUV four-degrees-of-freedom constant-speed motion model xt+1 = f (xt) was established to
describe the form of AUV motion under water. In this paper, the updating of velocity and position
follows the following formula.

In this paper, according to the standard AUV equation of motion [35], the updating of velocity
and position follows the formula below. 

.
x
.
y
.
z

 = R(Θ)


u
v
w

 (1)

R(Θ) =


cosψ cosθ cosψ sinθ sinφ− sinψ cosφ sinψ sinφ+ cosψ sinθ cosφ
sinψ cosθ cosψ cosφ+ sinψ sinθ sinφ sinψ sinθ cosφ− cosψ sinφ
− sinθ cosθ sinφ cosθ cosφ

 (2)

Because the roll movement is uncontrollable for AUV and the simulation environment of the
obstacle avoidance algorithm is built on the 2-D environment, defining φ,θ = 0. Considering that
the AUV’s additional hydrodynamic resistances in the horizontal and vertical direction are greater
than those in the longitudinal one, when the speed over grand (SOG) exceeds 1 knot, the propulsive
efficiency of the auxiliary thrusters is very low. Therefore, when the AUV is navigating at a normal
speed, its auxiliary thrusters are idle. Usually, we take w = 0, v = 0, and then Equations (1) and (2) are
simplified as [36]: 

u = vc
·
x = u cos(ψ)
.
y = u sin(ψ)
·

ψ = r
x(t + 1) = x(t) +

·
x

y(t + 1) = y(t) +
·
y

(3)

where (x(t), y(t)) represents the positioning information that is related to the time variable t,
(
·
x,
·
y) represents the velocity vector of the AUV in the global coordinate system, υc is a normal

constant, and ψ represents the angle between the AUV direction and the direction of the global
coordinate system axis, and r is a heading velocity variable in this case. AUV is affected by its own
equipment, and its speed υc and corner ψ are limited.

2.3. Forward-Looking Sonar Model

Based on the unknown underwater environment, the real multi-beam active forward-looking
sonar data is simulated through a mathematical model of forward-looking sonar [37] in this paper.
According to the common multi-beam sonar background, the Seabeat6012 sonar is selected as the
forward-looking sonar of the AUV. The Seabeat6012 sonar has a visible range R of 150 m, a horizontal
opening angle α of 120◦, a vertical opening angle β of 15◦, and an operating frequency of 2 kHz.
To obtain the target data, the sonar model performs the array statistics d ∈ R80x3 of the range of the
sonar opening angle. Then based on the elements filled in the matrix, it judges whether there is a target
in a certain position in the visible range. The FLS can be roughly represented, as shown in Figure 1.
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The mathematical model for FLS is established, which can describe the constraint relationship
between the target and the FLS. Then the data information of the detected object is obtained. The model
can be given by the equation below. 
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2

(4)

where (xt, yt, zt) can be expressed by the equation below.
xt = x− x0

yt = y− y0

zt = z− z0

(5)

where (x, y, z) is the coordinate of the target in the hull coordinate system (Ox0y0z0). (x0, y0, z0) is the
body coordinate of the AUV sonar. (xt, yt, zt) denotes the relative positional relationship between
the target and the AUV. By judging the position and angle relationship of (xt, yt, zt), this model is
determined whether the target is in the sonar field.

Because the forward-looking sonar equipped on the AUV can be easily affected by the medium
of water or other external factors during the data collection process, such as data interference,
the measurement of the environmental characteristics is likely to be affected. Therefore, the description
of the sonar is given in Equation (6) [38].

yx−q =


none

∣∣∣x− q
∣∣∣> L

none
∣∣∣∣x− q

∣∣∣∣ in Obstacles

h(x, q) + d(x, q)ζ
∣∣∣x− q

∣∣∣< L

(6)

where yx−q denotes the FLS measurement from an AUV at position x to a sensing point at position q.
none indicates that the environmental feature data does not exist. L is the visual threshold. h(x, q) is
the sensor model in the noise free case, d(x, q) is the distance between x and q, and ζ is standard
Gaussian noise.

The above description indicates that, when the relative position of the FLS and the detected
object is outside the sight range, or there is an obstacle between the sonar and the detected object,
obtaining feedback of characteristic information is unavailable. If there is characteristic information
in the sight range, the observed data indicates the distance increases, and the measured disturbance
increases, accordingly.
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3. Classification of Obstacles and Solutions

3.1. Type of Obstacles

For a wide expanse of unknown waters, when AUVs are dispatched to perform underwater
operations, they often encounter unpredictable harsh environments with obstacles everywhere,
which affects the normal movement of AUVs. For example, Figure 2 lists several typical environments of
obstacle distributions: environments of convex obstacles, vortex obstacles, and dense convex obstacles.
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(1) Convex Obstacles
In this paper, the sporadic distribution of a small number of convex obstacles is defined as

a simple convex obstacle environment type in an unknown environment in Figure 2b. In this
situation, AUV could easily avoid collisions and plan a safe and reasonable trajectory to complete the
mission successfully.

(2) No-Convex Obstacles
In some cases, AUV can encounter some non-convex obstacles, such as concave structures or

helical shape. In such a case, a simple obstacle avoidance algorithm is not enough for AUVs escaping
from obstacles in Figure 2a. When an AUV is stuck in such an obstacle, a corresponding escape
algorithm needs to be developed to escape the vortex obstacles.

(3) Dense Convex Obstacles
Part 2.1(3) describes the types of obstacle structures. In reality, there is also an environment of

densely distributed convex obstacles in Figure 2c, which demands higher obstacle avoidance abilities
for AUV. Therefore, in intensive obstacle environments, a safe trajectory needs to be planned for AUV
to safely navigate through the densely distributed obstacles region.
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Figure 2 shows specific characteristics and distributes for each type obstacle in unknown
environments. The red spot is a virtual target point, which indicates that AUV has completed
its task. To verify the effectiveness of the algorithm, an unknown environment with an area of
2000 m × 2000 m is designed, which is divided into 400 m × 400 m task sub-areas, which supposes that
the obstacle information is unknown for the AUV. For the three types of obstacles mentioned above,
different obstacle avoidance methods are designed for AUV to complete its task and reach the desired
target point safely. The following solutions are developed to three situations.

3.2. Obstacle Detection Principles

AUV uses FLS to realize the collision avoidance function. A real-time obstacle avoidance strategy
is proposed in this paper. All obstacles in the environment are unknown, and their shapes and positions
are randomly generated. The obstacle boundary is generated based on the detected information of
the FLS. Considering that the AUV pitch angle rarely changes, the multi-beams sector on the horizon
in the body coordinates is used. The purple lines are the sonar beams on the horizontal plane in the
AUV body coordinates. The gray part is the obstacle, and the blue boundary is the obstacle contour
curve (Figure 3).
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3.3. Obstacle Condition Classification

To improve the effectiveness and safety of the AUV in obstacle avoidance when performing
underwater tasks, the obstacles are divided into four conditions according to the positions of obstacles
relative to AUV: bounded obstacles, left bounded obstacles, right bounded obstacles, and left and right
edge unbounded obstacles. When the obstacle enters the FLS detection range, the sonar will classify
the obstacle based on detected data by emitting 80 beams. The detection zone is a fan-shaped range of
80 m, as shown in Figure 4. In addition, k and l is the left boundary and right boundary detected by
FLS, respectively, i, j are the serial numbers of beams, δ, ζ is the arbitrary nature number [39].

(1) If the boundary of the obstacle is in the beam range of the FLS, the current obstacle is considered
as the bounded obstacle (BO).

∃k, l, δ, ς ∈ Z, k < l, i, j ∈ N+, i ∈ [k, l], j ∈ [k− ς, k− 1]∪ [l + 1, l + δ], st.0 < Si ≤ Le, st.0 < S j ≤ Le

(2) If the right boundary of the obstacle is outside the sonar beam range, and the left boundary is
in the range, the detected obstacle is called the left bounded obstacle (LB).

∃k, δ ∈ Z, i ∈ [1, k], j ∈ [k, k + δ], st.0 < S j ≤ Le, Si = 0
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(3) If the left boundary of the obstacle is outside the detection range of the sonar, and the right
boundary is in the range, the obstacle is defined as the right bounded obstacle (RBO).

∃l, ς ∈ Z, i ∈ [l− ς, l], j ∈ [l, 80], st.0 < Si ≤ Le, S j = 0

(4) If both sides of the obstacle are outside the detection range of the sonar, the obstacle is defined
as an unbounded obstacle (UBO).

∃i, j ∈ [1, 80], st.0 < Si ≤ Le, st.0 < S j ≤ Le
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3.4. Obstacle Avoidance Boundary Data Processing

First, the obstacle information in the sight range is obtained using FLS of AUV. The detected
data is stored in the matrix β ∈ R80×3, and only the horizontal plane of the sonar opening angle is
used in this paper, so just the second column of data of γ ∈ β is needed, with each representing the
object distance and angle information detected by the sonar beam. If there are elements in γ equal to
zero, it means that the sonar beams do not detect any objects. Group data is considered an obstacle.
For example, the detected data can be divided into two groups in Figure 5.
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Data in γ is grouped based on Formulas (10) and (11). First, the proper sonar beam spacing
is selected based on the FLS type. Then based on Equation (10), the obstacle information is judged
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whether it is a continuous sonar beam data, and whether the 2-norm of the obstacle boundary point
satisfies the beam spacing condition. The obstacle data can be grouped by iterating boundary data.∣∣∣∣∣∣SiSi−1

∣∣∣∣∣∣< db, Si · Si−1 , 0, i ∈ [2, 80] (7)

db =
λt(le ·ϕs)

n−1
, (n = 80 ,λt ∈ [1, 4]) (8)

where db is the beam spacing. Si is the obstacle point detected. λt is the screening factor, and le is the
detection range of the sonar.

FLS can output a data structure for the detected obstacles, where the obstacle bounder data are
stored in the same array. In reality, the obstacle shapes are always irregular, so the output data from
the sonar cannot be directly used to avoid obstacles. In this paper, the convex hull algorithm combined
with the simplified Bezier interpolation algorithm is used to transform the obstacle outline into a
regular shape, and the data is smoothed. It not only improves the accuracy of obstacle avoidance,
but also avoids the adverse effects of complex obstacles. In Figure 6, when the sonar detects a bounded
obstacle, to improve the accuracy of the obstacle avoidance efficiency, it is necessary to simplify and
smooth the boundary of the obstacle. By using the horizontal plane layer data β ∈ R2

80×2, coordinate
transformation is performed on the distance and angle data from the sonar beam point, since the input
data streams into the convex algorithm. When the data is simplified, it can be smoothed using Bezier
interpolation. To improve the algorithm speed, this paper selects 80 variables to segment the smooth
data. The specific implementation process is as follows.

Step 1: The data output from the sonar beam line is solved as an obstacle boundary point.{
Oix = auvx + di cos(ψ− θi)

Oiy = auvy + di sin(ψ− θi)
, (θi ∈ [ψ,ψ+ π/3], i ∈ [k, l], k, l ∈ N+) (9)

{
Oix = auvx + di cos(ψ+ θi)

Oiy = auvy + di sin(ψ+ θi)
, (θi ∈ [ψ−π/3,ψ), i ∈ [k, l], k, l ∈ N+) (10)

where ψ is the current heading of the AUV. di denotes the distance of the i-th sonar beam output. θi is
the angle of the i-th beam output, and aix, aiy is the position of the current AUV.

Step 2: For the set X of the obstacle boundary points calculated by the solution, a convex hull set,
which includes all the points in the X set, needs to be found to replace the X set. Then we select the
leftmost and lowest point in the set X as the origin of the polar coordinates. Then we sequence all the
points in the set, based on the principle that their distance from the polar origin is short to long and
the polar angle ranges from small to large. Subsequently, the ray is selected, which is generated by
the second point after sorting and the polar coordinates. Then the vector angle from small to large is
found by using the vector cross method. The convex hull is found, according to the distance from
small to large, if the angles are the same.

Step 3: The convex hull set, calculated in step 2, represents a simplified set of contour points of the
obstacle that are used as boundary points of the Bessel interpolation to generate the smooth obstacle
boundary points. The specific calculation is shown below.

B(t) =
n∑

i=0

Cn
i Pi(1− t)n−iti t ∈ [0, 1] (11)

where Pi is the interpolation point Pi = (xi, yi), and the cubic Bessel interpolation function is used in
this paper.

B3(t) =
3∑

i=0
C3

i Pi(1− t)3−iti

= (1− t)3 P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3 t ∈ [0, 1]
(12)
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Step 4: The last processed boundary points are sorted from left to right in the order of the sonar
beam. The final result is shown in the following figure. The red line is the contour line processed by
the convex algorithm, and the blue line is the final processing result.
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4. Predictive Guidance Obstacle Avoidance Algorithm Design

4.1. AUV Maximum Obstacle Avoidance Turning Radius

When AUV navigates at 2 m/s in an underwater environment without ocean currents, and the
rudder angle is set at a maximum steering angle of 35◦, the minimum turning radius is about five times
the length of the AUV. It takes approximately 3.5 seconds for the rudder angle of the AUV to vary
from 0◦ to 35◦. If the time delay of the steering angle transition is considered, the trajectory deviation
distance is 1–1.5 m, which is small compared to the turning radius. To simplify the problem that the
deviation distance is neglected. In other words, the trajectory deviation rotation is replaced by an arc
with a certain radius.

In Figure 7, Di is the best obstacle avoidance point detected by the FLS. Based on the current AUV
state information and the obstacle data collected by the FLS, the angle and distance information (αi,ρi)
relative to the AUV of the current obstacle point can be known, where αi is the angle between the AUV
heading and the obstacle point detected by the sonar, and ρi is the distance between the obstacle point
and the current AUV. Ri denotes the maximum turning radius relative to the current AUV. o is the
center of the circle where the maximum conversion radius is located. ob is the mid-perpendicular line
of Ac, and Ds is the safety distance. The specific definition is as follows:
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∠dADi = iαi,∠dAc = βi,ADi = ρi,Dic = Ds,Ao = Ri.
The maximum turning radius is expressed as follows [39].

ADi

sin(∠DicA)
=

Dic
sin(∠DiAc)

(13)

{
∠DiAc = βi − αi
∠DicA = π− (π/2− βi) = π/2 + βi

(14)

Based on Equations (16) and (17): αi = ϕs(i− 0.5n + 0.5)/n
βi =

Ds
ρi

secαi + tanαi
(15)

ADi

sin(∠DioA)
=

oA
sin(∠oDiA)

(16)

The maximum turning radius obtained by Equations (18) and (19) is as follows:

Ri = ρi[cosαi − sinαi/ tan(2βi)] (17)

If AUV avoids obstacles by rounding the right edge of the obstacle, then Ri denotes the maximum
turning radius of the obstacle point detected by the i-th sonar beam. The expected maximum turning
radius is expressed as follows.

Rmax = min{Ri|i = 41, 42, . . . , 80} (18)

Otherwise, when the AUV avoids the obstacle around the left edge of the obstacle, the expected
maximum turning radius is expressed as follows.

Rmax = min{Ri|i = 1, 2, . . . , 40} (19)

4.2. AUV Obstacle Avoidance Rules

Safe obstacle avoidance distance and the emergency obstacle avoidance distance is designed in
the AUV obstacle avoidance process. Therefore, the following rules are formulated to deal with the
two existing situations.

Rule 1: When there is a safe obstacle avoidance distance
a. If it is a left bounded obstacle that meets the conditions for safe obstacle avoidance, the AUV

turns to the left side of the obstacle to avoid it.
b. If it is a right bounded obstacle that meets the conditions for safe obstacle avoidance, the AUV

turns to the right side of the obstacle to avoid it.
c. If it is a bounded obstacle or an unbounded obstacle that meets the safe obstacle avoidance

distance, the AUV turns in the direction close to the virtual target to avoid the obstacle.
Rule 2: When an emergency obstacle avoidance situation occurs, a corresponding rule needs to be

established to ensure the safety of the AUV. To ensure absolute safety, in practice, it is necessary to
immediately turn off the propeller and initiate reverse propulsion in order to offset the forward speed
caused by inertia. However, this extreme situation is not considered in this article.

a. If there is an emergency obstacle avoidance setting where a bounded obstacle or an unbounded
obstacle exists, the current AUV heading is taken as the dividing line to estimate the boundary point
of the obstacle that is closer to the virtual target. Then based on the boundary point data generated,
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we use the method mentioned above to calculate the maximum turning radius. Lastly, the minimum
turning radius that meets the safe obstacle avoidance distance is selected.{

λr > λl choose left
λr ≤ λl choose right

(20)

{
Dv sin(λr) − 2sgn(Rmin)Rδmin > Dv sin(λl), turn le f t
else, turn right

(21)

where Dv is the distance of the AUV from the virtual target. Rmin is the minimum radius of the radius,
which meets a maximum turning radius. λr,λl is the right and left angle of the obstacle avoidance
path away from the target, respectively. δ is the set constant influence factor.

b. If there is an emergency obstacle avoidance and the bounded obstacle is in the field of view
of the sonar, in order to perform a safe and most energy-efficient obstacle avoidance, the AUV sails
toward the bounded side while calculating the turning radius.

The obstacle avoidance rule flow chart is shown in Figure 8.
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4.3. Constructing the Weighting Function of the Obstacle Avoidance Algorithm

4.3.1. Weight Function for Avoiding Influencing Factors

According to the principle of the predictive control model [40], the proposed predictive step size
is M. To ensure the safety of the AUV, the optimal obstacle avoidance trajectory points in the locally
known area of the AUV are obtained. Five factors affecting obstacle avoidance are considered: safety,
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rate of change of AUV yaw angle turning radius, obstacle avoidance path, and obstacle avoidance
area mode.
• The Weight Function of Safe Distance

To improve the safety of AUV obstacle avoidance, the relationship between the reference obstacle
point of the AUV selection and the current AUV distance as well as the safety distance must be
considered. The relationships are shown below.

ds(t + m) =
∣∣∣∣∣∣Auv(x, y) −Oi(x, y)

∣∣∣∣∣∣ , i = k, . . . , l

γs(t + m) =
|ds(t+m)−Ds|

Ds

fs,value = k1γs(t + m)

(22)

where ds is the relative distance between the AUV and the boundary point of the obstacle is detected
by the sonar. Ds is the safety distance. γs is the safety threshold, and k1 is the weight coefficient.

Clearly, the weight function can reduce the impact of this problem on the obstacle avoidance
algorithm. The risk of obstacle avoidance failure due to a single collision avoidance condition can
be avoided.
• Weight Function for the Rate of Change of the AUV Yaw Angle

To prevent the shaking movement of the yaw angle during the control process, the influence of the
rate of change of the AUV yaw angle is introduced to achieve the smooth control of the AUV turning
heading. The weight function is defined below.

fz,value = k2(ψt+m+1 −ψt+m) (23)

where k2 is the weight coefficient, and ψt+m is the AUV heading at a certain moment.
• Weight Function of the Turning Radius

The predictive track points are used for guidance control to achieve local obstacle avoidance.
According to the method of calculating the turning radius proposed above, the maximum turning
radius cannot be directly used as the guidance parameter, because the turning radius is only one factor
that affects the obstacle avoidance performance. The specific weight function is shown below.

αt+m = a tan 2(Auv,t+m(x, y) −O(xo, yo))

βt+m = b2+a2
−o2

2ab

γ =


αt+m , Auv,t,x − Sxo ≥ 0, Auv,t+m,y ≤ Syo

βt+m + π/2, Auv,t+m,x − Sxo < 0, Auv,t,y ≤ Syo

−αt+m , Auv,t,x − Sxo ≥ 0, Auv,t+n,y ≥ Syo

−βt+m −π/2, Auv,t+m,x − Sxo ≤ 0, Auv,t+m,y ≥ Syo

Auv,t+m,x = Oxo + R cos(γ)
Auv,t+m,y = Oyo + R sin(γ)

(24)

fl,value = k3
∣∣∣∣∣∣Auv(xt+m, yt+m) − Target(x, y)

∣∣∣∣∣∣
2 (25)

where γ is the angle between the position of the maximum turning radius where the AUV is located
and the center of the circle is shown as the polar coordinate origin. R is the turning radius. Sxo , Syo is
the coordinate of the obstacle point where the maximum turning radius is located, and Auv,t+m(x, y) is
the real time position of the AUV obstacle avoidance track. Target(x, y) is the virtual target point, and
k3 is the weight coefficient.
• Weight Function of the Obstacle Avoidance Path

To ensure that the AUV is able to reach the desired virtual target point by the shortest travel path
within the predictable range, the weight function of the obstacle avoidance path can be defined by the
equation below.

fd,value = k4

∫ t=T

t=0.1

∣∣∣∣∣∣Auv,t+m(x, y) + Auv,t+m+1(x, y)
∣∣∣∣∣∣

2
dt (26)
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where T denotes the time it takes to reach the desired target. Auv,t+m(x, y) is the AUV position
information at time m, and k4 is the weight coefficient.
• Weight Function of the Obstacle Avoidance Area

To improve the reliability of obstacle avoidance, the fan-shaped field of view detected by FLS is
generally divided into three parts: non-avoidance areas, safe obstacle avoidance areas, and emergency
obstacle avoidance areas. Therefore, it is necessary to judge which area the obstacle detected belongs
to, and adopt different obstacle avoidance strategies. Therefore, the weight function of the obstacle
avoidance area is defined below.

fa,value = k5 ·


1 , di ∈ (ls, le]
0 , di ∈ [ld, ls)
−1 di ∈ [Ds, ld)

(27)

where di is the distance between the obstacle boundary point and the current position of the AUV.
le, ls, ld, Ds is the longest distance that the sonar can detect, the maximum distance of the safe obstacle
avoidance area in the field of view of sonar, the maximum range of emergency obstacle avoidance area,
and safety distance, respectively. k5 is the weight coefficient.

4.3.2. Conditional Constraints of Weight Function

Due to the impact of physical structure characteristics of the AUV itself, and the obstacle avoidance
environment, several constraints must be met to achieve the purpose of collision avoidance successfully.

a. According to the structural characteristics of the physical design of the AUV, Maximum turning
angular velocity meets: −35◦ ≤ ωt ≤ 35◦;

b. To ensure the safety of the AUV, the safety distance is set to meet the conditions: 5lo ≤ Ds ≤ 6lo,
where lo is the length of the AUV,

c. The maximum turning radius meets the conditions: R ∈ [Rmax, Rmin].

4.3.3. Conditional Constraints of Weight Function

Combining weight functions, model parameters, and the obstacle avoidance principle,
the secondary optimization function based on predictive control is obtained below.

min
N−1∑

m=0.1

|| fs,value||
2+|| fz,value||

2 + || fl,value||
2 + || fd,value||

2 + || fa,value||
2 (28)

Since Equation (27) introduces non-contiguous Boolean variables as the weight function,
the objective function (28) is made non-convex. The corresponding problem becomes the mixed
integer nonlinear programming (MINLP) problem, but, so far, this type of problem has not found
a unanimous and mature solution [41]. However, it can be seen from Equation (27) that Boolean
variables introduced are only used for the evaluation of the weight function, but not for state variables
or control variables that need to be optimized. Therefore, it is still essentially nonlinear programs
(NLP) problem with constraints. Furthermore, there are many excellent algorithms for solving NLP
problems [42]. However, since the weight function (27) is non-convex, such NLP problems can only
obtain a local optimal solution. To weaken the influence of Boolean variables, the Boolean variables of
the weight function (27) are relaxed into a contiguous space, by using the hyperbolic tangent function
in the Sigmoid function as follows.

f ′a,value = k5tanh(µ ∗ di − 80) = k5
1− exp(−µdi − 80)
1 + exp(−µdi − 80)

(29)

where µ is the slope of the Sigmoid function. di is the continuous variable of the feasible domain.
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The weight function before and after relaxation is shown in Figure 9. In addition, it has a good
approximation and retains the property of the original weight function. The continuous convex
problem is obtained after the relaxation of Boolean variables, and the predicted trajectory point of the
AUV local obstacle avoidance can be obtained using the convex NLP problem. Thus, we can use the
existing Sequential Quadratic Programming (SQP) method to solve the problem [43,44].
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4.4. Overview of AUV Obstacle Avoidance Algorithms

The predictive guidance control obstacle avoidance algorithm is a real-time collision avoidance
algorithm that ensures the safety of the AUV when the AUV performs tasks. The details are as follows:

(1) Always moving toward the virtual target point, which is the direction of the AUV’s minimum
cost. When no obstacles or many obstacles detected by the FLS configured on the AUV are outside the
obstacle avoidance distance, the AUV needs to move in the direction of the target point where the
greatest profit is obtained.

(2) Maintaining a safe distance: When the obstacle detected by the FLS meets the obstacle
avoidance distance, the safety distance must be considered in the AUV collision avoidance. The length
of the AUV is 5 m, and the safety distance is generally four times longer than the AUV’s length. When
selecting the obstacle avoidance guidance point, it is necessary to judge whether the safety distance
meets the safe distance of the obstacle avoidance.

(3) Simple convex obstacles: When the AUV keeps the current heading in a certain area, and a
single convex obstacle is detected by the FLS, the appropriate track points are chosen, according to the
obstacle avoidance rule. This uses the dynamic guidance algorithm to adjust the heading in real time,
and, at the same time, control the appropriate speed to achieve safe obstacle avoidance.

(4) Vortex obstacles: In the current heading path of the AUV, there may be a complex vortex obstacle.
Since the obstacle appears only partly in the detectable area of the sonar and it is too hard to identify,
the AUV may enter inside the concave obstacle. Therefore, it is necessary to establish obstacle avoidance
rules for concave obstacles, and, based on the obstacle avoidance rules mentioned above, the effective
real-time algorithm can be achieved between the two obstacle avoidance guidance algorithms along
the vortex obstacle wall for the AUV to drive safely and, lastly, escape the vortex obstacles.

(5) Dense convex obstacles: When more than two obstacles were detected by the forward-looking
sonar of the AUV, the above two methods of obstacle avoidance are not fully competent. For the
AUV to sail safely in the multiple convex obstacle environments, we combed the predictive guidance
obstacle avoidance algorithm and obstacle avoidance rules based on different classifications of multiple
obstacle environments. The specific algorithm for such a setting is described in Section 4.5.3.

4.5. Different Obstacle Avoidance Algorithm Designing Various Types of Obstacles

To ensure the AUV complete its task safely, it is necessary to design reasonable obstacle avoidance
algorithms for different types of obstacle environments so that the AUV can adapt to the harsh
obstacle environments when sailing in an unknown underwater environment with obstacles. Therefore,
by using the predictive guidance control obstacle avoidance algorithm, we can obtain the shortest and
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smoothest obstacle avoidance path, so that the AUV can successfully achieve collision avoidance with
less rotation and rudder angle correction. Obstacle avoidance track points are predicted based on
the obstacles detected by sonar. Then, the AUV follows the obstacle avoidance track points by linear
guidance and arc guidance (the radius is the turning radius) to achieve a safe obstacle avoidance path.

4.5.1. Obstacle Avoidance Algorithm Designing for Simple Convex Obstacles

The AUV uses the obstacle avoidance rule mentioned above, and the obstacle avoidance weight
function is used to calculate the appropriate trajectory point to get the best track point and bypass
the obstacle. Taking the right bounded obstacle in Figure 10 as an example, the predictive guidance
avoidance algorithm is designed as follows.

1. By processing the boundary data of obstacles that has been detected by FLS, the number of
obstacles and their relative positions to the AUV can be obtained.

2. The relation between the obstacle points detected by sonar beam and the current AUV is
calculated by using the optimal parameters obtained by the weight function and the coordinate
information of all points are calculated by using the method mentioned above.

P j,i,min = min(D = [(Oix, Oiy), i = 1, . . . , m]) , m ≤ n (30)

P j,i,max = max(D = [(Oix, Oiy), i = 1, . . . , m]) , m ≤ n (31)

Qmin j,i =
{
(P j,i,min_x, P j,i,min_y), d j,i,min,θ j,i

}
, θ j,i ∈ [ψ−π/3,ψ+ π/3] (32)

Qmax j,i =
{
(P j,i,max_x, P j,i,max_y), d j,i,max,α j,i,

}
, θ j,i ∈ [ψ−π/3,ψ+ π/3] (33)

where P j,i,min is the beam spot with the shortest distance from the AUV in all detected beam points. D is
the set of all beam points. Qmin j,i is the set of all information of the shortest distance point. Qmax j,i is
the set of all information of the longest distance point, and ψ is the current AUV heading.

3. Judging whether the current point is on the left or right side of the sonar center line is
demarcated by the AUV heading. If it is on the left side and the result of the classification using step 1
is applied, for example, j = 1, then it indicates that it is a succession of single obstacles, and judges
the relationship between d j,i,min and the general obstacle avoidance distance ls as well as the warning
obstacle avoidance distance ld.

ηobs =
abs(θ j,i − α j,i)

π ∗ 2/3
(34){

d j,i,min ∈ [ld , ls], SOA
d j,i,min ∈ [Ds, ld] , EOA

(35)


ηobs ∈ [0, 0.5] , Hobs
ηobs ∈ (0.5, 0.8] , OHobs
ηobs ∈ (0.8, 1] , Eobs

(36)

where ηobs is the proportion of the obstacle take in the sonar’s field of view occupied by obstacles.
SOA is the safe obstacle avoidance range. EOA is the emergency obstacle avoidance range. Hobs is
the primary sonar sight range proportion. OHobs is the intermediate sonar sight range proportion.
Eobs is the emergency sonar sight range proportion.

4. If P j,i,min ∈ [Si, i = 1, . . . , 40] and it meets the SOA and Hobs conditions, then the predictive
obstacle avoidance guidance point is derived as follows and, after calculation, it goes to step 6
for execution.

δ =
abs(P j,i,max(x, y) − Pψ(x, y))

abs(P j,i,max(x, y) − S80(x, y))
(37)

P j,i,guide = S80(x, y) − δ · (1− abs(S80(x, y) −
S80(x, y)
Pψ(x, y)

)) · S80(x, y) (38)
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P j,i,guide = ε · abs(q j,i(x, y) −
q j,i(x, y)

S80(x, y)
) + q j,i(x, y) (39)

If P j,i,min ∈ [Si, i = 41, . . . , 80], and it meets the SOA and Hobs conditions, then the predictive
obstacle avoidance guidance point is as follows and, after calculation, it goes to 6 for execution.

q j,i =
(P j,i,max(x, y) + S80(x, y))

2
(40)

ε =
abs(q j,i(x, y) − P j,i,min(x, y))

abs(P j,i,min(x, y) − S80(x, y))
(41)

P j,i,guide = ε · (1 + abs(q j,i(x, y) −
q j,i(x, y)

S80(x, y)
)) + q j,i(x, y) (42)

where δ,ε are the remaining proportion of obstacles occupying the sight range of the sonar.
5. If P j,i,min ∈ [Si, i = 1, . . . , 40] and it meets the SOA and Eobs conditions, then the predictive

obstacle avoidance guidance point is P j,i,guide = S80(x, y), go to 7 for execution.
If P j,i,min ∈ [Si, i = 1, . . . , 40] and it meets the SOA and OHobs conditions, then the predictive

obstacle avoidance guidance point is P j,i,guide = S80(x, y). Go to 7 for execution.
If P j,i,min ∈ [Si, i = 41, . . . , 80] and it meets the SOA and Eobs conditions, then the predictive

obstacle avoidance guidance point is P j,i,guide = S1(x, y), go to 7 for execution.
If P j,i,min ∈ [Si, i = 41, . . . , 80] and it meets the SOA and OHobs conditions, then the predictive

obstacle avoidance guidance point is P j,i,guide = S1(x, y), go to 7 for execution.
6. Based on the obstacle avoidance track point obtained above, we can perform the following

obstacle avoidance guidance algorithm to correct the position and heading of the AUV to sail a safe
obstacle avoidance path.

βi = a tan 2(P j,i,guide(x, y) −Auv(x, y))
δ(t) = βi − a tan 2(P j,i,guide(x, y) −Auv(x(t), y(t)))
d(t) =

∣∣∣∣∣∣P j,i,guide(x, y) −Auv(x(t), y(t))
∣∣∣∣∣∣

2
ε(t) = d(t) · sin(δ(t))
ψd = βi − α(t)

(43)

where the selection of α(t) has certain rules as follows: When the current position of the AUV is
far from the desired path and ε(t) > ∆, the front-looking vector has no intersection with the path.
Then α(t) is selected as an angle perpendicular to the path direction, and it is π/2. If the current
position of the AUV is closer to the desired path, then α(t) = a sin(ε(t)/∆).

α(t) =
{

a sin(ε(t)/∆),
∣∣∣ε(t)∣∣∣≤ ∆

(π/2) ∗ sign(ε(t)), else
(44)

where Auv(x, y) is the current position of the AUV. Auv(x(t), y(t)) is the real-time obstacle avoidance
position of the AUV. δ(t) is the angle between the current AUV position and the obstacle avoidance
path end connection and the path. ψd is the desired heading. βi is the angle between the obstacle
avoidance track point and the true north direction. ε(t) is the distance between the center of the circle
and the AUV. α(t) is the angle between the forward-looking vector and the obstacle avoidance path.

7. Based on the obstacle avoidance track points obtained above, we perform the following obstacle
avoidance guidance algorithm to correct the position and heading of the AUV to form a safe obstacle
avoidance path.

βi = a tan 2(P j,i,guide(x, y) −Auv(x(t), y(t)))
ε(t) =

∣∣∣∣∣∣P(xo, yo) −Auv(x(t), y(t))
∣∣∣∣∣∣2 −Ri,max

ψd = βi − α(t)
(45)
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where α(t) is selected as follows.

α(t) =
{

a cos(
∣∣∣ε(t)∣∣∣/∆),

∣∣∣ε(t)∣∣∣ ≤ ∆
0, else

(46) (46)

where P(xo, yo) is the center of the circle where the maximum turning radius Ri,max of the obstacle
avoidance track point is located. ψd is the desired heading. βi is the angle between the obstacle
avoidance track point and the true north direction. ε(t) is the distance between the center of the circle
and the AUV, and α(t) is the angle between the forward-looking vector and the AUV to the center of
the circle.

8. End.
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4.5.2. Obstacle Avoidance Algorithm Design for Vortex Obstacles

To solve the trap problem caused by the vortex obstacles for the AUV in the actual underwater
environment and improve the collision avoidance efficiency of the complex vortex obstacles,
the line-of-sight guidance mechanism for predicting the update continuously of the trajectory segment
is used, so that the trap problem caused by the obstacle can be overcome. In Figure 11, the AUV enters
the trap of the vortex obstacle. Once the FLS detects the vortex obstacle and the obstacle avoidance
distance requirement is satisfied, the vortex obstacle avoidance algorithm is activated. According to the
data processing algorithm mentioned above, a black obstacle profile is formed, which can overcome
the interference of the complex obstacle profile in obstacle avoidance.
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Figure 11. Path design for the obstacle of the vortex obstacle.

The predictive guidance trajectory segment calculation is performed with the partial vortex
obstacle information detected by the sonar and the obstacle avoidance guidance trajectory segment
obtained in the sonar’s field of view in Figure 11. First, the obstacle data satisfying the obstacle
avoidance distance requirements are selected. Then, the current heading angle and position information
of the AUV are combined to calculate the predictive guidance track segment map vector. Lastly, all the
obstacle data satisfying the obstacle avoidance distance are processed by formula (47) to obtain the
predictive guidance obstacle avoidance trajectory segment.

Pov = (po(xo, yo) − pv(xv, yv)){
pgv = (xn − Pov(x), yn − Pov(y))

∣∣∣n = 1, . . .m
} (47)

where Pov is the mapping vector. pgv, m is the predictive guidance obstacle avoidance track point and
effective range of all effective obstacles detected by sonar.

The orange guidance trajectory segment in Figure 11 can be generated by performing the
line-of-sight guidance mechanism for predicting the update continuously of the trajectory segment.
Then the historical tracking information is recorded by setting the memory unit D ∈ Rn×2 including the
heading and path position information that the AUV has traveled, which is taken as comparative data
for the AUV that enters the vortex obstacle, finds the target, and escapes from the trap. By comparing
the current predicted data with the historical track information in D, the correct predicted trajectory
segment of escaping the trap can be obtained. Lastly, by choosing the correct predictive guidance track,
the AUV can escape from the obstacle trap. After the AUV executes the orange line segment guidance
trajectory, the FLS will further detect the remaining information of the vortex obstacle. Then we repeat
the above steps to continuously obtain the obstacle avoidance predictive guidance trajectory segment,
and realize the purpose of collision avoidance and escape the vortex obstacle trap.

Regarding the termination condition of the vortex obstacle collision avoidance, a virtual target
point is designed in this case, and the AUV moves toward the direction combing target’s direction
(Tolerance deviation from the target angle: ∆ ∈ [−15◦, 15◦]) and the relative distance reduced between
the AUV and the target.

4.5.3. Design of the Obstacle Avoidance Algorithm for Dense Convex Obstacles

If the number of obstacles appearing in the field of view of the FLS are more than or equal to two
and they suit the range requirements for obstacle avoidance, the environment is considered to be a
dense complex obstacle environment.

It is necessary to design a special obstacle avoidance algorithm for the dense obstacle environment
because the single obstacle avoidance algorithm and the vortex obstacle avoidance algorithm cannot
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solve the problem caused by the dense obstacle environment in the current field of view. The multiple
obstacle’s data processing in the field of view of FLS is shown in Figure 12. The optimal predictive
obstacle avoidance track point can be obtained by combing obstacle avoidance rules and weight
functions with the following formula as follows.

P j,i,guide =
P j,Si,min(x, y) + P j+1,Sk,min(x, y)

2
, ( j = 1, . . . , m + 1; i, k ∈ [1, 80]) (48)

Guide =
{
P j,i,guide(x, y)

∣∣∣ j = 1, . . . , m + 1; i ∈ [1, 80]
}

(49)

Gap = {li, i = 1, . . . , m + 1} (50)

λs,i =


0 , Gap,i ≤ 4lo

(

∣∣∣Gap,i−4lo
∣∣∣

6lo
)1/2, 4lo ≤ Gap,i ≤ 6lo

1 , Gap,i ≥ 6lo

(51)

λc,i = ρd,i · sin(ϕSi) · γc + λs,i (52)

Pguide = f (Gap,λc,i) (53)

where Guide is the possible existing guidance track points of all obstacle gaps. Gap is the spacing of all
obstacles. λs,i,λc,i is the spacing width influence factor and track point selection factor, respectively.
γc is the attenuation factor. ρd,i, lo are the distance between the track point and the AUV and the length
of the AUV, respectively. f is the evaluation function of the optimal guidance trajectory point. m is the
number of obstacles detected, and, in Figure 12, m = 4.
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Considering the influence of the length of the turning radius on the safety of the AUV avoidance
obstacle, it is unreasonable to select one location in the current gap as the guidance track point when the
largest obstacle gap is found. As a result, it will bring the cost of energy and cause the AUV to deviate
from the target point. Therefore, a variety of factors should be taken into account when selecting the
attenuation factor and evaluation function. It needs to meet the impact of weights in the selection of
trajectory points that γc = 0.5 is selected, and f selects piecewise linear function. In Figure 12, the blue
portion of the obstacle is an area that cannot be detected by the sonar in reality. It is impossible to
distinguish between the obstacles No. 1 and No. 2 for the AUV because they belong to one area in the
field of view of sonar. However, in a real situation, the obstacle is assembled by the number 1 and
2 obstacles. It is undoubtedly beneficial for obstacle avoidance, in reality, to use the corresponding
segmentation algorithm to classify different obstacles. The data processing method in Section 3.4 can
be used to realize the segmentation of obstacles No. 1 and No. 2 in Figure 12 and obtain the obstacle
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spacing l2 and the predictive guidance point P2,25,guide. Therefore, the optional guidance trajectory
point of AUV is added to improve the safety and selectivity of obstacle avoidance.

5. Simulation Results and Discussions

In the simulation environment of this paper, three kinds of obstacle environments were established
to verify that the obstacle avoidance algorithm mentioned above could solve the obstacle avoidance
problem in a complex environment and improve the obstacle avoidance efficiency. Obstacle information
in the entire simulation environment, including the type, number, and location of obstacles, is generated
randomly. The AUV does not know this information in advance. During the process of AUV sailing to
the predetermined target point, the obstacle can be detected when the unknown obstacle enters the field
of view of the sonar. Then the AUV avoids obstacles in real time, according to the obstacle avoidance
algorithm proposed above. Software simulation experiments were carried out in the MATLAB 2014.
A 2000 m × 2000 m two-dimensional area was established, which was divided into 400 m × 400 m
task sub-areas. In each task sub-region, several grids of equal size were divided, according to unit
length to evaluate the cost of AUV’s trajectory when executing the obstacle avoidance algorithm.
In three kinds of the obstacle environment, the speed of the AUV when it does not detect the obstacle
is 3.5 m/s. The speed of executing the obstacle avoidance algorithm was 2 m/s, and the unit step time
was 0.1 s. The proposed obstacle avoidance algorithm was tested and verified in three kinds of obstacle
environments, respectively.

5.1. Simulation Verification in a Simple Convex Obstacle Environment

This design requires AUV to have a simple convex obstacle environment obstacle avoidance
capability to arrive at virtual target points, to verify the effectiveness and efficiency of the obstacle
avoidance algorithm in dealing with simple convex obstacle environments. As shown in Figure 13a,
the starting position of the AUV is (180, 180), and the heading angle is set to 0◦with the two-dimensional
y axis as the true north direction. The virtual target point is a red circle, and the center of the circle is
(1800, 1800) and the radius is 10. Meanwhile, seven convex obstacles are generated randomly in the
two-dimensional environment to form a simple convex obstacle environment. It is stipulated that,
when the distance between the AUV and the virtual target point is 10 m, the obstacle avoidance process
is ended, and AUV has reached the target and successfully completed the target searching task.

The obstacle avoidance trajectory of APF in a simple, convex obstacle environment is shown in
Figure 13b. Clearly, it can be seen that the obstacle avoidance trajectory is not very smooth. Since the
selected obstacle avoidance path is not the best path for the current obstacle environment, the cost
value of the obstacle avoidance is much higher than that in Figure 13a. The distance between the AUV
and the obstacle is relatively close during the obstacle avoidance process, which is likely to increase
the risk of the obstacle avoidance failure.

The trajectory of the PSO algorithm used for obstacle avoidance is shown in Figure 13c. It can
be seen from Figure 13c that the AUV chooses the path to avoid obstacles as the obstacle avoidance
trajectory, which is close to the virtual target point at the same time. However, this also increases
the overall cost of the obstacle avoidance process. Compared with Figure 13b, its track is relatively
smooth, but its cost increases. However, there is no probability of an increase in the risk of avoiding
obstacles. In a word, the obstacle avoidance algorithm proposed is more suitable to the simple
obstacle environment.
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Figure 13. Simple obstacle environment avoidance trajectory. (a) PGOA (Predictive guidance obstacle
avoidance). (b) APF (Artificial potential field). PSO (Particle swarm optimization).

5.2. Simulation Verification in the Vortex Obstacle Environment

The AUV is designed to find the target point in the vortex obstacle and escape from the obstacle
to verify the effect of the obstacle avoidance algorithm proposed for escaping from the vortex obstacle
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environment. The starting position of the AUV is set to (700, 1200), and the heading angle is set to
0◦ with the two-dimensional y axis as the true north direction. A red circular target point is set in
the vortex obstacle with its center being (910, 1010) and the radius is 10. The stop position is set to
(1400, 300) after the AUV escapes from the vortex obstacle. Eventually, the AUV enters the vortex
obstacle and escapes from the obstacle safely after detecting the target. Then AUV reaches the specified
destination. As shown in Figure 14, a concave obstacle environment in a two-dimensional environment
composed of complex vortex obstacles is set. It is stipulated that the target point can be marked when
the target point appears within the range of 80 m of the AUV sonar’s field of view. It indicates that
the AUV has detected the target in the vortex obstacle and completed the obstacle avoidance task
successfully and reaches the predetermined end position when the AUV is within the range of 10 m
from the end position.

An obstacle avoidance algorithm is set for the vortex obstacle. Figure 14a shows that the AUV
enters the obstacle and detects the target and does not fall into the vortex obstacle. The AUV can escape
the obstacle at once and quickly reach the designated termination point. The orange trajectory represents
the predicted trajectory formed from the detected obstacle data. Additionally, the blue trajectory
represents the true obstacle avoidance trajectory of the AUV. The figure shows that the red target point
has been marked in green, which indicates that the target point has been successfully detected.

Figure 14b shows the AUV obstacle avoidance trajectory for the return obstacle realized by the
APF method. AUV is stuck in a return obstacle and cannot escape from the obstacle because the
repulsive force inside the vortex obstacle is large and the gravitational force at the end position is small.
AUV only completes the target detection, but cannot escape the obstacle.

Figure 14c shows the AUV obstacle avoidance trajectory formed by the PSO algorithm. As the
figure shows, the AUV can detect the target point and escape the obstacle and reach the specified end
position. However, it can fall into the obstacle for a period of time before it escapes from the obstacle,
which increases the value of the whole obstacle avoidance process.
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Figure 14. Trap obstacles environment obstacle avoidance trajectory. (a) PGOA (Predictive guidance
obstacle avoidance). (b) APF (Artificial potential field). (c) PSO (Particle swarm optimization).

5.3. Simulation Verification in a Dense Obstacle Environment

This design requires AUV to have a dense convex obstacle environment with an obstacle avoidance
capability to arrive at virtual target points and to verify the effectiveness and efficiency of the obstacle
avoidance algorithm in dealing with a dense convex obstacle environment. As shown in Figure 15,
the starting position of the AUV is set to (180, 180), and the heading angle is set to 0◦ with the
two-dimensional y axis as the true north direction. The virtual target point is the red circle with its
center at (1800, 1800) and the radius is 10. Fifteen convex obstacles are generated randomly in the
two-dimensional environment to form a dense convex obstacle environment. In this experiment,
the situation of the obstacle avoidance process ended when the distance between the AUV and the
virtual target point is 10 m, which indicates that the AUV has successfully completed the obstacle
avoidance task and reached the target.

Figure 15a shows the obstacle avoidance track formed by the PGOA algorithm in a dense convex
obstacle environment. The pink circle in the figure indicates the predictive track points. As the figure
shows, the AUV chooses a reasonable obstacle avoidance path to reach the virtual target point without
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bringing an obstacle avoidance risk. Meanwhile, it can maintain the requirement of safe obstacle
avoidance distance. In addition, the cost of the entire obstacle avoidance is controlled within 1500.

Figure 15b shows the obstacle avoidance trajectory formed by the APF method. As the figure
shows, the AUV does not select an appropriate path as the track to reach the target. Meanwhile, it tends
to increase the risk of obstacle avoidance when AUV crosses the obstacle group with relatively small
obstacle spacing, which may result in the failure of obstacle avoidance. The path to avoid obstacles
does not meet the safe obstacle avoidance distance at the beginning of obstacle avoidance, which does
not meet the obstacle avoidance requirements of this paper. In addition, compared with the cost of
Figure 15a, there are also many resources that are wasted.

Figure 15c shows the obstacle avoidance path formed by the PSO algorithm. As the figure shows,
the path selected by AUV is very close to the obstacle avoidance trajectory of Figure 15a and the path
is relatively smooth. It fully meets the safe obstacle avoidance distance. However, it increases the cost
of the overall obstacle avoidance because the trajectory to the target is not the most suitable. Moreover,
it is similar to the APF obstacle avoidance cost, which is twice the cost of PGOA.
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Figure 15. Vortex obstacles environment obstacle avoidance trajectory. (a) PGOA (Predictive guidance
obstacle avoidance). (b) APF (Artificial potential field). (c) PSO (Particle swarm optimization).

Figure 16 shows the comparison of the cost of the obstacle avoidance process brought by different
algorithms in three kinds of obstacle environments. It can be seen from Figure 16 that the PGOA
obstacle avoidance algorithm can successfully complete the obstacle avoidance process in different
complex obstacle environments, and the cost of the entire obstacle avoidance process is also minimal.
APF can adapt to a simple convex obstacle environment and a dense convex obstacle environment.
However, its cost is twice as much as the PGOA algorithm, and it cannot handle the vortex obstacle
environment. The PSO algorithm can complete obstacle avoidance for the three kinds of obstacle
environments, but the cost is very high. In a word, the obstacle avoidance algorithm proposed in this
paper has great advantages in dealing with various obstacle environments.
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Figure 16. Algorithmic cost in three obstacle environments.

6. Conclusions

The PGOA proposed in this paper deals with various complex obstacle environments,
which includes complex convex polygon obstacles and complex concave obstacles. This algorithm
can handle simple convex obstacles, dense convex obstacles, and vortex obstacles. The AUV’s
obstacle avoidance trajectory is also close to smooth. The AUV through various obstacle environments
easily reaches the predetermined virtual target point during the whole obstacle avoidance process.
Furthermore, the AUV’s obstacle avoidance process has always met the requirements of safe obstacle
avoidance distance, and the cost of the entire obstacle avoidance process is less than other traditional
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algorithms. During the process of facing the vortex obstacles, the AUV can escape the vortex obstacle
environment once inside the vortex obstacles by remembering the direction of the path that it has
traveled before, which avoids falling into the obstacles and causing an obstacle avoidance process
failure. The next step in this paper is to optimize the proposed algorithm to adapt to the AUV pool
experiment and extend the algorithm to the complex marine environment where ocean currents and
dynamic obstacles exist. At the same time in the actual underwater environment, most obstacles have
different shapes at different heights. The obstacle avoidance problem is much more complicated in
the three-dimensional environment. Therefore, in the later research, the two-dimensional obstacle
avoidance algorithm is used to penetrate into the three-dimensional environment.
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